

Z. Leszczyński

[14] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.

[15] A. Skowroński, Tame triangular matrix algebras over Nakayama algebras, J. London Math. Soc. 34 (1986), 245–264.

INSTITUTE OF MATHEMATICS, NICHOLAS COPERNICUS UNIVERSITY Chopina 12/18, 87-100 Toruń, Poland

80

Received 7 March 1988; in revised form 3 November 1988 and 25 September 1989

Homogeneous cohomology manifolds which are inverse limits

by

W. Jakobsche (Warszawa)

Abstract. We describe a class of homogeneous cohomology manifolds.

1. Introduction. The aim of this paper is to consider a certain class of compact, finite-dimensional, homogeneous spaces which are inverse limits of topological manifolds. We say that a space X is homogeneous if for every $x, y \in X$ there exists a homeomorphism $h: X \to X$ with h(x) = y. The spaces that we consider depend on an orientable n-manifold L^n (with possibly empty boundary) and on a countable or finite family \mathcal{M}^n of closed orientable manifolds of the same dimension n. We will denote them by $X(L^n, \mathcal{M}^n)$. A first such space was constructed in [J] for $L^3 = S^3$ and the one-element family $\mathcal{M}^3 = \{H\}$ where H was a homotopy 3-sphere $\neq S^3$, as a potential counterexample to the Bing-Borsuk conjecture(1). Earlier similarly constructed spaces were considered in a different context in [P] and [W]. Then Ancel and Siebenmann ([A-S]) noticed that $X(S^3, H')$ where H' is some homology 3-sphere can be identified with a compactification of the Davis contractible 4-manifold which covers a closed 4-manifold [D]. They also introduced axioms describing spaces $X(L^n, \{M\})$ for the families $\mathcal{M}^n = \{M\}$ consisting of one element. Axiomatic description seems particularly useful when applied to spaces $X(L^n, \mathcal{M}^n)$ with an infinite family \mathcal{M} . Our axioms for general spaces $X(L^n, \mathcal{M}^n)$ presented in Section 2 differ only slightly from those of Ancel and Siebenmann. They play an important role in the proof of m-homogeneity of $X(L^n, \mathcal{M}^n)$ given in Sections 7 and 8. In Section 4 we use a lemma proved by Toruńczyk to show that the spaces $X(L^n, \mathcal{M}^n)$ depend only on L^n and \mathcal{M}^n , and in Section 5 we give a construction of $X(L^n, \mathcal{M}^n)$. If a family \mathcal{M}^n consists of homology n-spheres then $X(L^n, \mathcal{M}^n)$ is a cohomology manifold. In this case $X(L^n, \mathcal{M}^n)$ can often be identified with the fixed-point set of a topological action on a manifold or a cohomology manifold. The theory of such actions was developed in [B]. Such homogeneous cohomology manifolds also appear as compactifications of contractible 4-manifolds, or orbit spaces of actions of 0-dimensional infinite compact groups. We give some examples in Sections 9 and 10.

⁽¹⁾ I have been informed by several people that J. Martin also considered a similar construction.

^{2 -} Fundamenta Mathematicae 137.2

The spaces $X(L^n, \mathcal{M}^n)$ have many properties of manifolds besides being homogeneous and being cohomology manifolds if \mathcal{M}^n consists of homology spheres. In [J-R], for example, it is shown that they have certain general position properties for n=3. Finally, there are many such spaces: in Section 11 it is shown that $X(L^3, \mathcal{M}) \neq X(L^3, \mathcal{M}')$ if \mathcal{M} and \mathcal{M}' are infinite families consisting of irreducible 3-manifolds and $\mathcal{M} \neq \mathcal{M}'$. In particular, there exists an uncountable family of non-homeomorphic, homogeneous 3-dimensional cohomology manifolds $X(S^3, \mathcal{M}^3)$.

- 2. Axiomatic description of $X(L^n, \mathcal{M}^n)$. Let L^n be an orientable n-manifold with (possibly empty) boundary ∂L^n and let $\mathcal{M}^n = \{M_1, M_2, \ldots\}$ be a finite or countable family of closed, distinct n-manifolds. We define a class $X(L^n, \mathcal{M}^n)$ of compact spaces as follows: $X \in X(L^n, \mathcal{M}^n)$ if and only if $X = \lim_{\leftarrow} \{L_i, \alpha_{i,i+1}\}$ and the spaces L_i and maps $\alpha_{i,i+1}: L_{i+1} \to L_i$, $i \in \mathbb{N}$, satisfy the following axioms:
- (1) $L_1 = L^n$ and every L_i is a connected sum of L^n and finitely many *n*-manifolds, each homeomorphic to some member of \mathcal{M}^n , with $\partial L_i = \partial L^n$.
 - (2) There exists a finite collection Ω_i of pairwise disjoint bicollared *n*-cells in $L_i \setminus \partial L_i$.
 - (3) $\alpha_{i,i+1}$: $L_{i+1} \to L_i$ is a homeomorphism over the set $L_i \setminus \bigcup \{ \text{int } Y : Y \in \Omega_i \}$.
- (4) For every $Y \in \Omega_i$, $\alpha_{i,i+1}^{-1}(Y)$ is homeomorphic to $M \setminus \mathring{D}^n$, where $M \in \mathscr{M}^n$ and D^n is a bicollared disk in M.
- (5) For every j > i if $Y \in \Omega_l$ and $Y' \in \Omega_j$, then $\partial Y \cap \alpha_{ij}(Y') = \emptyset$ (here $\alpha_{ij} = \alpha_{l,i+1} \circ \ldots \circ \alpha_{j-1,j}$: $L_i \to L_l$. We also put $\alpha_{l,i} = \mathrm{id}_{L_l}$).
- (6) The collection of sets $\{\alpha_{ij}(Y): j \ge i, Y \in \Omega_j\}$ is a null family, that is, for every $\varepsilon > 0$, only a finite number of elements of the family have diameter $\ge \varepsilon$.
- (7) The sum $\bigcup \Omega_i$ of the collection of cells $\Omega_i = \{\alpha_{ij}(Y): j \ge i, Y \in \Omega_j \text{ and } \alpha_{ij}(Y) \text{ is not contained in } \alpha_{ik}(Y') \text{ for any } i \le k < j \text{ and } Y' \in \Omega_k\} \text{ is dense in } L_i$.
- (8) For $M \in \mathcal{M}^n$ let $\Omega'_i(M) = \{\alpha_{ij}(Y) \in \Omega_i: Y \in \Omega_i \text{ and } \alpha_{i,j+1}^{-1}(Y) \approx M \setminus \mathring{D}^n\}$. Then the sum $\bigcup \Omega'_i(M_i)$ of $\Omega'_i(M_i)$ is dense in $L_i \setminus \bigcup_{k \in N \setminus \{j\}} (\bigcup \Omega'_i(M_k))$, for every $i, j \in N$.

We will denote by $\alpha_i: X \to L_i$ the natural inverse limit projection.

The axiomatic description of $X(L^n, \mathcal{M}^n)$ presented here was first given by Ancel and Siebenmann for a one-element family $\mathcal{M}^n = \{M\}$. The families Ω'_i and $\Omega'_j(M_i)$ defined in axioms (7) and (8) are determined by Ω_i , so the spaces in $X(L^n, \mathcal{M}^n)$ depend on \mathcal{M}^n , the spaces L_i , the maps $\alpha_{i,i+1}$ and the families Ω_i . By a defining system for X we will mean a family $\{\mathcal{M}^n, L_i, \alpha_{i,i+1}, \Omega_i\}$ such that $X = \lim_{\leftarrow} \{L_i, \alpha_{i,i+1}\}$. In Section 4 we

will show that there is only one space $X \in X(L^n, \mathcal{M}^n)$, so we will often write $X = X(L^n, \mathcal{M}^n)$. This will show that X depends only on L_n and \mathcal{M}^n , no matter which defining system for X we choose.

Let us note the following:

PROPOSITION (2.1). If every $M \in \mathcal{M}^n$ is a homology n-sphere, then $X \in X(L^n, \mathcal{M}^n)$ is a cohomology n-manifold.

Proof. In Section 8 we will prove that $X \in X(L^n, \mathcal{M}^n)$ is homogeneous so it is enough to compute the local Betti numbers $p^i(x, X)$ (see [B], pp. 7-9) around

 $x = \bigcap_{k=1}^{\infty} \alpha_{i_k}^{-1}(Y_{i_k})$ where $\alpha_i \colon X \to L_i$ is the inverse limit projection, Y_{i_k} is an element of some Ω_{i_k} and $\{i_k\}$ is a sequence such that $\alpha_{i_k,i_{k+1}}(Y_{i_{k+1}}) \subset Y_{i_k}$. By continuity

$$\check{H}^i(X, X \setminus \alpha_{i_k}^{-1}(\mathring{Y}_{i_k})) \approx \underline{\lim} H^i(L_j, L_j \setminus \alpha_{i_k,j}^{-1}(\mathring{Y}_{i_k}))$$

and these groups are 0 for $i \neq n, 0$ and Z for i = 0 or n. It is easy to see that the natural homomorphism j_{kl}^i : $\check{H}^i(X, X \setminus \alpha_{i_k}^{-1}(\mathring{Y}_{ik})) \to \check{H}^i(X, X \setminus \alpha_{i_1}^{-1}(\mathring{Y}_{i_l}))$ is an isomorphism, so $p^i(x, X) = 0$ for $i \neq n, 0$ and $p^n(x, X) = 1$. X is locally orientable, so by [B], p. 9, it is a cohomology manifold.

Proposition (2.2). If $X \in X(L^n, \mathcal{M}^n)$, then dim X = n.

Proof is the same as in [J], p. 134.

