

Power stability of k-spaces and compactness

b

Sülevman Önal (Ankara)

Abstract. It is proved that a topological space X is compact if X^m is a k-space for each cardinal number m

0. Introduction. A subset A of a topological space is called k-closed if $A \cap K$ is a closed subset of K for each compact subset K of X. X is called a k-space if each k-closed subset is closed. k-Spaces are the quotients of locally compact spaces [1]. The product of two k-spaces need not be a k-space. However, if one of the factors is locally compact then the product is also a k-space [1]. This is the best possible result, since if X is not locally compact, one can find a k-space Y such that $X \times Y$ is not a k-space [2].

We consider the following questions: What can we say about a family of topological spaces when their product is a k-space, and which topological spaces have powers so that all of them are k-spaces? It turns out that if $\prod \mathscr{F}$ is a k-space then a large part of the family \mathscr{F} must be a certain type of compact spaces and if X^m is a k-space for every cardinal number m then X is a compact space.

A topological space X is called (m, n)-compact if every open cover of X of cardinality $\leq m$ has a subcover of cardinality < n.

The author wishes to thank Prof. Dr. T. Terzioğlu for his help and constant encouragement.

1. Family of topological spaces whose product is a k-space. The following theorem is a generalization of Proposition 5.5 in [3].

Theorem 1. Let F be a family of topological spaces and let m be a cardinal number. If card $\mathcal{F}\geqslant 2^m$ and each $X\in\mathcal{F}$ is not (m,\aleph_0) -compact but (n,\aleph_0) -compact for each n< m, then $\prod \mathcal{F}$ is not a k-space.

Proof. Let \mathscr{U} be a free ultrafilter on (0, m) such that $\sup A = m$ for each $A \in \mathscr{U}$. Choose a subfamily \mathscr{H} of \mathscr{F} with $\operatorname{card} \mathscr{H} = 2^m$. We can index \mathscr{H} by the elements of \mathscr{U} , $\mathscr{H} = \{X_M \mid M \in \mathscr{U}\}$. Since X_M is not (m, \aleph_0) -compact but (I, \aleph_0) -compact for each I < m, there is a family of closed subsets $(F_{M,\alpha})_{\alpha < m}$ of X_M for each $M \in \mathscr{U}$ such that $\emptyset \neq F_{M,\alpha} \subsetneq F_{M,\alpha}$ for each $\beta < \alpha < m$ and $\bigcap_{\alpha < m} F_{M,\alpha} = \emptyset$. Choose $w_{M,\alpha} \in F_{M,\alpha} \setminus F_{M,\alpha+1}$ and define $\varphi_\alpha \in \prod \mathscr{H}$ for $0 \leqslant \alpha < m$ by

$$\varphi_{\alpha}(M) = \begin{cases} w_{M,\alpha} & \text{if } \alpha \notin M, \\ w_{M,0} & \text{if } \alpha \in M, \end{cases} \text{ for each } M \in \mathcal{U}.$$

We will prove that $\varphi_0 \in \overline{\{\varphi_{\alpha} | 0 < \alpha < m\}}$ and $\overline{\{\varphi_{\alpha} | 1 \le \alpha < m\}} \setminus [\varphi_0] \cap K$ is closed for each compact subset K of $\Pi \mathcal{H}$. This means that the quotient space $\Pi \mathcal{H}$ of $\Pi \mathcal{F}$ is not a k-space. Hence $\Pi \mathcal{F}$ is not a k-space. We shall give the proof in several steps. We set

$$A_{\alpha} = \{ \varphi_{\beta} \mid 0 < \beta < \alpha \} \quad \text{and} \quad B_{\alpha} = \{ \varphi_{\beta} \mid \alpha \leq \beta < \mathfrak{m} \}.$$

We consider the following statements:

- (i) $\varphi_0 \notin \overline{A}$, for each $\alpha < m$.
- (ii) $\varphi_0 \in \overline{B}$, for each $\alpha < m$.
- (iii) If $\Theta \in \overline{B}_n$ and $\Theta \neq \varphi_0$ then there is $\beta < m$ such that $\Theta \in \overline{A_n \cap B_n}$.
- (iv) For each compact subset K of $\prod \mathcal{H}$ there is $\alpha < m$ such that $K \cap \overline{B}_{\alpha} \setminus \{\varphi_0\} = \emptyset$.

