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QUESTION. Is it true that p¢(K)—{1/0} = @ for any nontorus noncabled knot K ?

Note that the positive answer to this question implies that to the cabling
conjecture, which states: if K(r) is a reducible manifold then K is a torus knot or
a cabled knot.
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Normal k'-spaces are consistently collectionwise normal
by

Peg Daniels (Auburn, Ala.)

Abstract. Z. Balogh completed F. Tall's “Toronto project” by proving consistently that every
normal, locally compact space is collectionwise normal. The natural generalization is to replace
“locally compact” with the classical “k-space property”. We prove that in any model obtained by
adding supercompact many Cohen or random reals, discrete collections of closed sets in such
spaces have a “first-stage” separation; if the space also satisfies the stronger k'-space property, then
we can obtain an open separation, so the space is collectionwise normal.

1. Introduction. F. Tall’s “Toronto project”, to prove consistently that every normal,
locally compact space is collectionwise normal, was completed by Z. Balogh who
proved that this is so in any model obtained by adding supercompact many Cohen or
random reals [B]. A history of the project is contained in his paper. It would be nice to
improve this result by replacing “locally compact” by “k-space”, where a k-space is one
in which a set is closed if, and only if, its intersection with every compact set is closed,
since the k-space property is a classical topological property and k-spaces have some
nice properties; they are precisely the quotient images of locally compact spaces, and
hence are closed under quotient maps. In this paper we prove that in any rmodel
obtained by adding supercompact many Cohen or random reals, discrete collections of
closed sets in such spaces have what we call a “first-stage” separation, and show that if
a space additionally satisfies a stronger property, the k'-property, then the first-stage
separation enables us to get an open separation of the sets, and hence the space is
collectionwise normal. We also show that if the first-stage separation could be made to
be discrete, then the process could be continued and we could get the collectionwise
normality of the k-spaces.

We also treat the “countably paracompact™ analogue of these results, and obtain,
as one familiar with the history of the Toronto project would expect, the results that in
such spaces locally finite collections of closed sets have a “first-stage expansion” and
that if a space is additionally k', this enables us to get an expansion by locally finite
open sets.

The large cardinal assumption is used to obtain a reflection principle: if there is
a counterexample, it is forced to be a small one. Once we had the new ideas necessary to
show that there could be no small counterexample, we first modelled our consistency
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proof after Balogh’s and so are indebted to his work. A. Dow, however, showed the
author how Balogh’s result can be proven more simply by following the approach laid
out in [DTW], and so this is the approach we follow in this paper.

2. The general result for normal spaces. A collection of disjoint subsets of a space is
said to be normalized if for every partition of the collection into two subcollections,
A and B, there, exist disjoint open sets about (4 and |JB.

THEOREM 1. Suppose « is a supercompact cardinal, P is the poset for adding either
i-many Cohen reals or x-many random reals, and G is P-generic over the set-theoretic
universe V. Then

VIG] = “Suppose X is a normal space with the property

(¥} if Z is a collection of subsets of X such that every countable subcollection of Z is
discrete, then Z is discrete,

¥ = {Y,: aeX} is a normalized discrete collection of closed sets in X, and for each ye¥,
and deX there is a collection U, 4 = {U(y, x, d): xeX} consisting of sets with compact
closure and having the following properties:

O Neex U, x, d) = {3},
(i) for each x, x'€X there is an x" € X with U(y, x", dy = U(y, x, d) n U(y, ', d)
and
(iii) for each open set V, if yeV then there is an xeX with U(y, x, d) < V.

Then for each ye|)% and deX there is an x(y, d)eX such that
{Usetadex Uy, x(y, d), d): aX} is a (not necessarily open} separation of ¥”."

Such a separation of % we call a first-stage separation.

Proof of Theorem 1. Suppose x, P, and G are as in the hypothesis. For the sake
of elementary submodel arguments, let ®(X, %, (%, 4)yeus,sex) be the statement that X,
¥, and (Uy,4)yeuw,aex are as stated in the theorem. Also for the sake of elementary
arguments, we will think of U as a relation, U « X x X x X x X, and (y, x, d, 2)e U if,
and only if, ze U(y, x, d).

Suppose that the conclusion of the theorem does not hold.