3. Auxiliary lemma. Let $\mathscr Z$ be a family of *n*-cells contained in the interior of a given *n*-manifold M. By $S(\mathscr Z)$ we will denote the sum of interiors of all *n*-cells $Z \in \mathscr Z$. We assume that we have fixed an orientation on M and the induced orientation on ∂M , and also on Z and ∂Z for every $Z \in \mathscr Z$.

We will say that a countable family \mathscr{Z} of *n*-cells in the interior of a given *n*-manifold M is a good stratified family if the following conditions are satisfied:

- (1) $\mathscr{Z}=\mathscr{Z}_1\cup\mathscr{Z}_2\cup\ldots$, where each \mathscr{Z}_i is a countable subfamily of \mathscr{Z} , and there is a countable or finite number of the families \mathscr{Z}_i .
 - (2) Each $S(\mathcal{Z}_i)$ is dense in $M \setminus S(\mathcal{Z}_1 \cup \ldots \cup \mathcal{Z}_{i-1} \cup \mathcal{Z}_{i+1} \cup \ldots)$.
 - (3) ∂Z is bicollared in M for every $Z \in \mathcal{Z}$.
 - (4) For every $Z_1, Z_2 \in \mathcal{Z}$, $Z_1 \neq Z_2$, we have $Z_1 \cap Z_2 = \emptyset$.
 - (5) \mathcal{Z} is a null family in M, i.e. for every $\varepsilon > 0$ the set $\{Z \in \mathcal{Z} : \operatorname{diam} Z > \varepsilon\}$ is finite.

The following lemma (and its proof) is a simple extension of Toruńczyk's Lemma from [J].

LEMMA (3.1). Let M and N be orientable n-manifolds and let $h\colon M\to N$ be an orientation-preserving homeomorphism. Let $\mathscr{Y}=\mathscr{Y}^1\cup\mathscr{Y}^2\cup\dots$ and $\mathscr{Z}=\mathscr{Z}^1\cup\mathscr{Z}^2\cup\dots$ be two good stratified families (each containing the same number, finite or infinite, of subfamilies) of n-cells in the interior of M and N respectively. For every $(Y,Z)\in\mathscr{Y}^i\times\mathscr{Z}^i$ let $\varphi_Y^{\mathscr{C}}\colon\partial Y\to\partial Z$ be an orientation-preserving homeomorphism. Then there exist bijective functions $p_i\colon\mathscr{Y}^i\to\mathscr{Z}^i$ and a homeomorphism $h'\colon M\backslash S(\mathscr{Y})\to N\backslash S(\mathscr{Z})$ such that $h'|\partial M=h|\partial M$ and $h'|\partial Y=\varphi_Y^{\mathscr{C}^{(Y)}}$ for every $Y\in\mathscr{Y}^i$ and $i\in N$.

We set $p = \bigcup_{i=1}^{\infty} p_i$: $\mathcal{Y} \to \mathcal{Z}$.

Sketch of the proof. We assume (without loss of generality) that M=N, $h=\operatorname{id}_M$ and $\operatorname{diam} M\leqslant 1$. Each φ_Y^Z can be extended to a homeomorphism $\psi_Y^Z\colon Y\to Z$ for $Y\in \mathscr{Y}^i$ and $Z\in \mathscr{Z}^i$, $i\in N$. Let $\Psi_i=\{\psi_Y^Z\colon Y\in \mathscr{Y}^i,\ Z\in \mathscr{Z}^i\}$, and let H(M) be the set of all homeomorphisms of M which are identity on ∂M . Set $\mathscr{Z}^i_n=\{Z\in \mathscr{Z}^i\colon \operatorname{diam} Z\geqslant 2^{-n}\}$, $\mathscr{Y}^i_n=\{Y\in \mathscr{Y}^i\colon \operatorname{diam} Y\geqslant 2^{-n}\}$,

$$\mathscr{Z}_n = \bigcup_{i=1}^{\infty} \mathscr{Z}_n^i, \qquad \mathscr{Y}_n = \bigcup_{i=1}^{\infty} \mathscr{Y}_n^i.$$

For any $f \in H(M)$ and any family \mathscr{T} of subsets of M, let $f(\mathscr{T}) = \{f(T): T \in \mathscr{T}\}$. By (5), \mathscr{L}_n and \mathscr{U}_n are finite families. We construct inductively homeomorphisms $f_n, g_n \in H(M)$,

 $n = 1, 2, \dots$ such that the following conditions are satisfied:

- (a_n) If $Y \in \mathcal{Y}_n^i$ then there is $Z \in \mathcal{Z}^i$ such that $f_n(Y) = g_n(Z)$ and $g_n^{-1} f_n | Y \in \Psi_i$ for every i.
- (a,) If $Z \in \mathcal{Z}_n^i$ then there is $Y \in \mathcal{Y}^i$ such that $f_n(Y) = g_n(Z)$ and $g_n^{-1} f_n \mid Y \in \mathcal{Y}_i$ for every i.
- (b_n) diam $f_n(Y) < 2^{-n}$ for every $Y \in \mathcal{Y} \setminus (\mathcal{Y}_n \cup f_n^{-1} g_n(\mathcal{Z}_n))$.
- $(b_n)'$ diam $g_n(Z) < 2^{-n}$ for every $Z \in \mathcal{Z} \setminus (\mathcal{Z}_n \cup g_n^{-1} f_n(\mathcal{Y}_n))$.
- (c_n) $f_n|Y = f_{n-1}|Y$ for every $Y \in \mathcal{Y}_{n-1} \cup f_{n-1}^{-1}g_{n-1}(\mathcal{Z}_{n-1})$.
- $(c_n)'$ $g_n|Z = g_{n-1}|Z$ for every $Z \in \mathcal{Z}_{n-1} \cup g_{n-1}^{-1} f_{n-1}(\mathcal{Y}_{n-1})$.
- (d_n) dist $(f_n, f_{n-1}) \le 2^{-n+2}$, dist $(f_n^{-1}, f_{n-1}^{-1}) \le 2^{-n+2}$.
- $(d_n)' \operatorname{dist}(g_n, g_{n-1}) \le 2^{-n+3}, \operatorname{dist}(g_n^{-1}, g_{n-1}^{-1}) \le 2^{-n+3}.$

The construction is exactly the same as in [J], pp. 129-130, so we omit it. The only difference is that we have to choose the elements Z_Y and Y_Z [J] (p. 130) in the appropriate families \mathscr{Z}^i or \mathscr{Y}^i . We can also use the annulus theorem for any dimension by [K] and [Q]. Having f_n and g_n we put $f = \lim f_n$, $g = \lim g_n$; they are both in H(M), and $h'' = g^{-1}f$ is a homeomorphism such that $h''(M \setminus S(\mathscr{Y})) = M \setminus S(\mathscr{Z})$, $h''(S(\mathscr{Y}^i)) = S(\mathscr{Z}^i)$ for i = 1, 2, ..., and $h'' \mid Y \in \mathscr{Y}_i$ for every $Y \in \mathscr{Y}^i$. So we can take $h' = h'' \mid M \setminus S(\mathscr{Y})$ and p(Y) = h''(Y) for every $Y \in \mathscr{Y}$.

4. The uniqueness of $X \in X(L^n, \mathcal{M}^n)$. Let $X \in X(L^n, \mathcal{M}^n)$ where $\mathcal{M}^n = \{M_1, M_2, \ldots\}$ and let $\{\mathcal{M}^n, L_i, \alpha_{i,i+1}, \Omega_i\}$ be a defining system for X. We set $\mathscr{Y}^0 = \mathscr{Y}^0_1 \cup \mathscr{Y}^0_2 \cup \ldots = \Omega'_1$ where $Y^0_j = \Omega'_1(M_j)$. Let us index the elements of the family $\mathscr{Y}^0 \colon \mathscr{Y}^0 = \{Y_{i_1}\}_{i_1 \in \mathbb{N}}$, and for every index $i_1 \in \mathbb{N}$, let us define integers $j_1 = j_1(i_1)$ and $k_1 = k_1(i_1)$ as follows: j_1 is an integer such that $Y_{i_1} \in \mathscr{Y}^0_1$ and k_1 is the uniquely determined integer such that $\alpha_{1,k_1}^{-1}(Y_{i_1}) \in \Omega_{k_1}$, or equivalently, $\alpha_{1,k_1}^{-1}(Y_{i_1}) \approx D^n$ and $\alpha_{1,k_1+1}^{-1}(Y_{i_1}) \approx M_{j_1} \setminus \mathring{D}^n$.

