icm

A splitting theorem for multipeak path algebras
by

Daniel Simson (Torun)

Abstract. Let F be a division ring, 2 a locally finite quiver, @ an admissible ideal [4] in the
path algebra F2 of 2 and suppose that the bound quiver algebra R = F(2, Q):= F4/Q of (2, Q)
[51 is a right multipeak algebra in the sensc that soc(Ry) is an essential and projective submodule
of Rp [22]. Let mod,,(R) be the category of finitely gencrated socle projective right R-modules.
Following an ideca in [15, 11] we prove that if the bound quiver (9, Q) admits a splitting
decomposition (3.2) explained in Fig. 6 then there are two proper bound supquivers (£', @),
(#, Q") of (2, Q) and full faithful cxact embeddings

mody, F(#', )5 mod,,(R)mod,, F(#”, @)

such that any indecomposable module in mod,,(R) belongs cither to Im T or to Im L. The functors
T and L carry Auslander-Reiten sequences to Auslander-Reiten sequences and induce a splitting of
the Auslander-Reiten translatidn quiver I, (R) of mod,,(R) (see 3.10, 3.11 and Fig. 7).

1. Introduction. Multipeak rings and socle projective modules play an important role
in the study of matrix problems and vector space categories [21-24] as well as in the
classification of indecomposable modules over finite-dimensional algebras [17-19] and
lattices over orders [207]. One can prove that if R = F(2, Q) is a simply connected [0]
right peak algebra [21] and for any vertex ie 4, having no oriented path w: i—1 in
(2, Q) there is a unique path (up to a scalar) from i to the unique sink in (2, Q) then
mod,, (R) is equivalent to the category I-sp of I-spaces, where [ is a poset, and therefore
its representation type can be determined by the criteria of Kleiner [10] and Nazarova
[14]. In case R is not simply connected there exists a universal Galois covering (2, ) of
(2, @) [5, 8, 13] such that R = F(Z, Q) is a multipeak algebra and by [22; Theorem
1.10] the push-down functor [4] reduces the study of ind,,(R) to the study of ind,,(R),
where ind,,(R) is the full subcategory of mod,,(R) consisting of pairwise nonisomorphic
representatives of indecomposable modules (see 4.2 and 4.3). In order to apply the
technique developed in [4, 7, 8] onc needs a description of supports of modules in
ind,,(R). This is one of the motivations for studying splitting decompositions of (2, &)
because in many situations our splitting theorems 3.10 and 3.11 allow us to determine
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the supports of modules in indsp(ﬁ) as well as the Auslander—Reiten quiver L, (R). This
technique is applied in [24, 26, 27] where among other things we determine the
sp-representation type of a class of right peak algebras R, which are incidence algebras
of bipartite posets (comp. [16]). We also determine I',,(R) for any such algebra R which
is sp-representation-finite. One of our tools applied in [26] is the splitting theorem.
Another application of our splitting theorem is given in Section 4, where we determine
the sp-representation type of R = F(2, Q) in case (2, Q) is a multiserial tree. The
splitting theorem reduces the problem to a corresponding problem for I-spaces (comp.
5.

In Section 2 we collect basic definitions and notation, In particular a reflection
duality D®: mod,,(R) —mod,,(R®° is defined. Moreover, given (2, Q) we deline a
bound quiver (2°, Q°) such that (F(2, Q))® = F(2°, % provided dim,e,F(2, Qe, <1
for all ie 2, and all sinks pe2, (Corollary 222).

In Section 3 we present our main results (Theorem 3.10 and Corollary 3.11). As
a consequence we get in Corollary 3.13 a generalization of an edge reduction given by
Ringel and Roggenkamp [19]. Section 4 contains various examples illustrating our
main results and their applications.

Throughout this paper mod(R) denotes the category of finitely generated right
R-modules. The projective cover and the injective envelope of a module X in mod(R)
will be denoted by P(X)and Ex(X), respectively. We call R sp-representation-finite (resp.
-tame) if ind,,(R) is finite (resp. mod,,(R) is tame in the sense of [6]).

I would like to thank Dr. Th. Weichert for some corrections of the preliminary
version of this paper.

2. Preliminaries. We collect here the results and notation we need for our splitting
theorem. Throughout we suppose that
2.0) R= ®¢R

ielr

is a basic semiperfect F-algebra (in general without identity) and {e;}iern is a fixed set of
primitive orthogonal idempotents of R. We suppose that R is locally bounded (ie.
2;dimze;Re; and Y, dimpe; Re; are finite for every iely [4]) and R is a right multipeak
algebra [22] with the set {¢,} sepua» P(Li) S Iy, of peak idempotents (i.e. ¢, R is simple for
any pep(lg), soc(e;R) is essential in e;R and isomorplbip to a finite direct sum of
modules ¢,R, pep(Iy), for all jely). It follows that

(A aNs
25 %)

where 4 = eRe, B=¢,Re,, N = eRe, and
(22) ey= Y e, e= Y €.

pep(Ir) Jelr—pUIR)

@.1)

Here the sums are formal if the index set is infinite. By (Xere)R we shall mean Y., e R,
Note that B is a direct sum of division rings B, =e,Re,, (N is A-faithful and dimpe;N
is finite for jeI,.
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In the case [p(Ig)] = 1, e,, is primitive and we call R a right peak algebra with a peak
e R [21].
Following [21; 2.6], [3; p. 906], [9] we associate with R two reflection forms

BN B
B D(Re v
23) R'=<0 (R *)); 0 4 N, RV=<(1)3 Z);R‘/R‘e*RV,
00 B

where D(—) = Homg(—, F), I:‘]YA = Homp(4N;, B) = D( 4Np) and multiplication in RY is
given by the evaluation map ,N® ,N,~ B. It is clear that RY is a left multipeak algebra
with left peak idempotents
- {0
&= (0)

where pep(lg) and e, is considered here as an element of B. We put

ex= 3 e,.
pepr)

Following [21, 23] we define a pair of reflection functors

2.4) mod,,(R) 2= mody(RY)

where mod,;(RV) is the category of finitely generated top injective right R-modules. Given
Xp={(Xl4, X5, 01 X'®@ Ny X5), Yo = (Y5, Y, : Y®pN,—Yy) we put

V_(Xz) = (X3, Cokerg', ¢),  V,(Y)=(Kery/', ¥, ),

where ¢’ and /' are the composed maps X% Homp(, Ny, X3) = X"®,N, and
Homp(,N,, Ya) = Y'®,N,%s Y7 respectively, @ is adjoint to ¢, @ is the cokernel map
and 1 is adjoint to the natural embedding Kery/' = Homy(,Np, Y5). The functors are
defined on maps in a natural way.