Using standard facts about supercompact cardinals, Cohen real and random real
forcing (see [DTW, Section II]), we may choose an ordinal £ large enough, a set G*, and
an elementary embedding j: V[G] < M[G*] such that

(a) M is a transitive class with [M]* = M,

(b) j"V e M; j(0) =« for each « < k; j{x) > p,

(c) G* is j(P)-generic over M,

@) (M[G]), = (VIG), and

(e) <X, %, (%y,)yeun,0ex2 € (V[G), and (VIG]),="“% is a discrete collection in
(X, 7) with no first-stage separation”.

By (d) and (e), (M[G]),, and hence M[ G, satisfies the statement that % is a discrete
collection in (X, 7) with no first-stage separation. In fact, M [G¥]=“¥ is a discrete
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collection in (X, 7) with no first-stage separation”. Dow, Tall and Weiss show in [DTW]
that if & is a collection of subsets of a space X, P is a Cohen partial order, and G is
P-generic over ¥, then if in V[G] there are disjoint open sets about the elements of #,
then the same is true in V. Balogh in [B] essentially shows the same result if P is the
poset for adding random reals. These arguments use the fact that both types of partial

- orders have endowment properties (see Lemma 2), and can be generalized to first-stage

separations. Thus if M[G*]k=“% has a first-stage separation”, then since M [G*] is
obtained from M[G] by adding either Cohen or random reals, we would have
M[G]=“% has a first-stage separation”, which is a contradiction.

By clementarity, M[G*]i= &(j(X), j@), j(ya)yevwex))
In M[G*], let

z={ U U Ny i, jd): acj"x}.
V" V)i deX xeX
We claim that 2 is a discrete collection in j(X). It suffices to show that every countable
subcollection of # is discrete. So let {a,: new} =j”X and consider

2 ={ U U N i@d): new}.
Y&Y)- 1o, 46X xeX

Let h: w— X be the function defined by h(n) = j~*(a,). Then he M[G*] = M[G][G*/G],
where G*/G is j(P)/P-generic over M[GY. Since j(P)/P is ccc, we may let He M[G],
H: o—(X) be such that for each new, h(n)eH(n) and |H(n)| <. We have
He(M[G])p, so He V[G]. Soin V[G], consider {Y,: ael J, H,(n)}, a countable discrete
collection of closed sets in a normal space. It has an open discrete separation, say
{U,: ae|),H(n)}. For each ae|J,H(n), ye¥,, and de X, let x(y, e X be such that
U(y, x(, d), d) = U,. Then

{U U U@ x d, d: ae|)Hm}
ye¥aq deX M

is discrete in X, By elementarity, and using the fact that { ), H(n) is countable and hence
J(UJoHm) =, j"H(n), M[G*] satisfies that the image of this set,

{U U jO0.je) @ d), d: ae{JHM],
vel(Ya) dej(X) "

is discrete in j(X). But

U i) (3 i), a), d),

Y&/ (Yjrrga) dEiX)

U U Niw e, i) <

YE]" Yy 46X x6X

for if in M[G*], z&(\aexj(U)(y, j(x), j[d)), for y&j; Y-y and d'eX, then since
x(j7H), d)e X,

2&j(U) (3 J(x(i72 0 @), J(@)) = @) (3, 5 ) (v, J@)), J@)
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which means

ze |J U jOi) . d) ).
YE(Yj-va) dei(X)
So, %’ is discrete and thus & is discrete.
Since j(X) is normal, & is normalized.
We now want to show that there are collections satisfying “filter-base properties”
(ii) and (iii) for &. A convenient equivalent description of %' is
z={) U NG, i, jd): acX}.
ye¥q deX xeX
We now show in M[G*] that if ae X, ye Y,, de X, and \eex j(U) (J (), j(x), j(d)) = W
for some Wej(z), then there is an xe X with j(U){j(y), j(x), j(d)) = W. Suppose not and

let & = {j(U)(j(y), j(=), j@)\W: xeX}. By elementarity, each j(U)(j(y), j(x),, (d))
compact, so ¢ consists of compact sets. Also by using elementarity on property (ii) of the
collections #%,4, € has the finite intersecﬁion property, and so ﬂ%” # . But again using
property (ii) and elementarity, (\xex j(U)(j(¥), j(x).j(d) = W; which by supposition is
empty. We have a contradiction, and so there must be an xeX with
JO) (), (=), j(@) = W. ,

We now show that there is no first-stage separation of & in j(X). On the contrary,
suppose that M[G*] satisfies that for every aeX, ye¥,, and deX, there is an
x(y, de X such that

{U Ui@3Go), i(x(y d) j(d): aeX} is a separation of .

ye¥o deX
Then we claim that in M[G*], {Uer, Uaex Uy, x(v, d), d): aeX} separates ¥,
which is a contradiction. Suppose that a, beX; y,eY,; y,€¥,; d,,d,eX; and
z2eU(y,, x(3,, dg), 4) N U (9, x(yy, dy), dy). Then by fact (d) and absoluteness,

VIGIE 2€ U(¥, X(Vr do), d) 0 U X(3, )y dy).
Therefore in M[G*],
J@ eI WY (302 J(5War A J(d)) 0 JU) () Jx (e dy)) (),

a contradiction. Thus x gives a first-stage separation of @ in X, but there is no such
separation. Hence there is no first-stage separation of # in j(X).