Now we make the following:

Inductive assumption. Let $\mathscr{I} = \{i_1, \dots, i_m\}$ be a finite sequence of positive integers and that with every $l \leq m$ we have associated two positive integers

$$j_1 = j_1(i_1, ..., i_l)$$
 and $k_1 = k_1(i_1, ..., i_l)$

so that $1 \leq k_1 < \ldots < k_m$, and that there is a sequence of n-cells

 $(4.1) Y_{i_1} \subset L_1, Y_{i_1,i_2} \subset \alpha_{1,k_1+1}^{-1}(Y_{i_1}), \ldots, Y_{i_1,\ldots,i_m} \subset \alpha_{k_{m-2},k_{m-1}+1}^{-1}(Y_{i_1,\ldots,i_{m-1}});$ and that

$$(4.2) \alpha_{1,k_1}^{-1}(Y_{i_1}) \in \Omega_{k_1}, \alpha_{k_1+1,k_2}^{-1}(Y_{i_1,i_2}) \in \Omega_{k_2}, \ldots, \alpha_{k_{m-1}+1,k_m}^{-1}(Y_{i_1,\ldots,i_m}) \in \Omega_{k_m};$$

$$(4.3) Y_{i_1,\ldots,i_l} \in \Omega_{k_l}(M_{j_l}) \text{for } l \leq m.$$

With this inductive assumption, we now define a family $\mathscr{Y}^{\mathfrak{I}}=\mathscr{Y}_{1}^{\mathfrak{I}}\cup\mathscr{Y}_{2}^{\mathfrak{I}}\cup\ldots$ by

$$\mathscr{Y}^{\mathscr{I}} = \{ Y \in \Omega'_{k_m+1} : Y \subset \alpha_{k_{m-1}+1, k_m+1}^{-1} (Y_{i_1, \dots, i_m}) \}$$

and then $\mathscr{Y}_{j}^{\mathscr{I}} = \mathscr{Y}^{\mathscr{I}} \cap \Omega'_{k_{m+1}}(M_{j})$. We can write $\mathscr{Y}^{\mathscr{I}} = \{Y_{i_{1},i_{2},...,i_{m+1}}\}_{i_{m+1}\in\mathbb{N}}$, where $i_{1},...,i_{m}$ are fixed by the inductive assumption, and $i_{m+1}\in\mathbb{N}$ is a varying index which distinguishes an element of $\mathscr{Y}^{\mathscr{I}}$. We will also use the notation $Y_{\mathscr{I},i_{m+1}}$ for $Y_{i_{1},...,i_{m+1}}$ and

 $Y_{\mathfrak{I}}$ for Y_{i_1,\ldots,i_m} . Then we define numbers

$$j_{m+1} = j_{m+1}(i_1, \dots, i_{m+1})$$
 and $k_{m+1} = k_{m+1}(i_1, \dots, i_{m+1})$

as the unique integers such that $\alpha_{k_m+1,k_{m+1}}^{-1}(Y_{\mathcal{I},i_{m+1}}) \in \Omega_{k_{m+1}}$ and $Y_{\mathcal{I},i_{m+1}} \in \mathscr{Y}_{j_{m+1}}^{\mathcal{I}}$. Of course then $k_{m+1} > k_m$, and conditions (4.1-3) are satisfied with m+1 in place of m.

Starting the induction with $\mathscr{Y}^{\mathfrak{G}}$ we get the families $\mathscr{Y}^{\mathfrak{F}} = \{Y_{\mathfrak{F},i_{m+1}}\}_{i_{m+1} \in \mathbb{N}}$ of n-cells for any finite ordered set $\mathscr{F} = \{i_1, \ldots, i_m\}$ of positive integers so that conditions (4.1–3) are satisfied, and for every Y_{i_1,\ldots,i_m} we have a good stratified family $\mathscr{Y}^{\mathfrak{F}} = \mathscr{Y}^{\mathfrak{F}}_1 \cup \mathscr{Y}^{\mathfrak{F}}_2 \cup \ldots$ of n-cells in $\alpha_{k_{m-1}+1,k_{m+1}}^{-1}(Y_{i_1,\ldots,i_m}) \approx M_{j_m} \backslash \mathring{\mathcal{D}}^n$.

We can also define the families

$$\mathscr{Y}^m = \bigcup_{i_1,\ldots,i_m \in N} \mathscr{Y}^{\{i_1,\ldots,i_m\}} \quad \text{ and } \quad \mathscr{Y}^m_j = \bigcup_{i_1,\ldots,i_m \in N} \mathscr{Y}^{\{i_1,\ldots,i_m\}};$$

of course then $\mathscr{Y}^m = \mathscr{Y}_1^m \cup \mathscr{Y}_2^m \cup \dots$

Notice that the members of \mathcal{Y}^m are cells which are contained in many different manifolds L_i .

Then let us consider the family $\mathscr{Y}^* = \{\alpha_{k_{m-1}+1}^{-1}(Y_{i_1,\dots,i_m}): m \in \mathbb{N}, i_1,\dots i_m \in \mathbb{N}\} = \{Y_{i_1,\dots,i_m}^*\}$ consisting of closed subsets of $X = \lim_{n \to \infty} \{L_i, \alpha_{i,i+1}\}$. We have

$$(4.4) Y_{i_1}^* \supset Y_{i_1,i_2}^* \supset Y_{i_1,i_2,i_3}^* \supset \dots$$

for every infinite sequence of integers $\{i_1, i_2, \ldots\}$.

Moreover, by axiom (6), for every such sequence

$$\widetilde{Y}_{\{i_1,i_2,...\}} = \bigcap_{l=1}^{\infty} Y_{i_1,...,i_l}^*$$

is a point.

The set \tilde{Y} consisting of all such intersection points is dense in X, with one point corresponding to one sequence $\{i_1, i_2, \ldots\}$. Using axiom (3) and the projections $\alpha_i \colon X \to L_i$ to make the necessary identifications in L_i 's and X we have the equality

$$(4.5) X \setminus \widetilde{Y} = (L_1 \setminus S(\mathscr{Y}^{\emptyset})) \cup \bigcup_{i_1 \in N} (\alpha_{1,k_1+1}^{-1}(Y_{i_1}) \setminus S(\mathscr{Y}^{\{i_1\}}))$$

$$\bigcup_{i_1,i_2\in\mathbb{N}}\left(\alpha_{k_1+1,k_2+1}^{-1}(Y_{i_1,i_2})\backslash S(\mathscr{Y}^{(i_1,i_2)})\right)\cup\ldots$$

Here in each summand $k_m = k_m(i_1, \dots, i_m)$, where i_1, \dots, i_m are the integers appearing in this particular summand. Also using the fact that $\alpha_i | \alpha_i^{-1}(\partial L_1)$: $\alpha_i^{-1}(\partial L_1) \to \partial L_1$ is a homeomorphism, we can assume that $\partial L = \partial L_1 \subset X$. Now we prove the following:

THEOREM (4.6). Let $X \in X(L^n, \mathcal{M}^n)$ and $\overline{X} \in X(\overline{L}^n, \mathcal{M}^n)$ and let $h: L^n \to \overline{L}^n$ be an orientation-preserving homeomorphism. Then there exists a homeomorphism $h^*: X \to \overline{X}$ such that $h^*|\partial L^n = h|\partial L^n$.

Proof. Let $\{\mathcal{M}^n, L_l, \alpha_{l,l+1}, \Omega_l\}$ and $\{\mathcal{M}^n, \overline{L}_l, \overline{\alpha}_{l,l+1}, \overline{\Omega}_l\}$ be defining sequences for X and \overline{X} . For X we will use all the notation established until now, that is we have families Ω_l , Ω_l (M_j), \mathcal{Y}^s , \mathcal{Y}^s , \mathcal{Y}^m , \mathcal{Y}^m , \mathcal{Y}^m , \mathcal{Y}^* and the spaces Y_{l_1,\ldots,l_m} , Y_{l_1,\ldots,l_m} , \widetilde{Y} . Accordingly

W. Jakobsche

for \bar{X} we have families $\bar{\Omega}'_i$, $\bar{\Omega}'_i(M_i)$, $\mathcal{Z}^{\mathcal{I}}$, $\mathcal{Z}^{\mathcal{I}}$, \mathcal{Z}^{m} , \mathcal{Z}^{m} , \mathcal{Z}^{*} and spaces Z_{i_1,\ldots,i_m} , $Z^{*}_{i_1,\ldots,i_m}$,

We want to prove that X and \bar{X} are homeomorphic. First we use Lemma (3.1) with $M=L^n=L_1,\ N=\overline{L}^n=\overline{L}_1,\ \text{and the stratified families}\ \mathscr{Y}=\mathscr{Y}^{\emptyset}=\mathscr{Y}^{\emptyset}_1\cup\mathscr{Y}^{\emptyset}_2\cup\dots\ \text{and}$ $\mathscr{Z} = \mathscr{Z}^{\varnothing} = \mathscr{Z}^{\varnothing}_1 \cup \mathscr{Z}^{\varnothing}_2 \cup \dots$ of n-cells in L^n and \overline{L}^n respectively, to find a homeomorphism

$$h_1^*: L_1 \backslash S(\mathscr{Y}^{\varnothing}) \to \overline{L}_1 \backslash S(\mathscr{Z}^{\varnothing})$$

with $h_1^* | \partial L_1 = h | \partial L^n$ and bijective functions $p_j \colon \mathscr{Y}_j^{\emptyset} \to \mathscr{Z}_j^{\emptyset}$ such that for every $Y \in \mathscr{Y}_j^{\emptyset}$, $h^*(\partial Y) = \partial(p_i(Y)).$

Assume inductively that we have defined a homeomorphism h_m^* which takes the union of the first m summands of (4.5):

$$(4.7) \qquad \qquad (L_1 \backslash S(\mathscr{Y}^{\varnothing})) \cup \ldots \cup \bigcup_{i_1,\ldots,i_m \in \mathbb{N}} (\alpha_{k_{m-1}+1,k_m+1}^{-1}(Y_{i_1,\ldots,i_m}) \backslash S(\mathscr{Y}^{(i_1,\ldots,i_m)}))$$

onto the corresponding union

86

$$(4.8) \qquad (\overline{L}_1 \backslash S(\mathscr{Z}^{\emptyset})) \cup \ldots \cup \bigcup_{i_1, \ldots, i_m \in \mathbb{N}} (\overline{\alpha}_{k_{m-1}+1, k_m+1}^{-1}(Z_{i_1, \ldots, i_m}) \backslash S(\mathscr{Z}^{\{i_1, \ldots, i_m\}})$$

and bijective functions $p_i^m: \mathcal{Y}_i^m \to \mathcal{Z}_i^m$ so that $h_m^* | \partial L^n = h | \partial L^n$ and for every $Y \in \mathcal{Y}_i^m$ we have $h_m^*(\partial Y) = \partial(p_i^m(Y))$; we also denote by p^m the map defined by $p^m(Y) = p_i^m(Y)$ for any $Y \in \mathcal{Y}_j^m$ and any $j \in \mathbb{N}$. Take any $Y = Y_{i_1, \dots, i_{m+1}} \in \mathcal{Y}^m$, and let $Z = Z_{i_1, \dots, i_{m+1}} = p^m(Y)$. Of course $Z \in \mathcal{Z}^m$. We have the numbers $j_{m+1} = j_{m+1}(i_j, \dots, i_{m+1})$ and $k_{m+1} = k_{m+1}(i_1, \dots, i_{m+1})$ defined uniquely for $Y_{i_1, \dots, i_{m+1}}$ and the numbers $j'_{m+1}=j'_{m+1}(i'_1,\ldots,i'_{m+1})$ and $k'_{m+1}=k'_{m+1}(i'_1,\ldots,i'_{m+1})$ defined for $Z_{i_1,\ldots,i_{m+1}}$. By the definition of p^m as $p^m = \{ \mid p_j^m$, we have $j_{m+1} = j'_{m+1}$. Let $\mathscr{I} = \{i_1, ..., i_{m+1}\}$ and $\mathscr{I}' = \{i_1, \ldots, i_{m+1}'\}.$