PROPOSITION 2.5. (a) RY is a left multipeak algebra with left peak idempotents e, ,
pep(lg), and a right multipeak algebra with right peak idempotents e,, pep(ly)
Moreover, e; RY = E(e,RY) for pe p(I ) and E(RY) is projective. If X is in indg,(R"), Yis
in indy (RY) and Xey #0, Ye, # 0 then X = E(e,RY), Y = E(e,RY) for some p, g & p{Iy).

(b) V. and V are equivalences of categories preserving exactness and inverse to each
other. X is sp-injective i and only if V_(X ) is injective in mod(RY) (see below for
definition).

(c) Given Xy in mod,,(R) and Y in mod,(RY) we have

V.(Xp) = Coker(X = Epv(X)), F.(Y)=Ker(Pgv(Y)-Y)
where X and Y are considered as RY-modules via the epimorphisms R« RY —RY.

Proof. (a) and (b) can be proved by applying arguments in the proof of Propositions
2.6 and 2.8 in [21] and in [3; Proposition 1.6].
(¢) By (a) indecomposable summands of Egy(X ) are summands of ey RY which is
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the row ideal (B, N, B) in the form (2.3). It follows that up to isomorphism the
embedding X = Egv(X) is given by the natural monomorphism (0, ¢', 0): (0, X/, X%)
- (XY, X'® 4N;, X7), where ¢' is the map in the formula defining V_ (X ). Hence the
first isomorphism in (c) follows. The second one can be established in a similar way.

We recall that X in mod,,(R) is sp-injective if X is injective with respect to
monomorphisms f: Z—Z' in modg,(R) such that Coker f is in mod,,(R) [21]. An
indecomposable sp-injective module X in mod,,(R) is said to be hereditary if every
module X' in indg(R) such that Homg(X, X') # 0 is sp-injective.

We shall call R® = (RV)? the reflection dual algebra to R and the functor

(2.6) DR := DV_: mod,,(R)—mod,,(R®)

will be called the reflection duality. It follows from Proposition 2.5 that DY is a duality,
there is an algebra isomorphism R*® = R, D% = V.. D = (DR)™! and X, is hereditary
sp-injective if and only if DR(Xy) is hereditary projective [28], i.e. every submodule of
DR(Xp) is projective. The modules

27 Q" = DRe(e, R®), pep(lp), Q¥ =DRe(e,R®), jelx—p(lg)

form a complete set of nonisomorphic indecomposable sp-injective modules in
modg, (R).

It is known that there are Auslander-Reiten sequences in mod(R) [47]. Then by [2,
21, 23] we get

ProrosiTioN 2.8. If R is an F-algebra as above then for every nonprojective module
X in indgy(R) and for every non-sp-injective module Y in indy,(R) there are Auslan-
der—Reiten sequences in mod,(R) )

2.9) 0+X—Z>4"(X)=0, 0-A4(Y)>U—¥=0

which are unique up to isomorphism and A~ (X), A(Y) are indecomposable.

Now suppose J < I is such that p(J) < p(Iz) and R, =vRv with v = je; is

a right multipeak algebra with peak idempotents e,, g & p(J). Following [17], [22; 1.14],
[23] we consider three functors

T,.L,

(2.10) mody,(vRv) ] modg,(R)

where #,(X) = Xv, T,(Y) = Y®,g,vR and L,(Y) = Hom,g,(Rv, Y).
In view of [1] and [22; Corollary 1.16] we get

ProrosiTioN 2.11. If J = I and v are as above then

(2) T, and L, are fully faithful embeddings, v, is exact, T, is left adjoint to v, L, is right
adjoint to r, and r,T,=id = r,L,. k
(b) T,(e;Rv) = e;R for jeJ, T, preserves projective covers and Im T, is the full

subcategory of mody,(R) consisting of modules X such that P(X) = @jes(e;R)™.

icm

A splitting theorem for path algebras

117

To any X in ind,,(R) we associate two integral vectors [21; Section 3]

(2.12) Bim(X) = (x)ierys

edn(X) = ()ser,,
where x; = dim; Xe;, s, = dim; Xe, for pe p(I,) and given jelg~p(Iy), s; is such that
PX)= @ (e,R)".
ielp
We call dim(X) and cdn(X) the dimension vector of X and the coordinate vector of X,
respectively. The sets

(2.13) supp(X) = {iely; x,; #0}, csup(X)= {iely; s, 0)

are called the support and the coordinate support of X, respectively. Note that csup(X) is
finite. X in ind,,(R) is called sp-sincere [1 17 if esup(X) = I,. R is said to be sp-sincere if
there is an sp-sincere module in indg,(R).

It is clear that if X is in ind,,(R) and v = ij..p(x,ej then vRv is a right multipeak
algebra, r,(X) is an sp-sincere vRv-module and Tr,(X) = X. It follows that up to the
equivalence mod,,(vRv)XImT, any X in indg,(R) can be considered as an sp-sincere
module over vRv < R.

Note also that if J < Iy and v are as in Proposition 2.11 then we have
(2.14) cdn(T(Y))|, = cdn(¥), Yeind,,(vRv).

In describing a bound quiver of RY in terms of the algebra R the following simple
lemma will be useful:

Lemma 2.15. Let
AN
R=
(3)
be a locally bounded right multipeak F-algebra (2.1) and let RY, RY be the reflection forms
(2.3) of R. In the notation above we have
(a) e,RVe¢;=¢;RVe; = ¢,Re;

-RY, —
e, RV, =0

fOT iGIR'—p(IR)’jEI}b
Jor p#q, p, gep(ly),
=e,Re, for p=gq.

(b) There is a bimodule isomorphism a: 3N, — D(,N,) which induces F-linear isomior-
phisms

opt €5 Ney=e; RVe; = ¢; RVe;3D(e;Ne,) = D(e;Re,)

Jor all pep(ly), jely—p(ly), such that given iel,—p(l,) the diagram

opi®1

e, Nej®ejRe,~ —D(e;Ne,)®e;Re,
Hipii Cpji
ey Ne, 224 .D(e;Ne,)

4 —~ Fundamenta Math. 138.2
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is commutative, where D(~) = Homp(—, F), t,;;(@®y) = gy, Eu(f®y)(®) = f(yn) for

neeNe,, yee,Re;, feD(e;Ne,), gee; Ne,.

The proof is easy and is left to the reader.

