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Some productive classes of maps which are related to
confluent maps

by

Kazuhiro Kawamura (Tsukuba)

Abstract. We define some productive classes of maps between OM-maps and (weakly)
confluent maps. Essential maps from continua onto a simple closed curve are characterized by
some of these maps. Relations to span zero continua are also studied.

L. Introduction. A continuum means a compact connected metric space. All maps are
assumed to be continuous surjections. Let f: X — Y be a map between continua. The
map f is called confluent (weakly confluent, resp.) if for each subcontinuum K of ¥, each
(somme, resp.) component C of f~!(K) satisfies f(C) = K. The map f is called an OM
map if f= gom for some open map g and monotone map m. Let M be a class of maps
(we do not specify domains and ranges). M is said to be productive if for each f, ge M,
SxgeM. In general, the class of all confluent maps and the class of all weakly confluent
maps are not productive (see [11] and [8] for examples), while the class of all OM maps

_ is productive. L. Oversteegen [16] and the author [5] have shown that the productivity

of (weakly) confluent maps is related to the preservation of the property of having span
zero under (weakly) confluent maps.

In this paper, we define some new classes of maps between OM maps and (weakly)
confluent maps, which are productive. We also study the properties of these maps
between arc-like and circle-like continua.

DermNiTIONS and NOTATIONS 1.1. Let X be a continuum and let 4 be a metric of X.
The e-neighbourhood of a set 4 = X is denoted by N(4, ¢). The Hausdorff metric
induced by d is denoted by dy. A finite sequence of points a,, ..., 4, is called an e-chain
if d(a;, a;4+1) < ¢ for each i=1,...,n~1.

Let ay,...,a, and by, ..., b, be s-chains and a,, = b;. The ¢-chain defined by
Ayy ey Gy = by, ..., b, is denoted by (a,, ..., a,)+ by, ..., b,).

Let f,g: Y= X be maps. f=g denotes d(f, g) <e.

X is called arc-like (circle-like, tree-like, resp.) if X is the limit of an inverse sequence
of arcs (circles, trees, resp.).
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A function @: {1,...,m} {1, ..., n} is called a pattern if [p())—¢(i+1)| <1 for
eachi =1, ..., m—1. In this paper, all patterns are assumed to be surjective. Moreover,
if jp(m) — (1)) < 1, then ¢ is called a cyclic pattern. A pattern : {1,...,m}—{1,..., n}
is said to be monotone if, for each i=1,...,m, ¢ (i) = {a;, a;+1, ..., b;} for some
1< a; <b,<m A monotone cyclic pattern is similarly defined.

A map r: X — Y is called refinable if for each ¢ > 0, there exists an ¢-map r,: X —»Y
such that r =r,.

Let P be a polyhedron with a triangulation 7, and let 4 be a subset of P. The
collection st(4, t) is defined by st(4, 1) = {s| set and sn A # O}, and st(4, 7)*
= {Jst(4, 7).

2. Definitions, basic properties and examples

DeriNiTIONS 2.1. Let f: X —Y be a map. It is said to have the chain lifting
property (abbreviated to CLP) if for each & > 0 and for each { > 0, there exists an # > 0
such that .

[CLP(e, {)]: for each n-chain a,, ..., a, in Y there exist a {-chain ¢ =¢,,...,¢,in X
and a monotone pattern ¢: {1,..., t}—={1,..., s} such that ¢(l) =1

and d(f(c), as@) <& for each i=1,..., ¢

The map f is said to have the based chain lifting property (abbreviated to BCLP) if
for each ¢ > 0 and for each { > 0, there exists an 5 > 0 such that

[BCLP(, {)]:  foreach y-chain ay, ..., a;in ¥ and for each ce X with d{f(c), a,) < 1,
there exist a {-chain ¢=c¢,, ..., ¢, in X and a monotone pattern
@: {1, .., t}={1,..., s} such that @(1) = 1 and d(f(c), app) < & for

each i=1,..., ¢t

The map f: X — Y is said to have the weak chain lifting property (abbreviated to
WCLP) if for each ¢ > 0 and for each { >0, there exists an # > 0 such that

[WCLP(e, {)]:  for each n-chain a,, ..., a, in ¥; there exist a {-chain Cyyeey G in X
and a pattern @: {1, ..., t} = {1, ..., s} such that d(f(c;), a,q) < & for

each i=1,...,t
The class of all maps which have CLP, of all maps which have BCLP, and of all

maps which have WCLP are denoted by CL, BCL, and WCL respectively.
These terms were suggested by the editorial board.

PropOSITION 2.2. Let f: XY and g: Y—Z be maps. Let M = CL, or BCL,
or WCL.

() If f, geM, then gofe M.

(i) If gofeM, then geM.

The proofs are easy and will be omitted.

The relationships between these classes and (weakly) confluent maps are as
follows.
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TeEOREM 2.3.

M based chain 1
(a) property

C

ffiing __, confluent
(b)

weakly
confluent

weak chain

chain lifting —_
refinable —— (e) ~ lifting property (f)

(d)  property
None of the reverse implications hold.

Proof. We will prove the implications (a)—(f). The examples which indicate that the
reverse implications do not hold will be given later.