Now we use Lemma (3.1) again with $M = \alpha_{k_m+1,k_{m+1}+1}^{-1}(Y)$ and $N = \bar{\alpha}_{k'_m+1,k'_{m+1}+1}^{-1}(Z)$. Because $j_{m+1} = j'_{m+1}$, we have a homeomorphism h: $M \to N$, and we have good stratified families $\mathscr{Y}^{\mathfrak{g}} = \mathscr{Y}_1^{\mathfrak{g}} \cup \mathscr{Y}_2^{\mathfrak{g}} \cup \ldots$ and $\mathscr{Z}^{\mathfrak{g}} = \mathscr{Z}_1 \cup \mathscr{Z}_2 \cup \ldots$ We can also assume that $h \mid \partial M = h_m^* \mid \alpha_{k_m+1,k_{m+1}+1}^{-1}(\partial Y)$. Now using Lemma (3.1) we get a homeomorphism

$$h_{\mathscr{F}}^{*}\colon \alpha_{k_{m}+1,k_{m+1}+1}^{-1}(Y)\backslash S(\mathscr{Y}^{\mathscr{F}})\to \bar{\alpha}_{k_{m}+1,k_{m+1}+1}^{-1}(Z)\backslash S(\mathscr{Z}^{\mathscr{F}})$$

which extends h_m^* , and functions $p_i^{\mathscr{I}}: \mathscr{Y}_i^{\mathscr{I}} \to \mathscr{Z}_i^{\mathscr{I}}$ and $p^{\mathscr{I}} = \bigcup_i p_i^{\mathscr{I}}: \mathscr{Y}^{\mathscr{I}} \to \mathscr{Z}^{\mathscr{I}}$ so that $h^*(\partial Y) = \partial(p^{\mathfrak{s}}(Y))$ for $Y \in \mathscr{Y}^{\mathfrak{s}}$.

Finally, we can define h_{m+1}^* to be h_m^* on the union (4.7), and h_m^* on every $Y_\sigma \in \mathscr{W}^m$; p_j^{m+1} can be defined by $p_j^{m+1} = \bigcup_{j=1}^{m} p_j^{j}$ where \mathcal{I} runs over all (m+1)-element sets $\mathscr{I} = \{i_1, \dots, i_{m+1}\}$ of integers. This completes the inductive definition of h_m^* .

It is easy to see that now we can define a homeomorphism

$$hat{h}^* = \bigcup_{m=1}^{\infty} h_m^* \colon X \backslash \widetilde{Y} \to \overline{X} \backslash \widetilde{Z}.$$

Then we can uniquely extend h^* to $h^*: X \to \overline{X}$ by $h^*(\widetilde{Y}_{(i_1,i_2,...)}) = \widetilde{Z}_{(i_1,i_2,...)}$ where $\{i'_1, i'_2, ...\}$ is the uniquely defined sequence of integers such that for every m, $p^m(Y_{i_1,\ldots,i_{m+1}}) = Z_{i'_1,\ldots,i'_{m+1}}.$

COROLLARY (4.7). Let $X \in X(L^n \# N, \mathcal{M})$ and let $X' \in X(L^n \# N', \mathcal{M})$, where N and N' are connected sums of a finite number of manifolds homeomorphic to elements of \mathcal{M}^n . Then X and X' are homeomorphic.

Proof. We can construct systems $\{\mathcal{M}^n, L_i, \alpha_{i,i+1}, \Omega_i\}$ and $\{\mathcal{M}^n, \overline{L}_i, \overline{\alpha}_{i,i+1}, \overline{\Omega}_i\}$ with $L_1 = \overline{L}_1 = L^n$ such that $L_{i'} \approx L^n \# N$ and $\overline{L}_{i''} \approx L^n \# N'$ for some integers i', i'', so that both systems define a space from $X(L^n, \mathcal{M}^n)$ but after restricting the first of them to L_i with i > i' and the second to \overline{L}_i with i > i'' they define spaces from $X(L^n \# N, \mathcal{M}^n)$ and $X(L^n \# N', \mathcal{M}^n)$ respectively.

5. Construction of $X(L^n, \mathcal{M}^n)$. We now know that for every L^n and \mathcal{M}^n there exists at most one space $X \in X(L^n, \mathcal{M}^n)$. We will denote it simply $X(L^n, \mathcal{M}^n)$. In this section we will construct a space $X(L^n, \mathcal{M}^n)$ for any L^n and \mathcal{M}^n , thus proving that for every L^n and \mathcal{M}^n there exists precisely one space $X(L^n, \mathcal{M}^n)$. We assume the following:

Data (5.1). If \mathcal{M}^n is infinite, then $\{j_1, j_2 ...\}$ is an infinite sequence of integers in which every integer appears infinitely many times. If \mathcal{M}^n is finite, then $\{j_1, j_2, \ldots\}$ is an infinite sequence of integers $\leq s$, where s is the cardinality of \mathcal{M}^n , in which every such integer appears infinitely many times.

For any L^n and $\mathcal{M}^n = \{M_i\}_{i \in \mathbb{N}}$ we will construct a system $\{\mathcal{M}^n, L_i, \alpha_{i,i+1}, \Omega_i\}$ defining a space $X = X(L^n, \mathcal{M}^n)$ which moreover satisfies the following condition:

 $A(\{j_1, j_2, \ldots\})$: For every $k \in \mathbb{N}$ and every $Y \in \Omega_k$ we have $\alpha_{k,k+1}^{-1}(Y) \approx M_{i_k} \setminus \mathring{\mathcal{D}}^n$. Moreover, for every $\varepsilon > 0$ there exists k_0 such that for every $k > k_0$ we have $\operatorname{diam}(\alpha_k^{-1}(Y)) < \varepsilon$ for every $Y \in \Omega_k$ and for every $x \in X(L^n, \mathcal{M}^n)$ there exists $Y \in \Omega_k$ with dist $(x, \alpha_k^{-1}(Y)) < \varepsilon$.

The construction is inductive: let $\{\varepsilon_1, \varepsilon_2, \ldots\}$ be a sequence of positive numbers converging to 0. We take $L_1 = L^n$ and for Ω_1 we take any finite collection of disjoint, bicollared n-cells in L_1 having diameters $< \varepsilon_1$ and such that for every $x \in L_1$ there exists $Y \in \Omega_1$ with dist $(x, Y) < \varepsilon_1$. Then assume inductively that we have defined spaces L_1, \ldots, L_k , maps $\alpha_{i,i+1}$ for i < k and families Ω_i for $i \le k$ so that axioms (1), (2) are satisfied for i < k, axioms (3), (4) are satisfied for i < k and axiom (5) is satisfied for $i, j \leq k$. Moreover, we require that diam $(Y) \leq \varepsilon_i$ for $i \leq k$ and $Y \in \Omega_i$, for any $x \in L_i$ there exists $Y \in \Omega_i$ with dist $(x, Y) < \varepsilon_i$, and $\alpha_{i,i+1}^{-1}(Y) \approx M_i \setminus \mathring{D}^n$ for every i < k and $Y \in \Omega_i$.

Then we construct L_{k+1} as follows: we remove the interior of every $Y \in \Omega_k$ from L_k , and instead of it we glue in a copy of the manifold $M_{ik} \setminus \mathring{D}^{n}$, identifying its boundary with ∂Y . We choose a metric on L_{k+1} to coincide with the metric of L_k on $L_k \cap L_{k+1}$, and on the attached manifolds we choose it so that each attached copy of $M_{ik} \setminus \mathring{D}^n$ has diameter $< \varepsilon_k$. Then we define $\alpha_{k,k+1}$ to be identity on $L_k \cap L_{k+1}$; on every attached copy of $M_{j_k} \setminus \mathring{\mathcal{D}}^n$ we let $\alpha_{k,k+1}$ be any map onto the corresponding $Y \in \Omega_k$ which extends identity on ∂Y and for which $\alpha_{k,k+1} | \alpha_{k,k+1}^{-1}(\partial Y) : \alpha_{k,k+1}^{-1}(\partial Y) \to \partial Y$ is a homeomorphism. The set $Z_{k+1} = \bigcup_{1 \le k} \alpha_{i,k+1}^{-1} (\bigcup_{1 \le$ can define Ω_{k+1} to be any finite family of disjoint, bicollared n-cells in L_{k+1} such that for any $Y \in \Omega_{k+1}$ we have $Y \cap Z_{k+1} = \emptyset$, $\operatorname{diam}(Y) < \varepsilon_{k+1}$, and for any $x \in L_{k+1}$ there exists $Y \in \Omega_{k+1}$ with dist $(x, Y) < \varepsilon_{k+1}$. It is easy to see that then the inductive hypothesis is

met with k replaced by k+1. If we perform all the steps of the induction, we get a system $\{\mathcal{M}^n, L_i, \alpha_{i,i+1}, \Omega_i\}$ which satisfies axioms (1)–(5). Axioms (6) and (7) are satisfied because of the way in which the families Ω_i depend on $\{\varepsilon_i\}_{i\in\mathbb{N}}$. Finally, the system satisfies $A(\{i_1, i_2, \ldots\})$, so axiom (8) is satisfied because of the properties of the sequence $\{i_1, i_2, \ldots\}$.