Now suppose that R = F(2, Q) is a bound quiver algebra. In this case we take
Ig = 3, (the set of vertices of 2) and we take for {e};.o, the standard set of idempotents
which are the trivial paths 1;: i—iin 2. Then p(Ip) is the set p(2) of all sinks in 2 and
R is a right multipeak algebra if and only if for any &, ..., k,& F and paths w,, ..., w;:
i—j such that w = kyw, + ... +k,w, ¢ Q there exist pe p(2) and a path u: j— p such that
wugQ. If (2, Q) has the above property we call it a right multipeak bound quiver.

DerNITION 2.16. Suppose that (2, Q) is a right multipeak bound quiver, Q is an
admissible ideal in F2, R=F(2, Q) and suppose that R is peak A free, ie.
dimge;Re, < 1for allie 2, and pe p(2) (in the notation above). We define two reflection
forms (2Y, QV) and (29, QY) of (2, Q) as follows. Let

BN =p@) VL, 2 =27-p2)
where p(2)” consists of vertices p~ with pe p(2) and U means disjoint union. The sets
of edges in 27 and in 2V between the vertices in 2, remain the same as in 2. For any

ie 2y~ p(2) and pe p(2) such that ¢;Re, 3 0 we fix a path u;,: i~ pin 2 which does not
belong to Q. We define a unique edge

Up: p- i

in 27 (and in 2)if u;, is maximal modulo © in the sense that uu;, e Q for every edge  in

2 ending at i (see Fig. 0).
——p
x /
Fig. 0

We define Q7 as the two-sided ideal in F2Y generated by Q and the [ollowing
elements:

{©) uipw, where w: i—j runs through all paths in 2 such that woe Q for any path v:
J=p, pep(2), je2,.

() Ay upw,—Arupw,, where pep(2), i, t,je2,, Ay, A, F and Wili=j, wylt—]
are paths in 2 such that

Up—Aw0eQ  and  uy—A,w,vel
for some nonzero path v: j—p in 2 (see Fig. 0). In particular Ujp Uiy — Uy Uy, € Q. The

ideal QV is generated by QYN F4v.
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Fig. 1

Let us illustrate the definition by two examples.

ExampLE 2.17. Let 2 be the quiver of Fig. { and Q = (cn, abé—cé&). Then R = F(2, Q)
is a right two-peak algebra which is peak 4 ifree, and 2Y is shown in Fig. 2 and
QY = (cy, abé—cE, fe, eab— —ec), where e=(cf)” and f=(abn)". We note that
Rx= F(2Y, QY).

Fig. 2

ExAMPLE 2.18. Let (2, Q) be the bound quiver obtained from 2,
Fig. 3, where

() presented in

= (hac, ab, ba, fe—hd, (ge)"g— (fe)™ 1, (fy"h—(bd)"b, u™g, (ge)"u,
(ac)™d, (bd) "¢, (ac)~ac—(bd)bd),

by removing the vertices p~, ¢~ and the edges starting from p~ and g~. Note that
R=F(2, Q) is a right two-peak algebra, R is not peak A,-free, (2, QY) = (2, @) and

RY = F(2', Q).
(ge)”, > |
ffe)” ® \
. / i d

Fig. 3

q

P P

PROPOSITION 2.19. Let R = F(2, Q) be a locally bounded right multipeak algebra
which is peak A,-free and nonsemisimple indecomposable. Then


Artur


D. Simson

120

(a) 2Y and 9V are isomorphic to the quivers of RY and RV, respectively.
(b) There are F-algebra isomorphisms

{: F(2Y, Q%)—-RY,

where (27, QY) and (27, QV) are the reflection forms of (2, Q).

' F(2v, QY)—RY,

Proof Let us define an algebra homomorphism f: F 9Y - R by taking for f|s the
natural epimorphism F2-— R and by putting
fle-)=e; if pep(®),

S lup) =i

where ifee; RYe, = D(e;Re,) is given by iEh(u,) = 1.

Since R is locally bounded, nonsemisimple and indecomposable as an algebra, given
pep(2) there is ie 29— p(2) such that ¢;Re, # 0 and ¢;Re, contains the coset i, of the
maximal path u;, modulo €. Since R is peak 4 1-free, according to Lemma 2.15 the map

if w;, is the fixed edge maximal modulo @,

Ppip: €5 RVe,®@¢;Re, —~e; RVe,

is bijective and therefore e; RVe, = i, RY < Im/. In order to prove that f is surjective
it is sufficient to show that e, RVe; < Im f for all ie 4,. For this purpose suppose that
e, RVe; = D(e;Re,) # 0. Hence €;Re, # 0 and by our assumption there exists je 2, such
that u;, is maximal modulo Q and u;,—Avu;, e Q for some 1eF and a path v: j—i,
It follows from Lemma 2.15 that @f,Gee, RVe; is nonzero since &,u(iah,®uv)(Ai,)
= ih(il;,) = 1. Hence e, RVe; = ii%,RY < Im f and therefore f is surjective. Moreover,
the considerations above show that

e; RVejfe; J(RY)?e; = i, F  if uy, is maximal modulo Q,

=0 otherwise.

It follows that the quiver of RY is isomorphic to 2Y, which proves (a).

Applying Lemma 2.15(b) we easily check that QY < Ker f and therefore f induces an
algebra epimorphism {: F(2Y, QV)—-RY. In order to show that ¢ is injective it is
sufficient to check that the induced surjections

Coit €, F(2Y, QV)e;—>e; RVe
P 14 i4 i

are injective for all pep(9) and iel,. Since a simple analysis shows that
dimp(e,- F(27, Q%e) <1 it remains to show that if e;RVe, =0 then
ep-F(2Y, QV)e, = 0. Indeed, let u: p~ —i be a nonzero path in 47, Then u = ujw for
some path w: i—j in 2. Since e; RVe, = D(e;Re,) =0 we get ¢;Re, = 0 and therefore
wo e for every path v: j— p in 2. It follows from Definition 2.16(1) that u = u we QY.
This shows that e,- F(2Y, Q")e; = 0 and proves that { is an isomorphism. Since the
isomorphism { is the restriction of ¢ to F(27, QY) the proof is complete.

It would be interesting to describe the bound quiver of F(2, Q) and of F(2, QY in
terms of (2, Q) in the general situation.
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Note that the algebra R in Example 2.18 is not peak A,-free while RY = F(2Y, Q).
However, this fact does not hold in general because of the following example.