Pro of of these statements. (i) Let $\alpha < m$ be given. Since \mathcal{U} is an ultrafilter we have either $[1, \alpha] \in \mathcal{U}$ or $[\alpha, m] \in \mathcal{U}$. But $[1, \alpha] \notin \mathcal{U}$ because of $\sup[1, \alpha] = \alpha < m$. So $[\alpha, m] \in \mathcal{U}$. Set $M = [\alpha, m]$. Then $\varphi_{\beta}(M) = w_{M,\beta}$ for each $1 \leq \beta < \alpha$. Hence $P_{M}(A_{\alpha})$ $= \{ \varphi_{\beta}(M) | 1 \leq \beta < \alpha \} \subset F_{M,1}$. We have

$$P_{M}(\overline{A}_{\alpha}) \subset \overline{P_{M}(A_{\alpha})} \subset F_{M,1}$$

and $P_M \varphi_0 = w_{M,0} \in F_{M,0} \setminus F_{M,1}$. So $\varphi_0 \notin \overline{A}_{m,1}$

(ii) Let $M_1, \ldots, M_n \in \mathcal{U}$ and $\alpha < m$ be given. Choose $\beta \in \bigcap_{i=1}^n M_i$ with $\beta > \alpha$. Then $\varphi_{\theta}(M_i) = w_{M_i,0}$ for each $1 \le i \le n$, which shows $\varphi_0 \in \overline{B}_n$.

(iii) Let $\Theta \in \overline{B}_n$ with $\Theta \neq \varphi_0$. Then there is $M \in \mathcal{U}$ such that $\Theta(M) \neq w_{M,0}$. Since $\bigcap_{\alpha < m} F_{M,\alpha} = \emptyset$ there is $\alpha < \varrho < m$ such that $\Theta(M) \notin F_{M,\varrho}$. Since $B_{\alpha} = (B_{\alpha} \cap A_{\varrho}) \cup B_{\varrho}$ and $\Theta \in \overline{B}_{\alpha}$ we have either $\Theta \in \overline{B_{\alpha} \cap A_{\alpha}}$ or $\Theta \in \overline{B}_{\alpha}$. Suppose $\Theta \in \overline{B}_{\alpha}$. Then

$$\{\varphi(M) \mid \varphi \in \overline{B}_{\varrho}\} \subset \overline{\{\varphi_{\varrho}(M) \mid \beta \geqslant \varrho\}} \subset F_{M,\varrho} \cup \{w_{M,\varrho}\}.$$

But this gives $\Theta(M) \in F_{M,g}$ or $\Theta(M) = w_{M,0}$, which cannot be true. So $\Theta \in \overline{B_{\sigma} \cap A_{\sigma}}$.

(iv) Assume the contrary. Let K be a compact subset of $\prod \mathcal{H}$ such that $\overline{B}_{\alpha} \cap K \setminus \{\varphi_0\} \neq \emptyset$ for each $\alpha < m$. By using $\overline{B}_{\alpha} \setminus \{\varphi_0\} \cap K \neq \emptyset$ and step (iii) alternately we can find a cofinal subset A of (0, m) and $\varrho_n \in (0, m)$ for each $\alpha \in A$ such that $\varrho_n < \beta$ and $\overline{B_{\alpha} \cap A_{\alpha}} \cap K \neq \emptyset$ whenever $\alpha < \beta$ and α , $\beta \in A$. Let $B \subset A$ such that B and $A \setminus B$ are cofinal subsets of (0, m). We set $M_1 = \bigcup_{\alpha \in B} [\alpha, \varrho_{\alpha}]$ and $M_2 = \bigcup_{\alpha \in A \setminus B} [\alpha, \varrho_{\alpha}]$. Since \mathscr{U} is an ultrafilter there is $M \in \mathcal{U}$ such that either $M_1 \cap M = \emptyset$ or $M_2 \cap M = \emptyset$. We have

$$P_{M}(\overline{(B_{\alpha} \cap A_{\varrho_{\alpha}})} \cap K) \subset P_{M}(\overline{B_{\alpha} \cap A_{\varrho_{\alpha}}}) \cap P_{M}(K) \subset \overline{P_{M}(B_{\alpha} \cap A_{\varrho_{\alpha}})} \cap P_{M}(K).$$

Since $\overline{B_{\alpha} \cap A_{\varrho_{\alpha}}} \cap K \neq \emptyset$ for each $\alpha \in A$, we have $\overline{P_{M}(B_{\alpha} \cap A_{\varrho_{\alpha}})} \cap P_{M}(K) \neq \emptyset$ for each $\alpha \in A$. If $M \cap M_1 = \emptyset$ then $P_M(B_\alpha \cap A_{\varrho_\alpha}) \subset F_{M,\alpha}$ for each $\alpha \in B$. If $M \cap M_2 = \emptyset$ then $P_M(B_\alpha \cap A_{\sigma\alpha}) \subset F_{M,\alpha}$ for each $\alpha \in A \setminus B$. In both cases we have $F_{M,\alpha} \cap P_M(K) \neq \emptyset$ for each $\alpha \in C$, some cofinal subset of (0, m). Since $P_M(K)$ is compact and $(F_{M,\alpha})_{\alpha \in C}$ are closed subsets of X_M which are well-ordered by inclusion we have $\bigcap_{\alpha < m} F_{M,\alpha} \neq \emptyset$, which is a contradiction. This completes the proof of the fourth statement.