6. Embeddings of $X(L^n, \mathcal{M}^n)$ **into manifolds.** Let $X = X(L^n, \mathcal{M}^n)$, let $\{\mathcal{M}^n, L_l, \alpha_{i,l+1}, \Omega_l\}$ be a defining system for X, and let P be a manifold (possibly with boundary) of dimension k > n. We will use all the notation introduced in Section 4. In particular, we have $\mathcal{M}^n = \{M_j\}_{j \in \mathbb{N}}, \Omega_1 = \mathcal{Y}^{\varnothing}, \Omega_1'(M_j) = \mathcal{Y}^{\varnothing}_j$ and we have families $\mathcal{Y}^{\mathscr{I}} = \mathcal{Y}_1 \cup \mathcal{Y}_2 \cup \ldots$ for $\mathscr{I} = \{i_1, \ldots, i_m\}$. We assume the following:

Data (6.1). There exists a bicollared topological embedding $e_L\colon L^n\to P$ with $e_L(\partial L^n)=e_L(L^n)\cap\partial P$, and for every $M\in \mathcal{M}^n$ there exists a bicollared embedding $e_M\colon M\backslash \mathring{D}^n\to D^k$ (where $D^n\subset M$) such that $e_M(\partial D^n)=e_M(M\backslash \mathring{D}^n)\cap\partial D^k$ and $e_M(\partial D^n)$ is a standard (n-1)-sphere $S^{n-1}\subset S^{k-1}=\partial D^k$.

Assuming (6.1) we will construct an embedding of X into P. First, having e_L : $L \to P$ and any fixed sequence $\delta_1 > \delta_2 > \dots$ of positive numbers converging to 0, we construct inductively a sequence of embeddings

$$(6.2) e_L^m: L_m \to P,$$

where $L_0 = L$, and

$$\begin{split} L_m &= \left(L \backslash S(\mathscr{Y}^{(0)})\right) \cup \bigcup_{i_1 \in N} \left(\alpha_{1,k_1+1}^{-1}(Y_{i_1}) \backslash S(\mathscr{Y}^{(i_1)})\right) \cup \ldots \\ & \ldots \cup \bigcup_{i_1,\ldots,i_m \in N} \left(\alpha_{m-1+1,k_m+1}^{-1}(Y_{i_1,\ldots,i_m}) \backslash S(\mathscr{Y}^{(i_1,\ldots,i_m)})\right) \cup \bigcup_{i_1,\ldots,i_m \in N} S(\mathscr{Y}^{(i_1,\ldots,i_m)}), \end{split}$$

where $k_m = k_m(i_1, ..., i_m)$ in every summand.

We claim that these embeddings have the following properties:

a(m): For every m the maps e_L^m and e_L^{m-1} coincide on the space

$$\begin{split} L_{m-1} \cap L_m &= \left(L^n \backslash S(\mathscr{Y}^{\varnothing})\right) \cup \bigcup_{i_1 \in N} \left(\alpha_{1,k_1+1}^{-1}(Y_{l_1}) \backslash S(\mathscr{Y}^{(i_1)})\right) \cup \dots \\ & \dots \cup \bigcup_{\substack{i_1,\dots,i_{m-1} \in N}} \left(\alpha_{k_{m-2}+1,k_{m-1}+1}^{-1}(Y_{l_1,\dots,l_{m-1}}) \backslash S(\mathscr{Y}^{\{l_1,\dots,l_{m-1}\}})\right) \end{split}$$

b(m): For every m and every set $\mathcal{I} = \{i_1, \dots, i_m\}$ consisting of m integers there is a bicollared embedding

$$e^{\mathfrak{I}}\colon D^k \to P$$

such that $e^{(i_1,\dots,i_{m-1})}(D^k) \supset e^{(i_1,\dots,i_m)}(D^k)$ and $e^{\mathscr{I}}(D^k) \cap e^{\mathscr{I}'}(D_k) = \varnothing$ for any two *m*-element sets $\mathscr{I} \neq \mathscr{I}'$; moreover:

c(m): $e^{\mathscr{I}}(D^k) \cap e_L^m(L_m) = e_L^m(\alpha_{m-1+1,k_m+1}^{-1}(Y_{i_1,...,i_m}))$ is a topological, bicollared submanifold of $e^{\mathscr{I}}(D^k)$ for $\mathscr{I} = \{i_1, \ldots, i_m\}$ and $(e^{\mathscr{I}})^{-1}(e^{\mathscr{I}}(\partial D^k) \cap e_L^m(L_m)) = S^{n-1} \subset S^{k-1}$ is the standard (n-1)-sphere in $\partial D^k = S^{k-1}$.

$$\begin{array}{ll} \operatorname{d}(m): \operatorname{diam} \left(e^{\mathscr{I}}(D^k) \right) < \delta_m \text{ for } \mathscr{I} = \{i_1, \ldots, i_m\}. \\ \operatorname{e}(m): \operatorname{diam} \left(e^{\mathscr{U}}_L(Y_{i_1, \ldots, i_{m+1}}) \right) < \delta_{m+1} \text{ for every } Y_{i_1, \ldots, i_{m+1}} \in \mathscr{Y}^{\{i_1, \ldots, i_m\}}. \end{array}$$

Let us take the map e_L : $L^n \to P$. Using Bing's shrinking criterion described for example in [F], p. 417, Lemma (7.1), we can find a homeomorphism ξ : $L^n \to L^n$ such that the embedding $e_L^0 = e_L \xi$: $L^n \to P$ has the following property: $\{e_L^0(Y_i): Y_{i_1} \in \mathcal{Y}^{\mathcal{O}}\}$ is a null family with all elements of diameter $< \delta_1$. We start induction with this map.

Assume now that we have constructed e_L^m satisfying a(m) - e(m). Let $\mathscr{I} = \{i_1, \ldots, i_m\}$ and consider the manifold $e_L^m(\alpha_{k_{m-1}+1,k_m+1}^{-1}(Y_{i_1,\ldots,i_m}))$ which is a bicolared topological submanifold of $e^{\mathscr{I}}(D^k)$ (by c(m)). Using e(m) we can easily produce embeddings $e^{\{i_1,\ldots,i_{m+1}\}}$: $D^k \to P$ for every $i_{m+1} \in N$ so that b(m+1) and d(m+1) are satisfied. Then let $\eta: \alpha_{k_{m+1},k_{m+1}+1}^{-1}(Y_{i_1,\ldots,i_{m+1}}) \to M_{j_{m+1}}$ be a homeomorphism, where $j_{m+1} = j_{m+1}(i_1,\ldots,i_{m+1})$. We define an embedding

$$f_{\mathscr{I},l_{m+1}} = e^{\{l_1,\ldots,l_{m+1}\}} \circ \eta \colon \alpha_{k_m+1,k_{m+1}+1}^{-1}(Y_{i_1,\ldots,i_{m+1}}) \to e^{\{l_1,\ldots,l_{m+1}\}}(D^k).$$

The map $f_{\mathcal{F},i_{m+1}}$ extends $e_L^m|L_{m+1}\cap L_m$ if η chosen properly on the boundary, but we cannot put $e_L^{m+1}=f_{\mathcal{F},i_{m+1}}$, because e(m) would not be satisfied. But again we can compose $f_{\mathcal{F},i_{m+1}}$ with an automorphism ξ of $\alpha_{k_m+1,k_{m+1}+1}^{-1}(Y_{i_1,\dots,i_{m+1}})$ obtained by Bing's shrinking criterion so that if we put $e_L^{m+1}|\alpha_{k_m+1,k_{m+1}+1}^{-1}(Y_{i_1,\dots,i_{m+1}})=f_{\mathcal{F},i_{m+1}}\circ\xi$ then both e(m+1) and c(m+1) are satisfied.

So we have defined e_L^{m+1} as equal to e_L^m on $L_m \cap L_{m+1}$ and to $f_{\mathcal{I},i_{m+1}} \circ \xi$ on $\alpha_{m+1,k_{m+1}+1}^{-1}(Y_{i_1,\dots,i_{m+1}})$. Now, notice that $L_m \cap L_{m+1}$ is the union of the first m+1 summands of (4.5). This implies that we can define an embedding

$$e_{X\setminus \tilde{Y}}: X\setminus \tilde{Y}\to P$$

by $e_{X\backslash P}|L_m\cap L_{m+1}=e_L^m|L_m\cap L_{m+1}$. This is well defined because $X\backslash \widetilde{Y}=\bigcup_m(L_m\cap L_{m+1})$ by (4.5). Now, we extend $e_{X\backslash P}$ to a map $e_X\colon X\to P$ putting

$$e_X(Y_{(i_1,i_2,...)}) = \bigcap_{m=1}^{\infty} e^{(i_1,...,i_m)}(D^k).$$

It can easily be seen from a(m)-e(m) that e_x is an embedding.