To summarize the key information, in M [G*] we have j”X < j(X), |j" X| < j(x);
for each aej”X there is a Z,  j'X (namely Zj,, =;"Y,) such that

) {Useza Uaerrx Nxerrx JU) (s x, d): aej"X} is discrete in j(X),

(2) for each a, dej" X, for each ye Z,, for each x, X' e " X there is an x” & /" X such
that j(U)(y, x", &) < j(U)(y, x, d) N j(U)(y, X', d),

(3) for each Wej(x), if

U U Ny~ decw,

yeZa dej'’'X xej'X

o 2 . i s .
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then for each yeZ, for each dej’X there is an x(y, dej"X such that
j(U)(ya X(y, d)a )C W and

(4) for each h: j"X —2 there exist disjoint W,, W, ej(z) with
ULU U ) i x d): aef’X and hi@)=i) < W,

JeZa dej"X xej''X

but there is 1o f: Juejrx Z, x;”X—»]”X such that {{)yez, Uaeyx (V) (3. f (v, d), d):
aej"X} is pairwise disjoint,

Thus we may say M[G*]=3X" c j(X), |X'| < j{x) such that VaeX'3Z, <
= X' nJj@) with

) {Uyeza Usex: Nsex J(U) (3, %, d): aeX'} is discrete in j(X),
(2) Va, de X' VyeZ,Vx, X e X'3x" X' with

JO)(y, X", d) < jU)(y, x, d) A j(U) (y, ', d),
(B) VWej), if ez, | Jaex (e JU)(Y, %, d) = W, then VyeZ,Vde X'3Ix(y, d)e

€X' such that j(U)(y, x(y, d), d) = W,
4) Vh: X7 ”",2 3 disjoint W,, W, ej(x) with

U{U U N i@, x d): aeX' and h(@)=1} < W, but

yeZa deX' xeX'

() Af: U Z,x X' = X' such that {Useze Uex JU) (v, £ (0. d), d): ae X'} is
pairwise disjoint,

By elementarity, V[G]k “4X' = X, |X| <, such that Va eX'3Z, =X n| ¥
with ‘

M) ¥ = {Uyez Usex Nxex U(y, %, d): ae X’} discrete in X,

(2) Va,deX'VyeZ, Vx, ¥ e X'I"e X' with U(y, x", AUy, x, dnU(y, x, d)

(3) YWer if U,,Czn Usex' Nwex Uy, x, d) = W, then VyeZ,VdeX' 3x(y, deX'
with U(y, x(p, d), d) =

4 Yh: X'—-2 1 disjoint Wy, W et with

U N UG, x d; aeX’ and h(@) =i} = W, but
Wil de X' xeX'
B A4S Ubewr Z,x X' X" such that {{Jyez, Usex Uy S (3, d), d): ae X'} is pairwise
disjoint”,
If we can show that in V'[G] there can be no such X’, then we will have shown our
supposition that the conclusion of the theorem does not hold is false, i.e. that the
conclusion holds. We show there is no such X' in a separate lemma.

LEMMA 2. Suppose that, in V, % = {Uyey,, Uaex ﬂxex Uy, x, d): an} is a discrete
collection of sets in a space X, and for each ye Y, and de X, for each x, x' € X, there is an
X'eX with U(y, x",d) < Uy, x, dynU(y, x', d), Also suppose that w is an infinite
cardinal > |X|, P is the poset for adding either k-many Cohen reals or i-many random
reals, and G is P-generic over V. Then if V[G]= “for each f:|X|—2 there is
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a g Ueex Y, x X X such that if

Ui=U{U U U@ 9 d), d): aeX, fa) =i}

ye¥q deX
Jor i=0,1 then Uy nU, =@, then in V there is a first-stage separation of %.