-

[e]
/
h
[e] o] b {e]
\
o}
Fig. 4

ExampLE 220. Let R=F(2,Q), where 2 is the quiver of Fig. 4 and
Q= (hb, au+cw—bv). Applying the same type of argument as in the proof of
Proposition 2.19 one can show that RY = F(2, @), where 2' is shown in Fig. 5 and
Q =(Q, (cw)*a, (ew)*c+(hau)*he). Note that 2Y is not isomorphic to 2.

o
. \
N .
P {hau) o h o b ° v »
few)* [}

Fig. 3

DerFINITION 2.21. Let (2, Q) be a right multipeak bound quiver. The reflection dual
bound quiver of (2, Q) is the bound quiver (2°, Q% = (29, QV)>.

As an immediate consequence of Proposition 2.19 we get

CoroLLARY 2.22. If (2, Q) is a right multipeak bound quiver such that F(2, Q) is
A,-free then (2%, Q% is a right multipeak bound quiver and there is an F-algebra
isomorphism (F(2, Q))® = F(2°, Q°).

3. Main resuits. Throughout this section (2, Q) denotes a connected right multipeak
bound quiver and

@a.1 R=F(2, Q)= @ eR,

iedy
where ¢;: i—1{is the trivial path in 2. Moreover, we suppose that 2 is directed, i.e. the
relation

i<j <« there is a nonzero path i—j in 2

is a partial order in 2, [17]. Given t€ 2, we denote by v (resp. by %) the full bound
subquiver of (2, Q) consisting of vertices s € 2, such that there is a path s —t (resp. ¢ —5)
in 2 which does not belong to Q. The idea of the splittting decomposition of posets [15]
and of right peak rings [11] is extended as follows.

Following [11; Section 4] we say that subposets 2o, %, and 25 of 2, form
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a triangular decomposition of the bound quiver (2, Q) if
(3.2) Bo=20+%s+28
is a disjoint union of subposets, 2, and 2y are nonempty and

(i) there are no relations j' <j', j <¢, ¢<j with €2}, ¢ €%, and j"e 93,
(i) €o = 20—p(2)and (¥ +2", Q) is a right multipeak bound quiver with the set of
peaks p(€+2") = 250 p(2), where Q| = Qg4 9.

Fig. 6

DeFNITION 3.3. The triangular decomposition (3.2) is called a splitting decomposition
of (2, Q) if there exist a nonempty set

2 ={p1, ..., 0.} S P(D)n 25, py#p; for j#i,
~and a disjoint union poset decomposition (see Fig. 6)
b= ‘tf},{- )
where @3, ..., ¥ are pairwise incomparable chains such that

@ (2+%+2,Q) is a connected right multipeak bound quiver satisfying
P2 +4+P) = p(9n2Hu?.

(b) The full bound subquiver € = ¥ U P of (2, Q) consisting of vertices @, @ is
a poset disjoint union

C=¢uP =" +.. +@"
of pairwise unrelated chains
@ ek ... kel =p,

where t; > 0. The restriction of Q to % is empty.
(c) For any ic2, and je2; we have

@, j) = ng(i, P, p)

where d(s, t) = dimg(e,Re,). Moreover, d(c,q) =0 for all ce¥ and qep(2)—2.
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It follows that (2, Q) has the form of Fig. 6.

Note also that d(i, g) = O for all ie 2, q €p(2")—P, for any pe P there is ie 2} such
that d(i, p) # 0, and d(i, j) # O iff there is pe 2 such that d(i, p) #0 and d(j, p) # 0. In
general the sets 25— p(2) and p(2")—# are not empty.

Our main motivation for the definition above is Theorem 3.10 below which shows
how the category mod,,(R) can be obtained by glueing modspF(,@’+%7 , Q) and
mod,, F(%+ 2", Q) if the decomposition (3.2) is splitting. This result is of “recollements”
character.

The reader is referred to Section 4 for typical examples of splitting decomposition
and its applications.

Remark 3.3". Suppose that R = F(2, Q). It is easy to check that R® = F(2°, Q%
and

28 =(2-p@)up@, 2°-pD = (2-p@)”

where p(2)” = {p~, pe p(2)}. One can check that if 3.2) is a splitting decomposition of
(2, Q) then (2®, @®) admits a splitting decomposition given by the set £~ of peaks
and by

23— 3516+,
where *2§ = (25— p(2 ) (p(2)—2)™, *25 = (%— p(2)) U p(Z)~ L2~ We note that
dim;(e;R%) = d(i,j) for i, j¢p(2),
dim(e;R%,) =d(i,p) for pep(9).

Given a splitting decomposition (3.2) we consider

: S §M
3.4 §=7Rij=F(@+%,Q) and R=( 5 T)

0 T
where S =nRy=F(2,Q)), M =nR¢, T=(E(RE=F(%+2", Q)) and

(3.5) n=Ye, E= Y e f=eut..tet 2 e

ie2p Jjelo— 24 Je2bu®

Our splitting theorem will be formulated in terms of the functors (see (2.10))
W T.
(3.6) 100 (§) ot modyg (R) 25 M0dsp(T)-

Let us start with three technical lemmas.

LEmMA 3.7. Let A = F(2", Q) = fRf, where f = jeae;. A module X in mc.)dsp(R)
belongs to ImLy if and only if Xf = @ pes E4(e, AY7 for some r, >0. In this case
Xz L;IFQ(X) = T,:)Yi)(X).
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Proof. Suppose that X = Ly(Y) with Y in mod,,(S) and let g = ¢, + ... +e,,. Since
G = gAg is a product of division rings and the functor L,: mod(G)—mod(4) is right
adjoint to the restriction functor r,, L,(V) is injective and socL,(V) & L,(V)g = V for
any V in mod(G). Since obviously Ly(Y)f = L,(¥g), Xf is A-injective as required.

In order to prove the converse we note that since L is right adjoint to r; there is
a natural R-homomorphism h: X — Lyr;(X) such that ri(h) = id and the induced map
soc(X)—»soc(L;,r;,(X)) is bijective. By the “if” part of the lemma Lyry(X) f is A-injective
and therefore h restricted to Xf is an isomorphism. It follows that h is bijective. Since
analogously the natural map Try(X)—X is also bijective the proof is complete.

LeMMA 3.8. (a) Given i=1,..., u the T-modules
Hi:= Er(e, T) = D¥e, T® and Hi:= D%(ec}T') Jorj=1,...,1
(see (3.3)) are indecomposable hereditary sp-injective in mod,(T) such that H: f = E 4(e,, A),
Hie:=0 for t #1i and
Hiqi=(0-0-...50F—F—~...»F) (j zeros)
for all i=1,...,u, j<t;+1. The natural embeddings
Hic...=H| c H) = Ef(e,T)

are irreducible in mody,(T). If Homy(H}, Z) # 0 and Z is in inds,(T) then Z = H! for
some 0 < r <j. Moreover, Homp(H!, Hi) =0 for all r, s and i #].