7. Defining systems satisfying a special condition. Let $X = X(L^n, \mathcal{M}^n)$ for some L^n and \mathcal{M}^n and let $\{\mathcal{M}^n, L_i, \alpha_{i,i+1}, \Omega_i\}$ be a defining system for X. Of course we have much freedom in choosing a defining system. Let $p_1, \ldots, p_m \in X$ be any finite sequence of distinct points in X. We are interested whether $\{\mathcal{M}^n, L_i, \alpha_{i,i+1}, \Omega_i\}$ satisfies the following condition:

 $B(p_1,\ldots,p_m)$: There exists an increasing sequence k_1,k_2,\ldots of integers, a manifold $M\in \mathcal{M}^n$, and a family of n-cells $\{Y_1^i,Y_2^i,\ldots\}$ for every $j\leqslant m$ such that $Y_1^i\in\Omega_{k_1}$, $\alpha_{k_1,k_1+1}^i(Y_1^i)\approx M\setminus \mathring{D}^n$, $\alpha_{k_1,k_1+1}^i(Y_1^i)=Y_1^i$ for any $i\in N$, and $p_i=\bigcap_{i=1}^n\alpha_{k_i}^{-1}(Y_1^i)$.

LEMMA (7.1). For every L^n and \mathcal{M}^n and any points $p_1, \ldots, p_m \in X = X(L^n, \mathcal{M}^n)$, there exists a system $\{\mathcal{M}^n, L_l, \alpha_{l,l+1}, \Omega_l\}$ defining X which satisfies condition $B(p_1, \ldots, p_m)$.

Proof. By the uniqueness theorem (4.6) and by the construction described in Section 5, we can find a system $\{\mathcal{M}^n, L_l, \alpha_{l,l+1}, \bar{\Omega}_l\}$ defining X and satisfying condition $A(\{j_1, j_2, \ldots\})$ for some sequence $\{j_1, j_2, \ldots\}$ which satisfies (5.1). Note that in $A(\{j_1, j_2, \ldots\})$ we assume our family \mathcal{M}^n to be indexed: $\mathcal{M}^n = \{M_l\}_{l \in \mathbb{N}}$. For every $j \leq m$ we can choose a family $\{U_l^l\}_{l \in \mathbb{N}}$ of open subsets of X such that $U_1^l \supset U_2^l \supset \ldots$,

 $U_1^j \cap U_1^{j'} = \emptyset$ for $j \neq j'$ and $p_j = \bigcap_{i=1}^{\omega} U_i^j$. Moreover, we can assume that $V_{k,i}^j = \alpha_k(U_1^j)$ is an open $\overline{\Omega}_k'$ -saturated subset of L_k for any $k \geq i$, i.e. for every $Y \in \overline{\Omega}_k'$ either $Y \cap V_{k,i}^j = \emptyset$ or $Y \subset V_{k,i}^j$.

We will modify inductively the families $\overline{\Omega}_l$ in the system $\{\mathcal{M}^n, L_l, \alpha_{l,l+1}, \overline{\Omega}_l\}$ so as to get a new system $\{\mathcal{M}^n, L_l, \alpha_{l,l+1}, \Omega_l\}$ defining X and satisfying $B(p_1, \ldots, p_m)$.

By $A(\{j_1, j_2, \ldots\})$ we can find an integer $k_1 > 1$ such that for $j \leq m$ there are n-cells $Y_j \in \overline{\Omega}_{k_1}$ such that $\alpha_{k_1}^{-1}(Y_j) \subset U_1^j$ and $M_{j_{k_1}} = M$, and consequently $\alpha_{k_1,k_1+1}^{-1}(Y_j) \approx M \setminus \mathring{D}^n$. Moreover, if $\alpha_{k_1}(p_j) \in Y$ for some $Y \in \overline{\Omega}_{k_1}$ then we can assume that $Y_i = Y$.

Now for $j \leq m$ we will define n-cells $Y_1^j \subset V_{k_1,1}^j = \alpha_{k_1}(U_1^j)$ with the following properties: $\operatorname{Int}(Y_1^j) \supset Y_j \cup \{\alpha_{k_1}(p_j)\}, \ \partial Y_1^j$ does not intersect any element of $\overline{\Omega}_{k_1}$ and Y_1^j does not intersect any element of the family

$$\{\alpha_{k,k_1}^{-1}(T): k \leq k_1 \text{ and } T \in \overline{\Omega}_k\} \setminus \{Y_j\}.$$

We construct the sets Y_1^l as follows: we take a decomposition π : $L_{k_1} \to L_{k_1}/\overline{\Omega}'_{k_1} = \widetilde{L}_{k_1}$. By a theorem of Bing (Theorem (7.2) in [F]) \widetilde{L}_{k_1} is homeomorphic to L_{k_1} and the non-degenerate elements of this decomposition form a dense countable subset in \widetilde{L}_{k_1} . Then for every $j \le m$ we find a bicollared *n*-cell $\widetilde{Y} \subset \widetilde{L}_{k_1}$ such that Int \widetilde{Y} contains $\pi(\alpha_{k_1}(p_1)) \cup \pi(Y_j)$. Because of our choice of Y_j we can assume that

$$\widetilde{Y} \cap \pi(\{\alpha_{k,k_1}^{-1}(T): k \leqslant k_1 \text{ and } T \in \overline{\Omega}_k\}) = \pi(Y_j)$$

By [B-P], p. 140, Theorem (7.2), we can assume that $\partial \widetilde{Y} \cap \pi(\overline{\Omega}_{k_1}) = \emptyset$. Finally, we can choose \widetilde{Y} so small that $\widetilde{Y} \subset \pi(V_{k_1}^j)$. Then we define $Y_1^i = \pi^{-1}(\widetilde{Y})$. It is easy to see that Y_1^i so constructed has all required properties. To complete the first step of induction we put $\Omega_i = \overline{\Omega}_i$ for $i \neq k_1$ and $\Omega_{k_1} = \overline{\Omega}_{k_1} \cup \{Y_1^1, \ldots, Y_1^m\} \setminus \{Y_1, \ldots, Y_m\}$.

Now assume that we have integers $k_1 < \ldots < k_s$ and a system $\{\mathscr{M}^n, L_l, \alpha_{l,l+1}, \overline{\Omega}_l\}$ defining X such that for every $j \leqslant m$ there exists a family of n-cells $\{Y_1^j, \ldots, Y_s^j\}$ with $Y_l^i \in \overline{\Omega}_{k_l}, \alpha_{k_l,k_{l+1}}(Y_l^i) \approx M \setminus \overline{D}^n$ for $i \leqslant s$. $\alpha_{k_l,k_{l+1}}(Y_{l+1}^i) \in V_{k_l,l+1}^j \cap Y_s^j$ for $i \leqslant s$ and $Y_s^i \ni \alpha_{k_s}(p_j)$ (the definition of $V_{k,l}^j$ remains unchanged). By $A(\{j_1,j_2,\ldots\})$ we can find an integer $k_{s+1} > k_s$ such that for $j \leqslant m$ there are n-cells $Y_j \in \overline{\Omega}_{k_{s+1}}$ such that $\alpha_{k_{s+1}}^{-1}(Y_j) \subset U_{s+1}^j \cap \operatorname{Int}(\alpha_{k_s}^{-1}(Y_s^j))$ and that $M_{j_{k_{s+1}}} = M$.

Moreover, we can assume, that if $\alpha_{k_{s+1}}(p_j) \in Y$ for some $Y \in \overline{\Omega}_{k_{s+1}}$ then $Y_j = Y$. Now we define n-cells $Y^j_{s+1} \subset V^j_{k_{s+1},s+1} \cap \alpha^{-1}_{k_k,k_{s+1}}(Y^j_s)$ in the same way as for Y^j_1 . We complete the induction by putting $\Omega_l = \overline{\Omega}_l$ for $i \neq k_{s+1}$ and $\Omega_{k_{s+1}} = \overline{\Omega}_{k_{s+1}} \cup \{Y^1_{s+1}, \ldots, Y^m_{s+1}\} \setminus \{Y_1, \ldots, Y_m\}$.

Every step of this induction changes only one family Ω_l . This implies that performing all the steps we get a system $\{\mathcal{M}^n, L_l, \alpha_{l,l+1}, \Omega_l\}$ which still satisfies axioms (1)–(8) and $A(\{j_1, j_2, ...\})$ and additionally it satisfies $B(p_1, ..., p_m)$.

8. The m-homogeneity of $X(L^n, \mathcal{M}^n)$. A space X is said to be *m-homogeneous* if for any two *m*-element collections of distinct points $\{p_1, \ldots, p_m\}$ and $\{\bar{p}_1, \ldots, \bar{p}_m\}$ in X there exists a homeomorphism $h: X \to X$ such that $h(p_i) = \bar{p}_i$ for $i \leq m$. We prove the following:

THEOREM (8.1). For every closed manifold L^n , every family \mathcal{M}^n and every positive integer m the space $X = X(L^n, \mathcal{M}^n)$ is m-homogeneous.

Proof. Let $\{p_1,\ldots,p_m\}$ and $\{\bar{p}_1,\ldots,\bar{p}_m\}$ be two collections of points. Without loss of generality we can assume that the collections are disjoint. By (7.1) there exists a system $\{\mathcal{M}^n, L_l, \alpha_{l,l+1}, \Omega_l\}$ defining X and satisfying $B(p_1,\ldots,p_m,\bar{p}_1,\ldots,\bar{p}_m)$. Then of course the conditions $B(p_1,\ldots,p_m)$ and $B(\bar{p}_1,\ldots,\bar{p}_m)$ are also satisfied, and moreover an increasing sequence $k_1 < k_2 < \ldots$ determined by these two conditions is the same.

This implies that for every $j \leq m$ there are families $\{Y_1^l, Y_2^l, \ldots\}$ and $\{\overline{Y}_1^1, \overline{Y}_2^l, \ldots\}$, with $Y_i^l, \overline{Y}_i^l \in \Omega_{k_l}, \alpha_{k_l,k_l+1}^{-1}(Y_i^l) \approx \alpha_{k_l,k_l+1}^{-1}(\overline{Y}_i^l) \approx M \setminus \mathring{D}^n$ for some fixed $M \in \mathscr{M}^n$, $\alpha_{k_l,k_{l+1}}(Y_{l+1}^l) \subset Y_l^l$, $\alpha_{k_l,k_{l+1}}(\overline{Y}_{l+1}^l) \subset \overline{Y}_l^l$ and $p_j = \bigcap_{i=1}^m \alpha_{k_i}^{-1}(Y_l^l)$, $\overline{p}_i = \bigcap_{i=1}^m \alpha_{k_i}^{-1}(\overline{Y}_l^l)$.