Proof. Assume the hypothesis. { G is a function from « into 2, so without loss of
generality we consider it as a function from X into 2. Then by hypothesis we may
let g: (Juex ¥, x X~ X be such that for each aeX, for each ye Y, and deX,
Uy, 93, d), d) = Uygy and UynU,=@. Let peG be such that, in V¥
pIF“UJG: X =2, and g: | Juex ¥, x X - X is such that for each ae X, each ye¥,, and
each de X, U(y, g(3, d), d) = Uyg, and Uy n U, = @”. By [DTW], P is endowed, i.e.,
for each pe P and n > 2, there is a family .%, of finite subsets of P such that (a) for every
maximal antichain 4 below p, there is an L e %, with L<= 4, and (b) whenever L,, ..., L,
are members of %, and p’ < p is such that |p\p| < nif P is the Cohen real partial order
or u(p) < (/mju(p) if P is the random real partial order, then there exist q.eL;
(i=1,..., n)such that {y/, q,, ..., g,} has a common lower bound. So let & = 2(P) be
a 5-dowment below p (ie, consider %). For each a, deX and for each ye Y,
plg(y, deX, so let A(y,d) be a maximal antichain below p deciding g(y, d).
Let L(y, d) = A(y, d), with L(y,d)e £ For each geL(y, d), let x(y,d, q)eX be
such that g g(y,d) =x(y,d, g Let g(y,d)eX be such that U(y, §(y, d), d)
< Naertnay Uy x(3, d, g), d), by property ().

We claim that § gives a separation. The proof that this is so follows the standard
arguments laid out in [DTW] and [B]. We outline the procedure. Suppose

ze ) YU g ddyn U J U, 4, d), d),
ye¥q deX ye¥ar deX
for a#a' in X. Let yeY,, ye¥,, and d,d'eX be such that ze U(y, §(y, d), d)
nU(Y, §(y, 4), d). If P is the Cohen real poset and a, a'é¢domp, then let
P'=pu{{a, 03, <a, 1)}. So there exist ge L(y, d), q'€L(y, d) such that {p/, g, ¢’} has
a common lower bound r. Since g | U(y, §(y, d), d) = Uyg and ¢ | Uy, g0, d), d)
< Uuew)> T IF 2€ Uugi N Uyg), but since r < p/, r | Uuew N Uygw) = @. Thus we
have a contradiction and § separates ¥, and ¥,.. The domain of p is finite, so using the
fact that Y is normalized, we can get a first-stage separation of {Y,: aedomp}, and of
{Usedomp Yos Uagdom Y.}, and so we have a first-stage separation of ¥, If P is the random
real poset, the argument is similar, but more technical, we refer the reader to [B]. m

Continuation of the proof of Theorem 1. Since we wish to get a separation
of #' in X, and not merely in X', we expand X' as follows. For each y, y', x, x/, d,
deX, let z(y, x,d, y, x, d)eU(y, x, dn Uy, x, d), if possible. Let X" contain
X'u{z(y, %, d, ¥, x,d): y, %, d, y, ¥, d'e X'}. By standard factorization properties of
P, we may assume that the ground model V satisfies
{U U NUGxdnX": aeXx? is discrete in X7,

YeZa deX’ xeX'
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and that for each yeZ, and deX’, x and x'e X', there is an x"e X’ with
Uy X", d)n X" < U(y, x, d)n X" A Uy, x, d).
V[Gk="for cach [ |X"|—>2 there is a g: Jaex' Z, % X' > X' such that if

Ur=U{U U UG g0, d), d): aeX’, @) =1}

yeZy deX’

for i=0,1,
then Uyn Uy = @”. So by Lemma 2, in V there is a first-stage separation of

U UNuexdnx: aeX'}

yela deX xeX'
in X"; since cach z(y, x, d, y', x', d)e X", we thus have a first-stage separation in X,
which contradicts statement (5) which said there is no such separation. Thus in VIG]
there is no such X', and so we have proven the theorem. m

3. Applications of the normal case

THEOREM 3. Suppose 1 is a supercompact cardinal, P is the poset Jor adding either
w-many Cohen reals or w-many random reals, and G is P-generic over the set-theoretic
universe V. Then VG]="“if X is a normal k-space, and % = {Y,: ac X} is a discrete
collection of closed sets in X, then % has a first-stage separation”.