(b) The S-modules Pi= ec;S', j=1,...,t, t;+1, are hereditary projective and the
natural embeddings

e, S=P. cP,c...cP
are irreducible in niodsp(ﬁ).
© LiP)= T(H:-)) forj=1,..,t+1,i=1,...,u

Proof. Applying the same type of argument as in the proof of Proposition 2.19 we
show that the support of the module X = e T*® is contained in &: pi” ¢} «...«c,
and we have

X|y = (FPe.. «FPe 0. . 0).
J J+1

Then X is hereditary projective and Proposition 2.5(c) together with the reflection
duality DY yields (a).

(b) Since obviously supp(P}) = €', (b) follows.

() It follows from the definitions that supp(Ly(P}), supp(L(H)-,) s %'v2’,
T(H}-1)let = Hi- 1Jer & Pllgiand T,(H}_,) f = E (e, 4) (in the notation of Lemma 3.7).
Then Lemma 3.7 yields Tu(H}. ;) & Lyry Ty(H'- 1) = Ly(P!) and (c) follows.

LemMa 3.9, (a) Given i€ 2y the restriction of ¢;R to €+ 2" is either zero or is isomor-
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phic to a direct sum of copies of Hj for some indices i and j. The module M rin(3.4) is
hereditary sp-injective and M is isomorphic to a direct sum of copies of Hii=1,...,u
j=0,...,t; (comp. [28])

(b) The functors T,, Ly are exact and

T, T)= R for ie2-2, LeS)zeR for jed,
Q) = QD for je2i, Ly09) = 0 for je2y+4.
Proof. (a) Lét ie . Since ¢R is socle projective, Definition 3.3(c) yields

soc(e,Rf) = @ (e, 4

ped

where f and A are as in Lemma 3.7, It follows that there is an 4-monomorphism

h: ¢ Rf~ @D E 4(e, A7,

pe?

Since dimyE ,(e,A)e; = d(j, p), the splitting assumption (c) yields
dimy(e,Rfe;) = d(i, j) = Y, d{i, p)d(j, p)

pe®
= dimy (€D E,(e,4)"“P)e,
pe?
for any je.2¢ and therelore h is bijective. ’
In order to finish the proof we consider the functors

mod,,(4) %_’ mods,(T)

where A=wTw and w=) e, By our assumptions 4 = F%@'x...xF¢" and
mod,, (F&) = @’-sp, where @, ..., %" are the chains in Definition 3.3. Hence if X is in
ind,,(4) then supp(X) < C" for some r < u and

Xlgr =00, 20+F—F—..-F) (j zeros).

Since we know from Lemma 3.7 that L,(X)f & Ly(X) f = E 4(ep.4), Lemma 3.8(a)
yields L, (X) & H and therefore in order to prove that the restriction ¥ of ¢,R to ¥ +2"
is a direct sum of copies of HY it is sufficient to show that Y is in ImL,,. For this purpose
we note that since Yf & ¢,Rf;, Yy = 0 and the map h is an A-isomorphism, according to
Lemma 3.7 we have Y = Lyry(Y) & L,r,(Y) as required.

Since

Myp=nRé=3 3 eRe= ® rie,R)
lady Jedo = 2y le2y

and since it follows from the fact proved above that r4(e,R) is either zero or a direct sum
of copies of HY, (a) follows in view of Lemma 3.8,

(b) First we note that T, is the embedding of mod,,(T) in mod,,(R) induced by the
natural epimorphism R~ T derived [rom the triangular form (3.4) of R. The functor


Artur


126

D. Simson

L; is left exact by Proposition 2.11(a). Therefore from Lemma 3.7 and from r;L; 2 id we
easily conclude that L; is exact.

The first isomorphism in (b) is obvious. In order to prove the second one we fix
je2§—p(2) and recall from (2.7) that QY = ¥, D(e;R®) =DV _(e;R®). By Proposition
2.5(c) there is an exact sequence

¥ 0-+¢,R®2 Eze(e;R®) —V_(¢;,R*)—0
( ) J i J

in mod(R®), where R® = (R} and mod,,(R®) is considered as a full subcategory of
mod(R®) via the natural epimorphism R®— R®. Consider the idempotents
m= 2 e &= ) e;
i€®2) Jje*2y +¢ -+
in R® and the idempotent
L=4+ ) ¢
pep(2") .
in R®, where we put ¢, = ¢; for pe p(2) and ®2, ®2” are as in Remark 3.3'. It is easy
to see that T® = & R*¢, and T° = ¢,R®¢,. A simple analysis shows that Eqe{e;T®)
= Epe(¢;R®)¢, (the restriction of ER-(eJ-R‘) to (7 +% +2")°"). By Remark 3.3 the
decomposition 2° = *2'+%°P +%2" induces a splitting decomposition of (2*, Q®). Then
applying (a) to R® we conclude that the restriction ¢;R®n, of ¢;R® to ®2y is an injective
module and therefore the restriction ¢;R®1, — Ege(e;R®)y, of the map h to ¢;R®n, is an
isomorphism. It follows that Cokerh is a T®-module and according to Proposition 2.5(c)
and remarks above the sequence (+) induces a commutative diagram

0->¢;R*L; — Epe(e;R®) ¢, +P_(;R*) —0
l= I= =
0~e;T® — Eye(e;T®) — V_{e;T*)~0
of T®-modules. Since T, is a natural embedding we have
LY = 0¥ = Dr_ (¢;T®) = DV _(¢;R®) = QU

as required. For jep(2”) the proof is similar.

In order to establish the right hand isomorphisms in (b) we note that according to (a)
and Lemma 3.8 the restriction of e;R to 2" is isomorphic to a direct sum of copies of the
A-modules E,(e,A4), peZ. Then by Lemma 3.7 we get

;R = Lyry(e;R) = Ly(e;Rr) = Ly(e,S).
Since the remaining isomorphism in (b) can be established in a similar way the proof is
complete.

Now we are able to prove our multipeak splitting theorem.

THEOREM 3.10. Suppose that R = F(2, Q) is a right multipeak algebra (3.1) where F is
a division ring and (2, Q) is a bound quiver with a splitting decomposition (3.2).. In the
notation of (3.6) we have:
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(@) If X is in indyy(R) then either X elm T, or X eImL;. Moreover, X eImTnImL; if
and only if X = Ly(P}) = T(H}_,) for some i=1, ..., U j=1, .., by byy (se 3.8). If
Y is in indg(S), Z is in inde,(T) and Yy 0 then Hom(Ly(Y), T,(Z)) = 0.