Proof of (a). By Proposition 2.2, it is sufficient to show that any open map and
any monotone map have the BCLP.

(al) Let f: X—Y be an open map. Take any £ > 0 and { > 0. There exists an
n> 0 such that

de(f ') @) < ¢

It is easy to see that this n is the desired one.

for all p,qeY with d(p, g9} <.

To prove that any monotone map has the BCLP, we need the following lemma.

LEMMA 2.4 ([15], Lemma 2.2). Let f: X — Y be a monotone map between continua.
There exist sequences (X;);»o and (Y)izo of Peano continua which satisfy the following
conditions.

O X;i2Xii 2 NizoXi=X and 5,2 %12 (Nizo =¥

(ii) There exists a monotone extension F: X,—Y, of f such that, for eachi>(,
F|X,;: X;— Y, is a monotone onto map.

(@2) Let f: X — Y be a monotone map.

Case 1. First we assume that Y is a Peano continuum. Take any & > 0 and any
{ > 0. There exists an > 0 such that for all p, ge ¥ with d(p, g) <, there exists an arc
A from p to g such that diam A < ¢/2.

Take any chain a,, ..., a,in Y and a point ce X with d(f(c), a,) <n. Let ag = f(c).
There exist arcs Ag, 4;,..., 4s-1 such that 4; is an arc from g to Gi41 and
diam 4; < /2, 0 < i < s—1. Notice that f~*(4,) is a continuum. Hence for each i, we
can choose a {-chain ¢y, ..., Cx, in f~1(4;) from f71(a) to f ™ (a;+1), where co; = c.
Then € = Coy, Cozs --» €115 +++» Cikys €215 > Csk, 18 the Tequired chain.

Case 2. General case. We take (X)), (Y), and F: Xy — Y, as in Lemma 2.4. Given
any ¢ >0 and any { >0, there exists a 6 >0 such that § < {/4 and

d(F(x), F(y)) <g/4 for all x, yeX, with d(x, y) <é.
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Take a large i so that X,c N(X,d). Since Y, is a Peano continuum and
F,= F|X;: X;—Y, is monotone, F; has the BCLP. So there exists an # > 0 which
satisfies BCLP(¢/4, {/4) for F,. This 5 is the required one.

For any #-chain a;, ..., a,in Y and for any ce X with d(f(c), a,) <, there exist
a {/4-chain ¢ =c}, ..., ¢; in X; and a2 monotone pattern ¢ such that d(F,(c)), a,m,) < /4,
j=1,...,t. We can find a point ¢;e X such that d(c;, ¢}) < J, where ¢ = c,. Then
€45..., ¢ s a {-chain and d(f(c)), a,) < & for each j. This completes the proof.

Proof of (b) and (f). These are immediate consequences of the following result.

ProPOSITION 2.5. Let f: X —Y be a map.

(i) The following statements are equivalent.
(i1) f is confluent.
(i2) For each ¢>0 and for each { > 0, there exists an >0 such that
[C(e 0)1: for each n-chain ay, ..., agin Y and for each ce X with d(f(c), a;) < , there
exists a {-chain ¢ =cy,...,c, in X such that

dy(f ey, ey {ay, ..., a}) <e.
(iiy The following statements are equivalent.
(ii1) f is weakly confluent.
(ii2) For each ¢>0 and for each { >0, there exists an n >0 such that

[WC(e, {)]: for each n-chain ay, ..., a, in Y, there exists a {~chain Ccyy
that

e & in X such

dg(f ey, ..

Proof. We only prove (i)

(i1)—(i2). Suppose that (i2) does not hold. Then there are an ¢, and a {,, such that
for each n > 0, there exist 1/n-chains 4,: a, ..., ay, in Y and points ¢,e X such that
d4(f(c), @1) < 1/n and A, and ¢, do not satisfy [Cle,, {o)]-

We may assume that 4,— 4, a} —a, and ¢,—c. Then A is a continuum and
a=f(c)ed. Let K be the component of f~*(4) which contains ¢. By (i1), f(K) = A.
Take a sufficiently large n such that d, (4, 4,) < g,/4 and 1/n < {o/4. Since f(K) = A4,
we can take a {o-chain C = K from ¢ such that dy(f(C), 4) < ¢o/4. Then we can
easily see that dy(f({c}UC), 4,) <¢eo. As {c}UC is also a {,-chain, we have
a contradiction. ‘

The proof of (i2) - (il) is easy and will be omitted.

e {ay, ..

. a)) <s.

Proof of (c) and (e). These are trivial.

Proof of (d). Let r: X »Y be a refinable map and take any ¢ > 0 and {>0.
There exists a {/2-map rq: X — Y such that d(r, ro) < /2. We can take an n > 0 such
that diam rg *(S) < { for each subset S = Y with diam § < 7. It is easy to see that the 5 is
the required number.

This completes the proof of Theorem 2.3.
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Let X, and X, be continua. The metric of X, x X, is given by

d((xla xz): (.VU yz)) = max d(xi’ yi)'
i=1,2
THEOREM 2.6. Let M = CL, or BCL, or WCL, and let f;: X;— Y, be maps, i =1, 2.
Then fix f,eM if and only if fieM, i=1,2.