Proof. Suppose «, P, and G are as in the statement of the theorem. Suppose
V[G]k=“X is a normal k-space and & = {Y,: ae X} is a discrete collection of closed
sets in X™. Let {Cy: de X} list all compact subsets of X (expand X by adding a closed
discrete set, if necessary). For each y, de X such that ye C,, let %, 4 = {U(y, x, d): xeX }
be a basis for y in C,. Clearly the collections 9,4 satisly properties (i), (i), and (iii) listed
in the statement of Theorem 1. We show that X also satisfies property («). Suppose & is
a collection of subsets of X such that each countable subset is discrete. We first show
that for each 2" < %, |J{Z: Ze#'} is closed in each compact set C. Suppose
2" = {2, new} lists distinct elements of ¥’ and C N Z, # @ for each ne . Since 2"
is discrete, for each peC there is an open set containing p that meets at most one
element of ", and so by the compactness of C there is an open set containing C that
meets only finitely many elements of 2, a contradiction. So |{Ze %": CnZ # @} < w
and so {Z: Ze'} is closed in C. Since C is arbitrary and X is a k-space,
U{Z: Zea} is closed in X for each 27 = 2. Now suppose p is a limit point of  J#,
and hence of | J{Z: Ze#'}. By the above argument there is a Ze % such that pe Z. p is
not a limit point of { J(#\{Z}), since otherwise there is a Z'e #\{Z} with pe Z', which
contradicts the assumption that {Z, Z'} is discrete. It follows that & is discrete. Clearly
property (i) holds for the collections #,,4, and since each C, is compact, it is easily
checked that properties (if) and (i) hold as well. Thus by Theorem 1, % has a first-stage
separation.

Turorem 4, Suppose x, P, and G are as in the statement of Theorem 3. Then
VIGIE="“if X is a normal k'-space, then X is collectionwise normal”.:
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DEFINITION. A space X is a K-space provided that whenever xeA, there is

a compact C such that xeAnC.

Proof. Suppose x, P, and G are as in the statement of Theorem 3. Suppose
V[G] = “X is a normal k'-space, and % = {Y,: ae X} is a discrete collection of closed
sets in X”. By Theorem 3, there is a first-stage separation of % of the form
{User. U(ys x(», d), d): ae X}, where U(y, x(y, d), d) is open in the compact set C, and
contains y, {C,: de X} being a listing of all compact subsets of X. We claim that

Y, c int( U Uy, x(v, 4, d))

ye¥a

Suppose not and let ye }’;\int(UdEx U(y, x(y, d), d). Then ye X\ Jaex U(y, x(y, d), d).
Since X is a k'-space, there is an aeX with yeC,n{Jux U(y, x(y, d), d), which
contradicts the fact that ye U(y, x(y, a), a). Thus {int({,er,sex U(y, (3, d), d): ae X}
is an open separation of %. m

It may also be of interest to see that the Product Measure Extension Axiom
(PMEA), which states that the product measure on *2 can be extended to a c-additive
measure on all the subsets of #2, for any cardinal A, and which holds if supercom-
pact-many random reals are added to a model of set theory, can be used directly to
show that small normal k-spaces are collectionwise normal.

THEOREM 5. (PMEA) Suppose X is a normal space, {Y,: w < A} is a discrete
collection of closed sets in X, and for each o < A,

r=U U [ U3,
Yede dely f<gly)
where o(y) < c and the collection {U(y, B, d): B < o(y)} satisfies (1) for each open set
Us (Vp<oy Uy, B, ) there is a p<o(y) with U U(y, B, d), and (2) for each
B, B < a(y), there is a "< o(y) such that U(y, f", d) = U@y, B, ) nU(y, B, d). Then
there is a function B: | Jyi(4,xT,)»ORD such that By, d) < o(y) ‘and
Uy, B, d), ) nU(y, By, d), &) = @ for yed, yedy, del,, dely and o # 0.

The proof of Theorem 5 is very similar to P. Nyikos’s proof that PMEA implics
normal spaces of character < ¢ are collectionwise normal [N] and is left to the reader.
Note that we do not necessarily get an open separation of {¥,: a <1} in Theorem 5,
Using a more delicate argument, we can get an open separation in a space determined
by small compact sets:

THEOREM 6. Suppose X is normal and determined b y compact sets of size < ¢ {or, X is

determined by the compact sets C having the property that for each x & X, the character of

x in Cis <«c). Then X is collectionwise normal.