We construct inductively a homeomorphism $h\colon X\to X$ with $h(p_j)=\bar p_j,\, j\leqslant m.$ First we take the spaces

$$X_1 = X \setminus \alpha_{k_1}^{-1} \left(\bigcup_{j=1}^m Y_1^j \right)$$
 and $\overline{X}_1 = X \setminus \alpha_{k_1}^{-1} \left(\bigcup_{j=1}^m \overline{Y}_1^j \right)$.

Obviously

$$X_1 \in X(L_{k_1} \setminus \bigcup_{j=1}^m \operatorname{Int} Y_1^j, \mathcal{M})$$
 and $\overline{X}_1 \in X(L_{k_1} \setminus \bigcup_{j=1}^m \operatorname{Int} \overline{Y}_1^j, \mathcal{M})$

so by Theorem (4.6) there is a homeomorphism $h_1: X_1 \to \overline{X}_1$ such that

$$h_1(\alpha_{k_1}^{-1}(\partial Y_1^j)) = \alpha_{k_1}^{-1}(\partial \overline{Y}_1^j) \quad \text{for } j \leqslant m.$$

Then we set

$$X_s = X \setminus \bigcup_{j=1}^m \alpha_{k_s}^{-1} (\operatorname{Int} Y_s^j)$$
 and $\overline{X}_s = X \setminus \bigcup_{j=1}^m \alpha_{k_s}^{-1} (\operatorname{Int} \overline{Y}_s^j)$

and assume inductively that we have a homeomorphism h_s : $X_s \to \overline{X}_s$ such that

$$h_s(\alpha_{k_s}^{-1}(\partial Y_s^j)) = \alpha_{k_s}^{-1}(\partial \overline{Y}_s^j) \quad \text{for } j \leq s.$$

For every $j \leq m$ we find a homeomorphism

$$h_{s+1}^{j}: \alpha_{k_s}^{-1}(Y_s^j) \setminus \alpha_{k_{s+1}}^{-1}(\operatorname{Int} Y_{s+1}^j) \to \alpha_{k_s}^{-1}(\overline{Y}_s^j) \setminus \alpha_{k_{s+1}}^{-1}(\operatorname{Int} \overline{Y}_{s+1}^j)$$

which extends h_s , i.e. agrees with h_s on $\alpha_{k_s}^{-1}(\partial Y_s^l)$. Indeed, the spaces $\alpha_{k_s}^{-1}(Y_s^l) \setminus \alpha_{k_s+1}^{-1}(\operatorname{Int} Y_{s+1}^l)$ and $\alpha_{k_s}^{-1}(\bar{Y}_s^l) \setminus \alpha_{k_s+1}^{-1}(\operatorname{Int} Y_{s+1}^l)$ belong to the classes $X((M \setminus \tilde{D}_1^n \setminus \tilde{D}_2^n) \not= N, \mathscr{M})$ and $X((M \setminus \tilde{D}_1^n \setminus \tilde{D}_2^n) \not= N, \mathscr{M})$ respectively where D_1^n and D_2^n are two disjoint n-disks in M, and N and N are both connected sums of a finite number of manifolds from \mathscr{M} (even though not necessarily $N = \tilde{N}$). So by Corollary (4.7) the required homeomorphism h_{s+1}^l exists. Then we define $h_{s+1}: X_{s+1} \to \bar{X}_{s+1}$ by $h_{s+1}|X_s = h_s$ and $h_{s+1}|\alpha_{k_s}^{-1}(Y_s^l) \setminus \alpha_{k_s+1}^{-1}(\operatorname{Int} Y_{s+1}^l) = h_{s+1}^l$ for $j \leq m$.

Finally, we define $h: X \to X$ by $h | X_s = h_s$ and $h(p_j) = \bar{p}_j$ for $j \le m$.

9. The spaces $X(L^n, \mathcal{M}^n)$ as fixed-point sets of topological Lie group actions on manifolds. In this section we show how the spaces $X(L^n, \mathcal{M}^n)$ can naturally appear as fixed-point sets of topological actions of compact Lie groups on manifolds.

EXAMPLE (9.1). Let \mathcal{M}^3 be any finite or countable family of homology 3-spheres, and let $L^3=S^3$. We take $e_L\colon S^3 \subsetneq S^4$ to be the standard inclusion. By [F], Theorem (1.4), p. 367, for every $M\in \mathcal{M}^3$ there exsits a topological, bicollared (but not always smooth) embedding $e_M\colon \mathring{M}\backslash D^3\to D^4$ such that there exists an involution $i_M\colon D^4\to D^4$ with $\operatorname{Fix}(i_M)=e_M(M\backslash \mathring{D}^3)$. Now, applying the construction from Section 6 to the space $X=X(S^3,\mathcal{M}^3)$, we get an embedding

$$e_{\mathbf{r}}: X \to S^4$$
.

We have the standard orientation-reversing involution $i: S^4 \to S^4$ with $Fix(i) = S^3$, and for every $\mathscr{I} = \{i_1, \dots, i_m\}$ we have an involution

$$i_{\mathfrak{s}} \colon e^{\mathfrak{s}}(D^4) \to e^{\mathfrak{s}}(D^4)$$

with $\operatorname{Fix}(i_{\mathscr{I}}) = e^{\mathscr{I}}(D^4) \cap e_L^m(L_m) = e_L^m(\alpha_{m-1}^{-1} + 1, k_m + 1(Y_{i_1, \dots, i_m}))$ (see c(m), Section 6). Moreover, we can assume that for any \mathscr{I} we have

$$i_{\mathcal{I}}|e^{\mathcal{I}}(\partial D^4)=i_{\{i_1,\ldots,i_{m-1}\}}|e^{\mathcal{I}}(D^4).$$

Of course $i_{\mathcal{F}}$ is an involution induced by $i_{M,lm}$, where $j_m = j_m(i_1, \ldots, i_m)$. Now we can define an involution $i_{\mathcal{F}}: S^4 \to S^4$ by

$$\begin{split} i_X &= i \quad \text{ on } \quad S^4 \backslash \bigcup_{l_1 \in N} e^{\{l_1\}}(D^4), \\ i_X &= i_{\mathscr{I}} \quad \text{ on } \quad e^{\mathscr{I}}(D^4) \backslash \bigcup_{l_{m+1} \in N} e^{\{l_1, \dots, l_m, l_{m+1}\}}(D^4), \end{split}$$

where $\mathscr{I} = \{i_1, \ldots, i_m\}$. Of course $e_X(X) = \operatorname{Fix}(i_X)$. The quotient space S^4/i_X consists of a contractible, non-compact 4-manifold and a "compactifying" cohomology manifold X. As was discovered by Ancel and Siebenmann, for certain homology spheres M, $X(S^3, \{M\})$ compactifies a simply connected 4-manifold of Davis which covers a closed 4-dimensional manifold.

Example (9.2). We take again $L^3=S^3$, and let \mathscr{M}^3 be a family of homology 3-spheres. Let $M\in \mathscr{M}^3$ and let $e_M\colon M\backslash \mathring{D}^3\to D^5$ be a smooth embedding with $e_M(\partial D^3)\subset \partial D^5$. By [M-Y] if every $M\in \mathscr{M}^3$ bounds a contractible manifold, then there is an action φ_m of S^1 on D^5 , standard on ∂D^5 , and such that $e_M(M\backslash \mathring{D}^3)=\operatorname{Fix}(\varphi_M)$. Using the same procedure as in (9.1) with involutions replaced by S^1 -actions, we get an S^1 -action φ_X on S^5 with $\operatorname{Fix}(\varphi_X)=e_X(X)$ where $e_X\colon X\to S^5$ is the embedding of the space $X=X(S^3,\mathscr{M}^3)$ described in Section 6.

The two examples show the way of obtaining a great variety of topological Lie group actions on manifolds with fixed-point sets $X(L^n, \mathcal{M}^n)$ and orbit spaces quotients which are manifolds compactified by $X(L^n, \mathcal{M}^n)$.

10. The space $X(S^3, \{H^3\})$ as the orbit space of an action of an infinite 0-dimensional compact group. In [Ko] Kolmogorov gives an example of a 2-adic group acting effectively on a 1-dimensional locally connected continuum so that the orbit space is the 2-dimensional continuum of Pontryagin (see also [W]).