Proof We prove the case M = WCL. Assume that f, f,eM. We prove that
fix f,eM. First, we prove that

(1) Foreach map(f: X— Y)eM and each continuum Z, (fxid;: X xZ—>YxZ)e M.

For any & > 0 and for any { > 0, there exists an > 0 which satisfies [WCLP(e, {)]
for f. Take any n-chain x, ..., X, in Yx Z and let x; = (y;, z). There exists a {-chain
€1, ..., ¢, in X and an onto pattern ¢: {1, ..., t} = {1, ..., s} such that d(f (), yoe) < &
1 < i<t Define w; = (¢;, Zpn). Then wy, ..., w, is a {-chain and d(f x id;(w), Xpm) < &
for each i=1, ..., t. This proves (1).

The general case can be obtained by using Proposition 22 and the equality
f1 X fo = (fy xidy,)o(idy, X f5).

The proof of the reverse implication is easy and we will omit it,

Next, we will give some examples which indicate that none of the implications in
Theorem 2.3 can be reversed.

ExaMPLE 2.7 (A map which has the BCLP, and is not an OM map). Lelek and Read
({101, Example 3.6) produce a map which is confluent and is not an OM map. We prove
that their example has the BCLP.

The map f: X—Y is a retraction indicated in Fig. 1. Let 4; = P;P;+; (= the.
segment from p; to p;+;). Then Lim 4; = L, and f|L: L— L is a homeomorphism. For
simplicity, we assume that (d(p;, pi+2))iz0 is decreasing and converges to 0.

Take any ¢ >0 and { > 0 and let v = min(g, {). Take a small #; > 0 such that

U 4= N(Ly,v), where m=min{k| d(py, pr+2) <7}

IZm—1
Notice that the number of the arc components of cl{N(Lq, ¥))—N(p, WU N(g, VU Um 4,
is finite. Let {B,, ..., By} be the components. Take a small # >0 such that
0< n< T1s min{d(Bi’ BJ)I i #]}'
Then we can see that u is the desired number. (See Figure 1 for an example how to
“cover” an #-chain by a {-chain.)

ExampLE 2.8. Clearly, each retraction has the CLP. Hence a retraction which is
neither confluent nor refinable gives an example which shows that the implications (c)
and (d) in Theorem 2.3 cannot be reversed.

ExAMPLE 2.9 (A confluent map which does not have the WCLP). Mackowiak
({121, (5.37)) has given an example of a confluent map f: X—Y such that
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fxid;: X xI—YxIisnot weakly confluent. This example shows that the implications
(b) and (f) cannot be reversed.

NiLg,»)

P2

P1
Fig. |

ExAMPLE 2.10 (A map which has the WCLP and does not have the CLP). Let P be
the pseudo-arc. Any map f: P—1 onto an arc has the WCLP by Theorem 3.1 below.
But f does not have the CLP. This follows from Proposition 2.11.

ProrosiTiON 2.11. Let f: X — Y be a map which has the CLP. If X is hereditarily
indecomposable, then so is Y.

Proof Suppose that ¥ contains a decomposable continuum A U B, where 4 and
B are subcontinua of Y. Take points a€ A—B, be B— A4, and pe A n B. There exists an
1, > 0 which satisfies the condition [CLP(1/n, 1/n)]. For each n, we can take an #,-chain
o, from a to p in 4 and an #,-chain B, from p to b in B, such that a, (§,, resp.) is
1/n-dense in A (B, resp.). There exists a sequence (y,) of 1/h~chains in X such.that y,
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satisfies [CLP(1/n, 1/n)] for o+ f,. Bach y, can be decomposed as y, = a, +b, so that
dy(f (@), o) dg(f (B,) B,) < 1/n. We may assume that a,— K and b, — L, where K and
L are subcontinua of X. Then f(K)=A and f(L)=B; so K ¢ L and L ¢ K. This
contradicts X being hereditarily indecomposable.

THEOREM 2.12. Let r: X - Y be a refinable map. If either X or Y is homogeneous,
then r has the BCLP.

To prove this theorem, we consider the following property.

DEFINITION 2.13. A continuum X is said to have the property (x) if for each ¢ > 0
and for each point ae X, there exists a § > 0 which satisfies the following condition: for
each ¢ > 0, there exists an 5 > 0 such that

[*#(e, 0, & )]  foreach be X with d(a, b) < 6 and for each n-chaina =a,, ..., a,in X,

there exists a ¢-chain b=b,,...,b, in X and a monotone pattern
p: {1,...,t}={1,..., s} such that @(1)=1 and d(b;, a,m) <e¢ for
Igigt

The motivation of the above definition comes from [3].

The proof of Theorem 2.12 is divided into three steps.

Step 1. If a continuum is homogeneous, then it has the property (x) (cf. [3]).

Step 2. Each refinable map preserves the property (x) (cf. [2] (2.1)).

Step 3. If r: X~ Y is a refinable map and Y has the property (*), then » has the
BCLP (cf. [2], (2.3)).

Proof of Step 1. For any ¢ > 0, let § > 0 be the Effros number for £ > 0. Using
compactness, it is easy to see that this 6 is the required one.