Now it is easy to see that the non-closed set $(\varphi_n)_{n \le n} \setminus \{\varphi_0\}$ has a closed intersection with each compact subset of $\Pi \mathcal{H}$. Let a compact subset $K \subset \Pi \mathcal{H}$ be given. Find $\alpha < m$ for this K as in (iv). We have

$$\overline{(\varphi_{\alpha})_{\alpha \leq m}} \setminus \{\varphi_{0}\} = \overline{A}_{\alpha} \cup \overline{B}_{\alpha} \setminus \{\varphi_{0}\} = \overline{A}_{\alpha} \cup (\overline{B}_{\alpha} \setminus \{\varphi_{0}\})$$

since $\varphi_0 \notin \overline{A}_n$ by (i); hence $((\varphi_n)_{n < m} \setminus \{\varphi_n\}) \cap K = \overline{A}_n \cap K$, which is a closed subset of K.

COROLLARY 1. Let X be a topological space which is not (m. \aleph_0)-compact. Then X^{2^m} is not a k-space.

Proof. Since X is not (m. \aleph_0)-compact there is a smallest cardinal $I \leq m$ such that X is not (I, \aleph_0) -compact. This means X is (f, \aleph_0) -compact for each f < I. Hence by the above theorem X^{2^1} is not a k-space and therefore X^{2^m} is a not a k-space.

COROLLARY 2. If X^{III} is a k-space for each cardinal m then X is compact.

Proof. By the above corollary X is (l, \aleph_0) -compact for each cardinal I. This means X is compact.

The following is a direct consequence of the theorem and therefore it needs no proof.

COROLLARY 3. Let \mathscr{F} be a family of topological spaces such that $\prod \mathscr{F}$ is a k-space. Then the subfamily $G = \{X \in \mathcal{F} \mid X \text{ is not } (m, \aleph_0)\text{-compact but } (l, \aleph_0)\text{-compact } \forall l < m\}$ has cardinality less than 2m.

Theorem 1 can be improved in the following way:

THEOREM 1'. Let m be a cardinal number such that n < m implies $2^n \le m$. If \mathscr{F} is a family of topological spaces which are not (m, \aleph_0)-compact and card $\mathscr{F} \geqslant 2^m$ then $\prod \mathscr{F}$ is not a k-space.

Proof. Let $\mathscr{F}_n = \{X \mid X \text{ is not } (n, \aleph_0) \text{-compact but } (l, \aleph_0) \text{-compact for each } l < n\}.$ If there is n < m such that card $\mathscr{F}_n \geqslant 2^n$ then by Theorem 1, $\prod \mathscr{F}$ is not a k-space. Otherwise if card $\mathscr{F}_{n} < 2^{n}$ for each n < m then card $\bigcup_{n < m} \overline{\mathscr{F}_{n}} \leqslant m < 2^{m}$. Hence $\mathcal{F}\setminus\bigcup_{n\in\mathbb{N}}\mathcal{F}_n$ is a family of topological spaces which has cardinality at least 2^m and each element of it is (n, \aleph_0) -compact for each n < m but not (m, \aleph_0) -compact. So by Theorem 1, $\prod \mathcal{F} \setminus \bigcup_{n \le m} \mathcal{F}_n$ is not a k-space.

If we assume the generalized continuum hypothesis (GCH) we have

COROLLARY 4. (GCH) Let \(\Pi\mathcal{F}\) be a k-space for a family \(\mathcal{F}\) of topological spaces. Then $\operatorname{card}\{X \in \mathcal{F} \mid X \text{ is not } (m, \aleph_0)\text{-compact}\} \leq m$.

References

[1] D. E. Cohen, Spaces with weak topology, Quart. J. Math. Oxford Ser. 5 (1954), 77-80.

[2] E. Michael, On the product of k-spaces, Notices Amer. Math. Soc. 14 (1967), 688.

[3] N. Noble, The continuity of functions on cartesian products, Trans. Amer. Math. Soc. 149 (1970), 187--198.

DEPARTMENT OF MATHEMATICS MIDDLE EAST TECHNICAL UNIVERSITY 06531 Ankara Turkey