(b) The functors Ly and T are full faithful exact and carry Auslander-Reiten sequences
to Auslander—Reiten sequences. If X is an Auslander—Reiten sequence in mody,(R) and the
starting term of X is indecomposable then either X = Ly(D) or X = T.(3), where 9 and
3 are Auslander--Reiten sequences in mod,,(S) and mod,,(T), respectively.

Proof Let X = (X, X%, ¢: X'@gM;— XY) be a module in ind,(R). It is clear
that X7 = X¢ is in mod,,(T). Assume X'y = Xy 0.1 ¢ # 0, Y is an indecomposable
summand of X% and p: XY is the natural projection then pe #0 and therefore
Hom; (My, Y) # 0. 1t [ollows from Lemma 3.8(a) that Y = Hj for some r and J.
Consequently, either ¢ = 0 and X" = 0, or X% is a direct sum of copies of HY. Therefore
Xf = X"f is injective because H’ f = E,(e,.A) in the notation of Lemma 3.7. It follows
from Lemma 3.7 that X = Lyry(X) & T,r{(X)eImL, and ry(X) is indecomposable. If
X5 =0 then obviously X & Ter(X)eImT; and the first statement in (a) follows.

If X =Ly(Y)= T,(2) then Xn=1Yy=0 and therefore supp(¥)< @ for some
#=1,..., u because of (3.3). Hence Y= P for some j and in view of Lemma 3.8(c) the
second statement in (a) follows.

Now take Y in ind,,(S) such that Y5 # 0, put X L;(Y) and suppose that there is
a nonzero he Homy (X, T,Z). It follows from the first part of the proof that X¢ is
a direct sum of copies of Hf,j =1, ..., u,i=0, ..., t;. Now since h # 0 and (T, Z)y =0,
r(h): X¢—(1,2)¢ = Z is nonzero and we conclude from Lemma 3.8 that Z & H}_, for
some i and j, and T,Z = THj-; = LyP). Hence Homy(X, T,Z) = Hompy(L, ¥, Ly P))
= Homy(Y, P)) =0 because otherwise Y = P} for some [>; (Lemma 3.8(b)) and
therefore Yy = 0; a contradiction. This finishes the proof of (a).

(b) Suppose that 9: 0—»Y5Y' >Y"—0 is an Auslander-Reiten sequence in
mod,,(S) and Y, Y are indecomposable. In order to prove that L;9 is an Auslan-
der-Reiten sequence it is sufficient to show that Ly(u) is a left almost split map. Let
g: LyY — X be a nonzero nonisomorphism in indg,(R). It follows from (a) that X = L,U
for some U in ind,,p(S) and we get a factorization of ¢ through L;(u) because Ly is fully
faithful and u is left almost split. The proof for the functor T; is similar,

Now suppose that X; 0->X —»X'—X"~0 is an Auslander—Reiten sequence .in
mod,, (R) and X is non-sp-injective indecomposable. If X = L, Y then by Lemma 3.9(b),
Yis non-sp-injective indecomposable and therefore there exists an Auslander-Reiten
sequence 9 in mod,,(S) starting with Y, Since we know that L9 is an Avslander—Reiten
sequence we have X L),

Next suppose that X ¢ ImLy. It follows from (a) that X = T, Z for some Z and X is
not isomorphic to a module of the form T,Hj..;. Hence in view of Lemma 3.9(b), Z is
not sp-injective and therefore there exists an Auslander-Reiten sequence 3 in mod,,(T)
starting with Z. Since we know that 7,3 is an Auslander-Reiten sequence, X = T,3 and.
the proof is complete.

.Following Ringel [17] we call Irr(X, X) = Homgp(X, X)/rad®(X, X) the
E(X')-E(X)-bimodule of irreducible maps from X to X', where E(X) = End(X)/JEnd(X).
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As a consequence of the results above we get
CoroLLARY 3.11. Let R be as in Theorem 3.10. Then

(a) R is not sp-sincere if one of 2, 2" is not empty.

(b) The natural bimodule epimorphisms Ly: Irr(Y, Y')=Ire(Ly Y, Ly Y7), T: 1z, 29
- Ir(LZ, T,Z') are isomorphisms for Y, Y' in indsp(S") and Z, Z' in indg,(T).

(c) I;,(R) = Lal“s,,(.f)u T.I;,(T) is obtained from I“Sp(.§) and I, (T) by the identification
of the final hereditary sp-injective section Hi->...—HY in L(T) with the starting
hereditary projective section P!, —...— P} in I;p(S')for i=1,...,u(see 3.8 and Fig. 7,
comp. [27]).

I(R)
5d b
2 oo %
S Ly
Fig. 7

Applying the same type of argument as in the proof of Theorem 3.10(a) we get

PROPOSITION 3.12. Suppose that R = F(2, Q) and (2, Q) admits a triangular decom-
position (3.2) and a set P < p(2") satigfying 3.3(a) and the following condition:

(S) If ie 2y and Z is in ind,,(T) (see (3.4)) such that Homy(r(;R), Z) # 0 theﬁ
Zlge = Zf is a direct sum of copies of E,(e,A), pe2 (see 3.7).

Then every X in indy,(R) belongs either to ImL, or to Im T..

Let us finish this section by a generalization of the Ringel-Roggenkamp [19] edge
reduction. )

COROLLARY 3.13. Let R = F(2, Q) be a right multipeak algebra such that (2, Q) is
a disjoint union of (2, Q') and a quiver

@ pe... 0. O,

of type A, having > 1 sinks. Suppose that there is no path c—iedy, ceby, and there is an
edge y: s—p, s a sink in 2, such that any nonzero path i»ceb,, iecdy, in (2, Q) has
a factorization through y. Then any X in ind,,(R) is in the image of one of the functors

mod,, F(2— {s}, ©) %> mod,,(R)«™mod,, F&
where T* =T, g =3 .qe,, is the natural embedding and I¥ = L, e= Zi.,gse,.

Proof. Similarly to the proof of Theorem 3.10 one can show that if X is in ind,,(R)
and X(y): Xe,— Xe, is nonzero then X(y) is bijective and according to Lemma 3.7,
XelmL’. Hence the corollary follows.
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We shall show that the splitting theorem remains true for a class of artinian rings
under a suitable modification of Definition 3.3.