Proof of Step 2. Let r: X —7 be a refinable map and suppose that X has the
property (). We will prove that Y has the property ().

Letr;; X — Y be an 1/i-map such that r;3r (uniform convergence). Take any ¢ > 0
and pe Y. We may assume that r; *(p) > a as i— co. Take J;, 0,, N and J as follows.
(1) I d(x, y) < d,, then d(r(x), r(y)) < &/4.

(2) 0<d,<é, and &, satisfies the property () for & = §,/2 and a. That is, for each
&> 0, there exists an > 0 such that the condition [#(d4/2, é,, & )] holds.

(3) For each n N, r, is a d,/4-map such that r ST and dg(ry1(p), a) < 8,/2.
(4) If diam$ <8, S < ¥, then diamry*(S) < 8,/2.
This & is the required number for & To see this, fix a £ > 0. Take o, B, iand 5 as
follows.
() If d(x, y) < @, then d(ry(x), ry(¥)) < &
(6) B satisfies [%(6,/2, 85, o, B)].
(1) r is a p/2-map and i3> N (hence, dy(r*(p) @) < /2 and 1; eﬁr).
(8) For each § < Y with diamS < n, diamr; *(S) < B.
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This # satisfies [+(e, 9, &, #)] for Y. To show this, take any n-chain p = p,, ..., p,in
Y and ge Y with d(p, q) < 6. Let ayery !(p) and byery (g). Then d(ay, by) < 62/2 by
(4). Hence, by (3) and (2),

©) d(a, ay) < 5,/2<8,/2 and d(a, by) <9,

Define a chain a = gy, 4y, ..., a,in X by a,er{ (p), for [ > 1. By (8) and (7), it is
a f-chain. By (6) and (9), there is an a-chain by =b,, ..., b, in X and a monotone
pattern ¢: {1,...,m}—{0,1,...,5} such that @(1)=0 and d(b, auy) < &,/2,
1< I<m Theset {q,, ..., q,} defined by g, = ry(b)) is 2 ¢-chain from g by (5). And for
each lep™ ({1, ..., s}), we have
d(qy> Pp) = d(rN(b,), ri(am(l)))
< d(ry(b), r(b))+d(r(b), r(aew)+d(r(ame), r:(amw) < &

((3), (1) and (7).

Moreover,
(10) if lep™'(0), then d(b,, a) = d(b,, ag) < 6,/2.
So we have
d(gy, p;) = ( (&) rN(aN))
< d(ry(by), 1))+d(" (b r(aN))+d(r(aN)7 rN(aN))

(

<d(r®) r@ay)+e2  (3)

< d(r(b). r(@)+d(r(), rlay))+e/2
<e/d+e/d+e/2 (1), (3), (9) and (10))

= &,

Now define a pattern y: {1, ..

- m}_){l’ ) S} by l/’l(pwl(o) = 15 and l//[(p—l({la Ty S})
=¢. Then ¢, ...

, 4, and Y are the desired ones,

For the proof of Step 3, we need:the following lemma.

LEMMA 2.14. Let f: X — Y. Suppose that for each ¢ > 0, each { > 0, each ae Y and
each cef ™' (a), there exists an n > 0 which satisfies the condition [BCLP(s, {)] for any
chain a,, ..., a, with a; = a and for the point ¢. Then f has the BCLP,

The above lemma can be easily proved using the compactness of X and Y.

Proof of Step 3. Let r: X — ¥ be a refinable map and suppose that Y has the
property (x). We verify that r satisfies the hypothesis of Lemma 2.14. Take any ¢ > 0,
any { >0, and a point cer™*(a). There exists a § > 0 such that § < ¢ and the property
(x) is satisfied for /2 and a. There exists a ¢/2-map rq such that r = r,. Let & > 0 be such
that diamrg *(S) < ¢ for each § < Y with diam S < £, Since Y has the property (x), we
can find an 77 > 0 which satisfies the condition [x(g/2, 3, &, n)]. It can be seen that the
n is the required number.

This completes the proof of Theorem 2. 12
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3. Maps onto arc-like and circle-like continua

DerFmNITION 3.1. Let X be a continuum and let C = {C,, ..
cover of X.

C is called a chain cover of X provided C;n C; # @ if and only if }i—j| < 1. A chain
cover C is said to be taut provided cIC;nclC;# @ if and only if i—j| <1. In this
paper, all chains are assumed to be taut. Each member of C is called a link.

C is called a circular chain provided C;n C; # @ if and only if [i—j| (modn) < 1
A taut circular chain and a link of C are defined similarly.

Let C be a chain or a circular chain. For each link C, of C, i(C,) denotes the set

Utaek adC,.

Let D= {D,, ..., D,} be a finite open cover of X which is a refinement of C. We
say that D is a proper refinement of C if, for each k = 1, ..., n, thereexists a j (1 <j < m)
such that D; = i(C)).

., C,} be a finite open

THEOREM 3.2. Any map from any continuum onto an arc-like continuum has the
WCLP.