Proof We do the case where X is normal and determined by compact sets of size
< ¢ Suppose {¥,: a < A} is a discrete collection of closed sets. Let # be a c-additive
measure on *2. For each f: A—2, let Ujos Uy, be disjoint open sets such that
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Ure=iY%a = Ui (i=0, 1). For each « < 4 and ye X, let A(a, y) = {f: yeUp ) Let
U(®) = {y: u(A(e, y)) > 7/8}. We claim U(w) is open in X. It suffices to show that
C\U/(w) is closed in C for each compact C of size < ¢. Suppose C is such a set, and p is
a limit point of C\U(a), but pe U(x). Let {U(p, f): f < [C|} be a basis for p in C, let
U(p, B) = Uy Clor each § < |C|, where U, is open in X, and let Ppe(C\U(@) U, for
each B <|C|. For each feA(s, p), peU; s, 50 let B <|C| be such that U(p, By)
= Uy s Since p(A@, p) = u(lp<ic) {fe Al p): B, =PB}) >17/8, let Fe[|C|]<° be
such that u({ Jper {f€ A(e, p): B, =f}) > 7/8, and let § < |C| be such that U, B)
< MNper Ulp, f)- We show that ppeU(e). For each gel| per{feA(s p): Br=p%
ppeUp, ) = Up, By) = Upyay, 50 ge A(e, py). Therefore p(A(a, pg)) > 7/8, and so
pp€ U(w). This contradicts our choice of P> 80 we must have p¢ U(a), which is what we
wanted to show. So the U()’s are open sets, and U(e) = Y,. The fact that the U(x)’s
separate the Y,’s is again a standard Nyikos-type argument and is left to the reader. m

4. The general result for countably paracompact spaces

THEOREM 7. Suppose «, P, and G are as in the statement of Theorem 1. Suppose
VIGl&=“X is a space satisfying the property that if % is a collection of subsets of X
such that every countable subcollection of & is locally finite, then % is locally finite;
¥ ={Y,: aeX} is a locally finite collection of subsets of X such that every countable
subcollection has a locally finite (point finite) open expansion, and for each y, de X there
is a collection U, 4= {U(y, x, d): xeX} consisting of sets with compact closure and
satisfying properties (i), (i), and (iii) listed in Theorem 17.

Then V[Glt= “there is a function f: {Juex Y, x X x Z* — X, a sequence LW dnez+ s
where

Wo={U U, f (0 d, n), d): aeX]},
ye¥a

and a function g: X x X > X so that for each xeX there is an neZ* such that
UdsX Ulx, g(x, d), d) meets only finitely many elements of W, (for each xe X there is an
neZ* such that x is in only finitely many elements of W)

Proof The argument parallels that of Theorem 1: in M[G*] the collection
{Usera Uex Nxex J(U) (J(3), j(%), j(d): ae X} is shown to be locally finite in j(X),
but without a “locally-finite expansion sequence”; we use the elementary embedding
to reflect this to a small counterexample in V[G]. We then need the amalogue of
Lemma 2 to show there can be no such counterexample: the proof of the analogue
is similar to Balogh’s analogue of the same lemma for countably paracompact’
spaces [B]. w

5. Applications of the countably paracompact case

TuEOREM 8. Suppose w, P, and G are as in Theorem 1. Then V[G]=“if X is
a countably paracompact k-space and % = {Y,: ae X} is a discrete collection of closed
sets in X, then % has a ‘first-stage-locally-finite expansion sequence’.”
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Proof We need only verify that if & is a collection of subsets of a kispacc such
that every countable subcollection is locally finite, then % is locally. ﬁl‘mte, in order to
have the conclusion of Theorem 6 hold. The proof that this is so is similar to the proof
presented in Theorem 3 that the statement is true if we replace “locally finite” with

“discrete”. m

THEOREM 9. Suppose k, P, and G are as in Theorem 1. Then V[G]E=“if X is
a countably paracompact k'-space, then every locally finite collection in X has a locally
finite expansion by open sets”.

Proof. Similar to the proof of Theorem 4. m

Again, the Product Measure Extension Axiom (PMEA) can be used directly to
show that small countably paracompact k-spaces have the property that locally finite
collections of closed sets have locally finite open expansions. In this case our argument
is a more delicate version of Burke’s argument that countably paracompact spaces of
character < ¢ have this property [Bu].

6. Final remarks. If we could get that for each ye U”y and de X there is an
x(y, d)e X such that{| ey, dex U(¥, x(», d), d): ae X} is a discrete collection (not just
a separation), then we could repeat the argument using this collection instead of % to
get a discrete separation of a similar form. After repeating the argument o times, we
would have an open separation of the original collection %. Thus we would have that it
is consistent that normal k-spaces are collectionwise normal. Unfortunately, we have
not been able to make the first-stage separation discrete.
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