For this purpose we suppose that R = @ie,,, R is a basic artinian right multipeak
ring, we keep the notation of Section 2 and given i j we set

dy= length(EiRej)ajltup dij = length,,g,,(e;Re)).

DerINITION 3.14. The ring R has a splitting decomposition if there exist a set
@ =1{py, - Puy © pUIy) and a disjoint union decomposition

Li=T'oCur”

such that C = C'0...UC" S Ip~p(lp), # 1", I” is not empty and the following
conditions arc satisfied:

(@) S=4#RA and T = ¢RE are right multipeak rings with peak idempotents €,
pepUpnl'v?, and e, gep(I)nl”, respectively, where 7 = eyt ept Yieroce
and & =Y ey )

(b) dijdyy =1 for i,jeC:=C'U{p}, t=1,..., u

(c) dy=0 if either ieC', jeC t#s5, or ieCuI”, jel', or iel”, jeC, or ieC,
jeplp)—2, or iel, j=(p(I)nI"}-2.

(d) diy= Y peswdipd;, for any icI’ and jel”.

In this case we have the induced functors (3.6) and by a modification of the
arguments in the proof of our splitting results above and those in [11, 12] we easily
prove

ToeoreM 3,15, Let R be a basic artinian right multipeak Pl-ring (2.0) such that
mod,,(R) has Auslander-Reiten sequences. If R admits a splitting decomposition induced
by 2 and I = I'OCUI" then in the notation above the statements (a) and (b) in Theorem
3.10 as well as (a)-(c) in Corollary 3.11 are true.

4. Examples and concluding remarks.

4.0. Multipeak posets. Suppose that I is a finite poset and consider I as a bound
quiver whose arrows are pairs (i, j), where i <j and there is no t# i,j such that
I<t=<j. The relations are the natural commutativity ones. Suppose that

I=T4+(C A+ CY+(pY +...+pY)

is a disjoinl union triangular poset decomposition, where p, ..., p,ep(lyand C*, ..., C*
are linearly ordered subposets of I - p(1) (see (3.2)). The decomposition is splitting in the
sense of 3.3 if and only if all clements ue C'+pY, ve C/+ pY are unrelated for i # j, and
s=<p;, sel’, implies s<r for all r<p, where i=1,..., u.

If I'is a one-peak poset, then u =1, p; is the unique maximal element in I and
the definition above is the usual one given by Nazarova and Roiter in [15]. For
I arbitrary our definition is 4 natural extension of that given in [15]. The situation is
more complicated for multipeak posets with zero relations. As a simple example
consider the two-peak poset I of Fig. 8 with zero relations af =9 =& =0. The
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decomposition
I=I'4+C'+C*+I"

where I' = {a, b~ d}, C* = {¢, > ¢,}, C? = {c3 > ¢}, I" = I—(C*+ C?+1I'), is obvious-
ly splitting.

a C1———'—~>—C2
D N
Loy,
el ¢}
|
Cy c, o Py

Fig, 8

4.1. The following two examples are not of the poset type. They are representative
for the Galois covering reduction of nonschurian right peak algebras mentioned in the
Introduction.

Ik

8
9

N

P

&

A

N\
NN

—

Fig. 9

(a) Consider a right two-peak algebra R = F(2, ), where 2 is shown in Fig. 9 and
Q = (cg—dh, ei—fj, mn—ne, him&, gim&, in, k&, In). If we set 25 = {1, 2, 3, 4}, 9§ = {u},
% ={v}, 25=1{5,6,1,8,9,p, q} then

2o = 2o+ €5+ + 24
defines a splitting decomposition of (2, @) with u = 2, p; = p and p, = g. Note that the
algebras (3.4)

S=F(@%+%'+¢,Q), T=F@+¢+2, Q)

are the bound quiver algebras of the quivers of Fig. 10 with all commutativity relations
and the following zero relations: 5--+9, p~-»p, w---q in the right hand quiver. It follows
that § and T have the separation property for radicals of indecomposable projective
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Fig. 10

right modules and L, ($), I,(T) have a preprojective and a preinjective component (see
[26; Proposition 4.7]). Modifying the arguments used in [12, 24] one can show that

I(m ' »

Fig. 12 ‘
Lp(T) and I},,(ﬁ) have the forms presented in Figures 11 and 12, respectively. By [25;
Theorem 3.4 and Corollary 3.13] there is an equivalence of categories
mod,,($)/.% & J-sp/le FI*, e, FJ*, ¢, FJ*]

where % is the ideal in mod,,(S) generated by ¢,$,j = v, ¢, p, 4, w and by the submodule
e,S+e,Sof E(e,,S’). and J* is the poset of Fig. 13. Hence if F = F, the category mod,,(S)

AN

-

-
~
Q—» O «——0

|
_J

Fig. 13


Artur


D. Simson

132

is of tame type [6] because J* is of tame type by the criterion of Nazarova [14]. It
follows from Corollary 3.11 that

L,(R) = LNl a=o, f=F)

The part # in Figure 12 consists of tubes [17]. The category mod,,(R) is of tame type.
Note also that the algebras § and T are simply connected [0], whereas R is not.

R

Tspfﬁ)I TopAy) Tsp(An—l)

Fig. 15
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(b) (Eonfider the right pczlk algebra R = F(2, 2) and the right multipeak algebra
R=F(9,Q), where 2 and g are the quivers in Fig. 13 and

Q = O = (dc—afy, abc—dc—ap, abef—afé,
efg—ebc, hap—habe, beh—fgh, Bh, hd, haf, g&).

Note that (£, @) is the universal cover of (2, @) and 2, ¥U2", ¥ = {eX+e} marked in
Fig. 14 induce a splitting decomposition of (Z, @) for any fixed n. By repeating the
splitting procedure we easily conclude from Theorem 3.10 that the coordinate support
of any X in ind,,(R) is a subquiver of the quiver (2**, ) in Fig. 15. The two-peak
algebra 4 = F(2**, Q) is sp-representation-infinite according to the criterion of
Weichert [29]. It follows that R is locally sp-representation-infinite and by [22;
Theorem 1.10] R is sp-representation-infinite. Moreover, we conclude from Corollary
3.11 that I';,,(ﬁ) is obtained from I,(4,), 4, =4, n=0, +1, +2,... by successive
glueing presented in Fig. 15, whereas I, (R) is obtained from I, (4) by simple glueing of
two linear three-vertex sections like in [24; 5.15]. Since 4 obviously has the separation
property [26], L,(A) has a preprojective component Z,5(A) which can be easily
computed by the well-known preprojective component construction like in [12, 24].