Proof Let f: Y- X be a map from a continuum Y onto an arc-like continuum
X and take any ¢ > 0 and { > 0. There exists a chain cover C = {C, ..., C,} of X such
that mesh C <. )

Let D = f~*(C) and take a finite open cover E of ¥ which is a proper refinement of
D with mesh E < {. We can number the members of E (admitting repetitions) so that
E={E,,...,E,} is a weak chain (ie. E;NE;;,; # for each i=1,..., m—1). Since
D is a chain cover of Y, a pattern ¢: {1,..., m} ={L, ..., n} is defined by E; D, for
1 < i< m By the choice of E, ¢ is surjective.

Let n >0 be the Lebesgue number of C such that

0 < n <min{d(clC;, dl C)| li—jl =2}.

We prove that this # is the required one. Take any n-chain ay, ..., a, in X. By adding
a suitable y-chain @41, ..., 4, We can assume that the set {a, ..., 4, ..., 4} intersects
each i(C,). By the choice of #, a surjective pattern y: {1, ..., t} > {1, ..., n} is defined by
a,eCypy, 1<i<t By the uniformization theorem [14], there are two patterns
ki {l, ..., B ={1,...,m}and k: {1, ..., [} = {1, ..., £} such that poh =y ok. For each
i=1,...,1, take a point ¢;&E. Then ¢y, ..., ¢ is a {-chain and

Se)ef (Enp) < f(Dponn) = Cpony = Cyoit @ ar-

Hence d(f(c), axe) < & We can find a “subinterval” {j,j+1,...,j+ u} such that
k({j, ..., j+u}) = {1, ..., s}. The desired {-chain is ¢, ..., ¢;+. This completes the proof.

TueoreM 3.3. Each map from any continuum onto the pseudo-arc has the BCLP.

Proof. Let f: X —P be a map from a continuum X onto the pseudo-arc P. We
verify that f satisfies the hypothesis of Lemma 2.14. Given any & >0, { > O and 2 point
cef (), take a chain cover C = {Cy, ..., C,} of P such that mesh C < ¢ and aei(C,).
Let D = f~*(C), There exists a finite open cover E of X which is a proper refinement
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of D and mesh E < {. We can number the elements of E, admitting repetitions, so that
E ={E,, ..., E,} is a weak chain and ce E; = D, . Since D is a chain and E is a proper
refinement of D, a surjective pattern @: {1, ..., m}—{1,..., n} is defined by ¢(1)=1
and E; = D,y for i=1,...,m By [17], Theorem 3, there exists a chain cover
F={F,...,F,} of P which follows ¢ in C and a€F,.

Let #> 0 be the Lebesgue number of F such that

0 <n <min{d(cF, clF)| li—jl =2}

To see that the 7 is the required number, let a = ay, ..., a, be any 7-chain in Y. A pattern
v {1, ..., s}—={1, ..., m} is defined by ;e Fy(y, 1 < i < s. Take points ¢ = ¢y, ..., ¢, in
X such that c;eEyy. Then ¢y, ..., ¢, is a {-chain and

fledef (Eypw) = f(
So d(f(c) a)<e, and ¢y, ..., ¢

Doopiy) = Cq:m//(i)a lliEFu:(i) = Cqm/,u)-

. s the desired chain.
COROLLARY 3.4. Let X be an arc-like continuum. Then the following statements are
equivalent.

(@) X=P

(iiy Each map onto X has the BCLP.

(i) Each map onto X is confluent.

(iv) Each map onto X has the CLP.

This follows from Theorem 3.2 and Proposition 2.11.
Next, we consider maps onto S*.

THEOREM 3.5. Let X be a continuum and let f: X —S* be a map. Then f &£ 0 if and
only if f has the WCLP.

For the proof, we need some lemmas.
Lemma 3.6. Let f: S*—S* be a map. If f+0, then [ has the WCLP.

Proof. Let p: R—S* be the universal covering. We may assume that p is a local
isometry. Take any ¢ > 0 and { > 0. There is a PL-map f": S'-—S" which is sufficiently
close to f. For simplicity of notation, we let f'=f

There exist triangulations (§*, o), (S*, 1) of §* such that

(1) mesho <{ and mesht < ¢/4,

@  f: (S, o)~ (S% 1) is simplicial.
There exist triangulations (R, §), (R, ) of R and a mmphcml map [ (R, &) - (R, ) such
that

(3) p: (R &)—(SY 0) and p: (R, 2)—(S%, ©) are simplicial,
(4) p is isometric on the union of any two adjacent simplexes of ¢ and 7.

(5) pof=Jop.

Take an % > 0 sufficiently small so that any two points x, ye S* with d(x, ¥) < n belong
to a common open star of a vertex of 7.
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To see that this 7 is the required one, we take any #-chain a,, ..
is an n-chain 4, ..., 4, in (R, ) such that p(@) = a;, | <i <
which is a subinterval of (R, %) by the choice of # and (4). Since f 0, f(R) = R. Further,
7R &-R Disa simplicial map. Hence there exists a (finite) subinterva] C of (R, 6)
such that f(C) = A. Let C = (J¥=1 &, where §’s are 1-simplexes of 1 arranged according
to the natural order of R. Let st({d,, ..., 4}, ©) = {f}, ..., &,}, where s are also
arranged according to the natural order of R. By the choice of # and (4), a pattern
v {L, ..., s} = {1, ..., v} is defined by d;efyq, | <i<s. Since J|C: C— A is simplicial,
apattern @: {1,..., u} = {1, ..., v} is defined by J(5) = £, | <1< u (notice that each
F(5) is a 1-simplex of %).

By the uniformization theorem [14], we get two patterns h: {1, ..., k} = {1, ..., s}
and g: {1,...,k}—{1, ..., u} such that Yoh= gog. Constructing c,, ..., ¢, as in
Theorem 3.1, we see that d(f(&), dyp) <eforeachi=1,... k Letc; = p(ci), Since p is
local isometry, we have d(f(c), app) <& 1<i<k.

, agin (8%, 7). There
S. LetA = st({d,, ..., 4}, ¥,

LeEMMA 3.7. If amap f: X — S is null homotopic, then f does not have the WCLP.

Proof Assume that f: X —S! has the WCLP and f~0. Let /: X >R be a lift
of f. As pof =, by Proposition 2.2, p|f(X): f(X)— S* has the WCLP. But it is easy
to see that the map does not have the WCLP (see also [8], Example, p. 51).

Proof of Theorem 3.5. First, assume that f % 0. Let X = lim(P,, p,..+1), where
P, is a compact polyhedron and p,,+1: Pn+1—P,. Let p,: X =P, be the projection.
We can assume that X U U,,z 1 P, is contained in the Hilbert cube Q, with a metric d,
so that each p, is a 1/2"-translation (ie. d(x, p,l(x)) < 1/2" for each xeX). There
exists a map f,: P,—»S§' such that f = e f.op,. We may also assume that
Sulseifyt XU U,,>1P —S' is continuous.

Since f £ 0, there is an N >0 such that f, 2 0 for each n> N. As m;(S1) =0
(i = 2), we have f,|PY ¢ 0 (PY denotes the 1-skeleton of P,). Hence there is a simple
closed curve S, < P such that f,|S, s 0. Notice that Lim S, < X.

To see that f has the WCLP, take any ¢ > 0 and { > 0. Take sufficiently large n so
that S, = N(X, (/4), 1/2" < ¢/4, (/4. As f,|S, # 0, by Lemma 3.6 there exists an n > 0
satisfying [WCLP(¢/4, {/4)] for f,|S,.

Noticing that p,: X = P, is a {/4-translation, we can see that the above 7 satisfies
[WCLP(e, {)] for f.

The reverse implication follows [rom Lemma 3.7. This completes the proof.

Combining Theorem 3.5 and Proposition 2.2, we have

THEOREM 3.8. Any map which has the WCLP induces a monomorphism of the first
Cech cohomology groups with integer coefficients.

COROLLARY 39. Let f: X—Y be a map from a continuum X onto a proper
circle-like continuum ¥. The following are equivalent.

(1) f has the WCLP.

(@) f*: HY(Y)-»H'(X) is a monomorphism.
@B) f*#0.
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Proof. (1)=(2) follows from Theorem 3.8. (2)=-(3) is trivial.

(3)=>(1). Let Y=1Um(S,, gun+1), Where each §, is a simple closed curve and
Gun+1: Sue1—>S, 2 0.Since f* # 0, g,0f % 0 for sufficiently large n. To obtain (1), take
any ¢ > 0 and { > 0. Take a large n so that the projection g,: Y-»S, is an ¢/4-map and
q,0f £ 0. There exists 2 § > 0 such that g, *(4) < &/2 for each subset 4 = S, with
diam 4 < é. By Theorem 3.5, g,0f has the WCLP, so there exists a £ > 0 satisfying
[WCLP(, ()] for g,0f Finally, take an # > 0 such that if d(x, y) <#, x, ye¥, then
d(g,(x), 4,(»)) < & Then the # satisfies [WCLP(s, {)] for /.

There exists a (topologically unique) circle-like continuum S which can be mapped
onto any circle-like and arc-like continuum. The continuum § is hereditarily indecom-
posable and has the inverse limit representation § = im(S,,, p.»+1), where cach S, = S*
and pun+1: Sp+1—S,. Further, for each prime number p, there exist infinitely many n’s
such that p|degp,.+: (seec [18]).

TueoreM 3.10. Let S be the circle-like continuum as above. Each map from any
continuum onto S has the CLP.

Proof Let f: X —S be a map and take any ¢ > 0 and any { > 0. We proceed as in
Theorem 3.3. Take a circular chain cover C = {C,, ..., C,} of § with mesh C < ¢ Then
D =f~Y(C) is a circular chain cover of X. Let E be a finite open cover of X which is
a proper refinement of D and mesh E < {. We can number the members of E, admitting
repetitions, so that E={E,,...,E,} is a circular weak chain (ie. E,nE ) # @ if
[i—jl(modm) < 1). A cyclic pattern @: {1, ..., m}={1, ..., n} is defined by E; < D).