4.2. Multiserial multipeak trees. A multipeak bound quiver (2, ©) will be called
a multiserial tree if 2 is a tree, Q consists of zero relations and the following conditions
are satisfied (comp. [7; 5.2] and [5)): '

(i) For every edge a in 2, there exists at most one edge b and at most one edge
¢ such that ac, ba are not in Q. .

(iiy For any pep(2) there are chains %, %, such that p¥ =%,U%}, pe%,,
%,n€, =@ and ¥,;nq" is empty il p # ge p(2). We put @, = .U {p}.

1

&
O Qe Qe ¢ 448 8 e O

TS
o ~

Omememreors Qo Jons Qe 8 8 O

Fig, 16

a

It %', ..., %" are pairwise disjoint chains and |#3] =m,, ..., |%5| = m, then we
denote by T,(%%, ..., 4) = T(m,, ..., m,) the tree of Fig, 16. We say that T(m, ..., m,)
is a peak subtree of (2, Q) if there is a bound quiver embedding of T(my, ..., m,) in
(2, Q) which carries peak vertices to peak ones and oriented edges to nonzero oriented
paths in (2, Q).

PROPOSITION. Let R = F(2, Q), where F is a division ring and (2, Q) is a locally finite
multiserial multipeak tree.

(a) The radical of any indecomposable projective right R-module is a direct sum of
uniserial modules. If X is in indy,(R) then csup(X) = T(%,,, ..., €,,) for some ac 2,
Pis oo, 0,6 P(2) and Gy, S B0,y ..., €y < By, With pEFy,

5 - Fundamenta Math, 138.2
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(b) R is locally sp-representation-finite if and only if (2, Q) does not contain peak
subtrees of the form T(1,1,1,1), T(2,2,2), T(1,3,3), T(1,2,5).

() R is locally sp-representation-tame if and only if (2, Q) does not contain peak
subtrees of the form T(1,1,1,1,1), T(1,1, 1,2), T2, 2, 3), T(1, 3, 4) and T(1, 2, 6).

Proof. (a) The first part follows immediately from the definition. In order to prove
the second part one can suppose without loss of generality that (2, Q) is finite sp-sincere
and csup(X) =(2, Q). Let p(2)={p,,....p} and let a be a minimal vertex in
Cp ... UE,, (see (ii)). Suppose that py, ..., p,, s <1, are all pe p(2) such that there is
a nonzero path y: a—p in (2, Q). We shall prove (a) by showing that s =r, and
(&, ..., €s) = (2, Q). For this purpose consider the decomposition 3.3 with u = s,
2={a}, ¥=%,,j=1,...,5 and 2" = 2—(pYu...upY). Since a is minimal and
(2, Q) is a multiserial tree, the above decomposition is splitting, and since R is
sp-sincere, by Corollary 3.11(a) the set 27 is empty. Hence s=r, (2,Q)
=T(%;,, ..., ¢;) and (2) follows.

It follows from (a) that R is locally sp-representation-finite (resp. -tame) if and only if
for every peak subtree T,(%5,, ..., ©5) of (2, Q) the right multipeak hereditary algebra
R(m,,...,m)=FI(@", ..., 45) is sp-representation-finite (resp. -tame), where m; is
the numbser of vertices in %,. Consider the poset I(m,, ..., m,) = (@, ..., G1)—{a)
It follows from [25; Corollary 3.13] applied to I=T,(m,,...,m,), ¢=a, that
&1=1I(my,...,m) and there is a full dense functor

ad: mody,(R,(my, ..., m))—(I(my, ..., m)-sp)/[P,]

preserving the representation type and such that Kerad = [I(m)-sp, ..., I(m,)-sp],
where I-sp means the category of I-spaces, P, is the unique simple projective I-space
and I(m)-sp is considered as a full subcategory of mod,,(R,(my, ..., m)) in a natural
way. Consequently, the problem reduces to the problem for I(m,, ..., m,)-spaces and
therefore (b) is a comsequence of the criterion of Kleiner [10], whereas (c) is
a consequence of the criterion of Nazarova [14]. The proof is complete.

For an illustration of the result above let us consider the right peak algebra

F 0 0 0 F

F\\F F F

R= F\F F
\F F

0 F
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where F is an algebraically closed field. Note that R = F(2, Q), where 2 is shown in
Fig. 17and ©: a® = b = ba = ac = 0. The infinite tree 2 in Fig. 18 with relations & = Q
is a Galois cover of (2, Q) with the free group G = Z+Z. Since (7, Q) is a multiserial

)
b
b
o0 a Q a a O— vus
c c
\ bl\
-8
* -
b ) ...—o—a—>ﬁ>0_...
c
? * e
oI g oo ves .
b :c :
? * 8
Fig. 18

multipeak tree we conclude from Proposition 4.2 that the coordinate support of every
indecomposable in mod,,F(Z, Q) is a subquiver of 4 = T(2, 2, 2) (see Fig. 19) and
F(2, Q) is locally sp-representation-tame [6]. Hence by [22; Theorem 1.107, [24;
Theorem 0.2] and the arguments applied in [6, 7] the category mod,,(R) is of tame type.

* -

* -

LR e

Fig. 19

Since F4 is a hereditary algebra of Euclidean type E, it is tame and mod(F4) as well as
I'(FA) are well known. Since every X in ind(FA4)—ind,,(F4) is simple injective the
category mody,(F4) can be completely described and the restriction of the push-down
functor to mod,,(F4) yields a description of mod,,(R). By the arguments used in [26;
Section 5] one can show that mod,,(R) is representation equivalent to a cofinite
subcategory of mod,,(FA).

Let us finish by an example which illustrates the generalized splitting theorems given
in Proposition 3.12 and Theorem 3.15. '

ExaMPLE 4.3. For t > 0 consider the two-peak algebra R, = F(2, Q), where F is
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a division ring, 2 is the quiver

0=0=>...—0—0—]p

T”t+l
1::;;2{_5;33...3:-1 :ﬁ't
lbaﬂ

O—0—>,. ,—*O‘—)O—)q

and @ = (a,bs, by a;, azby, bya,, ..., abyyy, ba,e). Let 2 and 27 be the full sub-
quivers consisting of points 1, ..., t—1 and ¢, p, g respectively, and let %” and @ be the
top chain and the bottom chain in 4, respectively. Then 2 = 2 UG U %! U 2" satisfies
the assumptions in Proposition 3.12 and in Theorem 3.15 with u =2, p, = p, Py =4,
there are F-algebra isomorphisms § = R4 = R,_,, T= ¢RE = R, and it follows by
induction that mod,,(R,) is of finite type for all ¢ > 1.
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