Notice that f*: H'(S)—H'(X)isa monomorphism because f is confluent ([7]). So
taking a sufficiently small refinement of D if necessary, we may assume that degop # 0
(the pattern ¢ is regarded as a simplicial map between simple closed curves), By the
property of § which was stated above, there exist infinitely many pairs m, < n, of
integers such that deg¢|deggym,-

Hence by [1], Theorem 3.1 (or [4], Theorem 7), we can take a circular chain
F={F,, ..., F;} which follows ¢ in C. Let > 0 be the Lebesgue number of F such that

0 <n <min{d(cl F;, c1F)| [i—jl(mod ) = 2}.
In the same way as in Theorem 3.3, we see that # is the required number,

4. Relations to span zero continna. First we recall the following results.

TueoREM 4.1 ([16], Theorem 7). Let f: X—Y bhe a confluent map  between
hereditarily indecomposable continua X and Y. Suppose that ¢(X) = 0. Then o(Y) =0 if
and only if fxf: XxX—>YxY is confluent. '

THEOREM 4.2 ([5], Theorem 3.3). Let j XY be a map between continua and
suppose that o(X) = 0. Then the following statements are equivalent.

@ o(¥Y)=0.

(ii) For each subcontinuum K of X, (f|K) xidp: KxP—f(K)x P and (f]K)xid,:
KxY—>f(K)x Y are weakly confluent.
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By the above results and Theorem 2.5, we have

TaporeM 4.3. Let f: X—Y be a map and suppose that o(X) = 0.

() If X is hereditarily indecomposable and [ has the BCLP, then o(Y) = 0.
(i) If fIK: K~f(K) has the WCLP for each subcontinuum Kof X, then o(Y)=0.

Let G be a graph. The set of all branch points of G and the set of all end points of
G are denoted by B(G) and E(G) respectively. If G is a tree, B(G) U E(G) determines
a natural triangulation of G which is denoted by T.

Taeorem 44. Let [+ X~ Y be amap from a continuum X onto a tree-like continuum
Y which has the BCLP. Let

be inverse limit representations satisfying the Jollowing conditions.

(1)  Each X, is a polyhedron.

(@) Each Y, is a tree and there exists an integer M > 0 such that Jor each Y,, there
exists an arc A, =Y, such that sP(4,, T, )*=Y,.

Then for each Y, and for each & > 0, there exist an X, 1 N >m, maps f: X,— Y, and

s: Y, X, such that

(3) QmOfT ./I‘uloplu

(4) Qinn —"‘: j;,.IOS,

where p,: X =X, and q,: Y'Y, denote the projections.

Proof. Take any ¢ > 0 and m. There exist an X, and a map f,;; X, ,— Y, satisfying
(3). By the simplicial approximation theorem, we may assume that Sz (X, 0) = (%, T,
is a simplicial map for suitable triangulations o, of X, <,, of ¥, such that mesh T < &/4.
Define &, u, {, and § as follows.

(8)  For all x, ye X, with d(x, ) < &, there exist simplexes s, , s, €a, such that XES;,
yes, and §, Ns, # @.

(6)  Forall x, ye ¥, with d(x, y) < p, there exist simplexes t,, t,&t,, such that X&t,,
ety and 1y nt, # &,

(1) For all a, beX with d(g, b) <, d(p(a), pb) < &
(8  For all a, beY with d(a, b) <8, d(q,(a), 4,,(b)) < min(y, ¢/4).
Inductively define n,, 15, ..

(9 O0<n <& and n, satisfies [BCLP(3, )],
0<n,<n, and y, satisfies [BCLP(y,, {)],
0 <ny <, and #, satisfies [BCLP(y,, {)],

o Maps M1 88 follows,

0< Nys < My and. faeq.y satisfies [BCLP (1, 0.

3 ~ Fundamenta Mathematicao 138.3
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Take an n > m such that g,; Y=Y, is an 5y 1/4-map. There exists a 1 > 0 such that

(10)  diam g, *(S) < fu+1/2 for each S < ¥, with diam$ <4, and if d(x, y) <4,
X, y€ Y, then d(gm(x), Gm(y)) < &/4.

We now define a map s: ¥,— X,. Take the arc 4, as in the hypothesis (2). We may
assume that A, is a maximal arc.

Step 1. Take a A-chain y: y; <y, <... < yg-1 < J,in 4, such that B(Y,)n4, <y
and E(4,) = {y,, yJ (< denotes a natural order on A4,). For each i, let ;€ ¢, ()
then a: a,,...,a, is an #y.q-chain in Y by (10). By (9), there exists a ({-chain
, Csk, in X such that

€l C11s €125 «+05 Clkyy C215 0ns

(11)  d(f(cip) a;)<mp <6 for each 1 <i<s and 1 <j<k.
By (7), xi X115 X125 ++.» Xg, defined by x;=pic;) is a ¢-chain. Let y: y; =y
< P12 < ooe < Yipg—1 < Vi, < Vo = Yar < Yoz <o <Vse14,-y < Vs DE a “refinement”

of y. Let s|y": y'— X, be defined by s(yij)——-xu. Then
A(fm08(i); Gmn(yey)) = A(frmopr{es)s Gn(¥1)
< d(fmopi(esd gmof () +a(gmof iy dum(Vi)
< &/4+d(@nof (€)s 4n(@)) +A(Gun (s Gn (V1))
< gf4+e/4+¢/4 =3e/4  ((8), (10), (11)).

Extend s linearly to 4,,. Then by (9) and since mesh,, < &/4, we sec that g, == fuosld,.

Step 2. Take any edge e of Y, such that en 4, #,Q.‘By the choice of y,
en A, = {yig} for some i(e). Take a A-chain y° yy, =y <¥§ <... < ¥, in e such
that E(e) = {yue) Vi) Let ajegy *(y9), where a§ = ayca. We have an . -
chain (ma+1 <7y) @° ayy=as,...,a%, in Y and the point ¢, €X satisfies
d(f(c,-(e)l), a‘i) < M3e- By (9), there exists a {-chain ¢®: cye1 = €§1, €525 -+ s Cirg> Chas one
vos Chosey 10 X such that d(f(cf), af) <nm—1 for 1<i<s(e), 1<j<k. By (7),
X% X141, ..., Xg, defined by x;; = p(c;)) is a é-chain in X,.

The map sle: e— X, is defined as in step 1 and satisfies f,,,,o(s[e) = Q.

Continuing the above process, we can define s on st(4,, Ty,)* such that

fmlOS|St(An: Y;) s qmn]St(Am n)

Since st¥(d4,, Ty,) = ¥,, we can define s by repeating the above steps at most
M times in which the condition (9) can be applied. This cémpletes the proof,

()]

PROPOSITION 4.5. Let f: X — Y be a map onto a tree-like continuum Y which has the
BCLP. Suppose that the inverse limit representation Y =Um(Y,, guus1: Ypry=Y,) by
trees Y, satisfies the condition (2) in the hypothesis of Theorem 4.4.

(1) If X is arc-like, then so is Y.
(2 If o(X)=0, then o¢(Y)=

Proof. (1) Let X =limX, be an inverse limit representation of X by arcs X,
Applying Theorem 4.4 yields that for each Y, and for each ¢ > 0, there exist an X,
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n > m, and maps f.;: X,—
to see that Y is arc-like.

(2) Assume that o(X) =0 and let X = lim X, be an inverse limit representation of
X by trees X,. We may assume that both of X U Un21X, and YU),5:17, are
imbedded in the Hilbert cube Q (with a metric d) such that

Y., s: Y,— X, such that g,,, = fmos. From this fact, it is easy

(3)  Each projection p,: XX, and gq,: Y=Y, is a 1/n-translation in Q (ie.
d(p,(x), x) < 1/n for each xeX etc.).

Then, by [9], Theorem 3.1, we have
4  limo(X,)=0(X)=
To prove that ¢(Y) = 0, we take an arbitrary pair of maps o, f: C—Y from any

continuum C to ¥ such that «(C) = B(C) and take any ¢ > 0. There exists an integer
m such that

O gu
There exists a 6 > 0 such that
©6 d(fx),f () < &/20 for x, yeX with d{x, y) < 4.

. By Theorem 4.4 applied to 20 and m, there exist X), n>m and maps
St X;=Y,, 51 ¥, - X, such that

M 4wof g5, fmops:
(8) Gmn e/?ﬂ fmlos-

Y—7Y, is an g20-translation.

By the proof of Theorem 4.4, we may assume that

(9 o(X)<9/8 and p: XX, is a §/8-translation in Q.
Note that

(10)  dA(fu(x) fru(y)) < /4 for x, ye X, with d(x, y) < 6/8.

Consider the maps sog,ou and sog,08: C~X,. By (9), there exists a pe C such
that d(soq,0a(p), sog,0f(p)) < 8/8. Then we have

d((p), Bp) < d(2(p), gnox(p))+d(g,m0x(p), 4o BP))+d(q,,08(p). B(p))
< 8/20+d(4m04,00(P); gmn 04,0 B@))+2/20  ((5))
< 8/10+ (gm0 4, 00(p), frm050q,00(p))
+d(fu0s0g,00(p), fu0s50g,0 B(p))
+d(fm0504,0 B(p), qm04,0B(p))
<¢/10+¢/20+¢/4+¢e/20 <&  ((8) and (10).

Since & was arbitrarily chosen, o(Y) = 0.
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Finally, we consider the images of the pseudo-arc P under these maps.

THEOREM 4.6. Let M = CL, or BCL, or WCL. Let X be a continuum such that

(1) there exists a map f: P—X which belongs to M and
(2) f is irreducible, or o(X)=0.

Then each map from any continuum onto X belongs -to M.

Proof. Case 1. First we assume that f is irreducible. Let a: Y— X be any map
and consider H = {(a(y), y)|ye Y}. Since fxid,: Px Y- X x Y is weakly confluent by
Theorem 2.6, there exists a continuum K < Px Y such that fxidy(K) = H, Clearly
7p(K) = P and by the irreducibility of f; ny(K) = Y (n, and 7, denote the projections).
Further, fow,=aon, on K. Since n,eBCL by Theorem 3.3, for,eM and by
Proposition 2.2(ii), ae M.

Case 2. Next we assume that ¢(X) = 0. We will prove that for each subcontinuum
Q < P such that f(Q) =X, f|Q: Q—X also belongs to M. The required conclusion
follows from this fact and Case 1.

Consider the maps f|Q: @—X and f: P—X. By [5], Theorem 1.3, there are
a continuum Z and maps a: Z—Q, b: Z — P such that (f|Q)oa = fob. Since be BCL,
fl@eM as in Case 1.
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