Here we give another similar example of an effective action of an infinite compact 0-dimensional group on a locally connected continuum P such that the orbit space is the cohomology manifold $X(S^3, \{H^3\})$. Here H^3 is a Poincaré homology sphere (see [K-S]). First we construct P: let φ be an action of the binary icosahedral group I^* on S^3 so that S^3/I^* is a Poincaré 3-sphere H^3 , and the projection onto the orbit space of this action $\pi_{\varphi}\colon S^3\to S^3/I^*=H^3$ is a 120-fold covering. Let $D^3\subset H^3$ be a bicollared 3-cell. Then we take the space $R'=S^3\backslash\pi_{\varphi}^{-1}(\mathring{D}^3)$ which is a 3-sphere with 120 holes. We identify all the components of $\partial R'$ which consists of 120 copies of a 2-sphere, to one 2-sphere. We get a projection $\pi\colon R'\to R$ onto a space R. R admits an action φ' of I^* with quotient map $\pi_{\varphi'}\colon R\to H^3\backslash\mathring{D}^3$ such that the following diagram commutes:

(10.1)
$$R' \xrightarrow{\pi} R$$

$$\pi_{\varphi} | R \xrightarrow{\chi_{\varphi}} \pi_{\varphi}$$

Let $\partial R = \pi(\partial R')$. Now we construct P in the following way: we remove from S^3 the union of interiors of a dense, countable null family of bicollared 3-cells. We get a space Z_1 with "boundary" consisting of a countable family of 2-spheres. Then we attach to Z_1 a countable family $\{R_{l_1}\}_{l_1\in\mathbb{N}}$ of copies of R so that each ∂R_{i_1} is identified with one of the 2-spheres in the "boundary" of Z_1 . We also require that the diameters of the sets R_{i_1} converge to 0, so that $\{R_{i_1}\}_{i_1\in\mathbb{N}}$ is a null family. The action φ' of I^* on R gives rise to an action φ_{i_1} on each R_{i_1} with $Fix(\varphi_{i_1}) = \partial R_{i_1}$. We get a space $P_1 = Z_1 \cup \bigcup_{i_1 \in \mathbb{N}} R_{i_1}$ and an action φ_1' of I^* on P_1 with $\varphi_1'|R_{i_1} = \varphi_{i_1}$ and $Fix(\varphi_1') = Z_1$. Then from each manifold $R_{i_1} \setminus \partial R_{i_1}$ we remove the union of interiors of a dense, countable null family of 3-cells. This time we also require that this family be φ_{i_1} -invariant. We get a new space Z_2 and a countable number of 2-spheres in the boundary, and to each of the 2-spheres contained in R_{i_1} , $i_1 \in N$, we attach a copy R_{i_1,i_2} of R. Of course we must ensure that $\{R_{i_1,i_2}\}$ is a null family for every $i_1 \in \mathbb{N}$. Again the action φ' of I^* on R gives rise to an action φ_{i_1,i_2} of I^* on every R_{i_1,i_2} with $Fix(\varphi_{i_1,i_2}) = \partial R_{i_1,i_2}$. These actions, together with the actions φ_i , $i_i \in N$, give an effective action φ'_2 of $I^* \times I^*$ on the space $P_2 = Z_2 \cup \bigcup_{i_1, i_2 \in \mathbb{N}} R_{i_1, i_2}.$

We continue the same procedure infinitely many times, obtaining the spaces P_n with an effective action φ'_n of $I^* \times \ldots \times I^*$. Then we put $P = \lim_{\leftarrow} \{P_n, \alpha_{n,n+1}\}$, where

 $\alpha_{n,n+1}$ is equal to id on Z_{n+1} . It is easy to see that we have a natural action φ_{∞} of A_{∞} on P, where

$$A_{\infty} = \lim_{\leftarrow} \{ (I^*)^n, P_{n,n+1} \}, \quad (I^*)^n = I^* \times \ldots \times I^*$$

and $p_{n,n+1}$: $(I^*)^{n+1} \to (I^*)^n$ is given by $p_{n,n+1}(q_1,\ldots,q_n,q_{n+1}) = (q_1,\ldots,q_n)$.

It follows from the commutativity of (10.1) that the orbit space of φ_{∞} is homeomorphic to $X(S^3, \{H^3\})$, where H^3 is the homology sphere of Poincaré.

11. An uncountable family of homogeneous cohomology 3-manifolds. Let now \mathcal{M}^3 be a countable family of 3-dimensional irreducible homology spheres such that no two elements of \mathcal{M}^3 have the same fundamental group. There is an abundance of such

families. Brieskorn homology spheres [M2] can serve as a good example. The aim of this section is to prove the following theorem, yielding the existence of uncountably many different spaces $X(S^3, \mathcal{M}^3)$ which are cohomology manifolds.

THEOREM (11.1). If \mathcal{M}' and \mathcal{M}'' are two subfamilies of \mathcal{M}^3 and $\mathcal{M}' \neq \mathcal{M}''$ then the spaces $X' = X(S^3, \mathcal{M}')$ and $X'' = X(S^3, \mathcal{M}'')$ are not homeomorphic.

Proof. We have either $\mathcal{M}' \setminus \mathcal{M}'' \neq \emptyset$ or $\mathcal{M}'' \setminus \mathcal{M}' \neq \emptyset$, so suppose that $M \in \mathcal{M}'' \setminus \mathcal{M}'$, and let $\{\mathcal{M}', L'_i, \alpha'_{i,i+1}, \Omega'_i\}$ and $\{\mathcal{M}'', L''_i, \alpha''_{i,l+1}, \Omega''_i\}$ be defining systems for X' and X'' respectively.

Suppose that X' and X'' are homeomorphic, and consequently have the same Borsuk shape ([B] or [M-S]). That means that there exist increasing maps γ' : $N \rightarrow N$, γ'' : $N \rightarrow N$ of the set N of positive integers, and families of maps

$$f' = \{f'_n : L'_{\gamma'(n)} \to L''_n\}_{n \in \mathbb{N}} \quad \text{and} \quad \underline{f}'' = \{f_n : L''_{\gamma''(n)} \to L'_n\}_{n \in \mathbb{N}}$$

such that $f_k'\alpha'_{\gamma'(k),\gamma'(k+1)} \simeq \alpha''_{k,k+1}f'_{k+1}$, $f_k''\alpha''_{\gamma''(k),\gamma''(k+1)} \simeq \alpha'_{k,k+1}f''_{k+1}$ for any $k \in \mathbb{N}$, and for every $i \in \mathbb{N}$ there exists $k \in \mathbb{N}$ such that $f_i'f'_{\gamma''(i)}\alpha'_{\gamma''(\gamma''(i)),k} \simeq \alpha'_{i,k}$ and $f_i''f'_{\gamma''(i)}\alpha'_{\gamma''(\gamma''(i)),k} \simeq \alpha'_{i,k}$.

Take any i and k > i such that the last two homotopies hold. Then $L''_i = L''_i \# P$ for some homology manifold P, and consequently $\pi_1(L''_i) = \pi_1(L''_i) * \pi_1(P)$ (the choice of base points is irrelevent in our discussion). The map

$$\alpha = (\alpha_{i,k})_{\#} : \pi_1(L_k'') \to \pi_1(L_i'')$$

is a contraction of $\pi_1(L_i'')*\pi_1(P)$ onto $\pi_1(L_i'')$ given by $\alpha(a_1b_1 \ a_2b_2 \ldots) = a_1a_2 \ldots$, and of course it is surjective. This implies that $(f'_i)_*(f''_{i''(i)})_*(\alpha''_{i''(i'(i)),k})_* = (\alpha''_{i,k})_*$ is surjective, and consequently $(f'_i)_*$ is surjective. So we have proved that for any i, $(f'_i)_*$ and analogously $(f''_i)_*$ are surjective. Set $H_M = \pi_1(M)$. Every L''_i is a connected sum of elements of \mathcal{M}'' , and there must exist an index i such that L''_i contains a summand homeomorphic to M. Again, let $k \in N$ be such that $f'_i f''_{i'(i)} \alpha''_{i''(i'(i)),k} \simeq \alpha''_{i,k}$; then $L''_i = M \# P$ and let $L''_k = M \# P \# P$, and so $\pi_1(L''_i) = H_M * H$, $\pi_1(L''_k) = H_M * H * H$, where $H = \pi_1(P)$, $H = \pi_1(P)$. Set $\pi_1(L'_{i'(i)}) = G$. Then we have maps

$$H_M * \overline{H} \stackrel{\beta}{\leftarrow} G \stackrel{\xi}{\leftarrow} H_M * \overline{H} * \overline{H}$$

where $\beta = (f'_i)_\#$, $\xi = (f''_{i'(i)})_\# (\alpha''_{i''(i'(i)),k})_\#$. As we have mentioned both maps are surjective, and $\alpha = \beta \xi$ is a contraction of $(H_N * \bar{H}) * \bar{H}$ onto $H_M * \bar{H}$. Set $G_M = \xi(H_M)$ and $\bar{G} = \xi(\bar{H} * \bar{H})$. We have $\alpha | H_M = \mathrm{id}_{B_M}$ and $\beta | G_M : G_M \to H_M$ is an isomorphism. Also $G_M \cap \bar{G} = \{1\}$, because $\alpha(\bar{H} * \bar{H}) = \beta(G) = \bar{H}$. The fact that ξ is surjective now implies that $G = G_M * \bar{G} \approx H_M * \bar{G}$, so $\pi_*(L'_{n'(i)}) \approx G * H_M$. The Kneser conjucture ([H]), yields

that $L'_{\gamma'(i)} = M \# M'$ for some closed 3-manifold M'. But there is no manifold homeomorphic to M in \mathcal{M}' , so using Milnor's theorem about the uniqueness of a decomposition of a 3-manifold into a connected sum we get a contradiction.

References

- [A-S] F. D. Ancel and L. C. Siebenmann, The construction of homogeneous homology manifolds, Abstracts Amer. Math. Soc. 6 (1985), 92.
- [B-P] C. Bessaga and A. Pełczyński, Selected Topics in Infinite-dimensional Topology, Monograf. Mat. 58, PWN, Warszawa 1975.
- [B] A. Borel, Seminar on Transformation Groups, Ann. of Math. Stud. 46, Princeton Univ. Press, 1960.
- [B] K. Borsuk, Theory of Shape, Monograf. Mat., PWN, Warszawa 1975.
- [D] M. W. Davis, Groups generated by reflections and aspherical manifolds not covered by euclidean space, Ann. of Math. (2) 117 (1983), 293-324.
- [F] M. H. Freedman, The topology of four dimensional manifolds, J. Differ. Geom. 17 (1982), 357-453.
- [H] J. Hempel, 3-Manifolds, Princeton University Press, 1976.
- W. Jakobsche, The Bing-Borsuk conjecture is stronger than the Poincaré conjecture, Fund. Math. 106 (1980), 127-134.
- [J-R] W. Jakobsche and D. Repovs, An exotic factor of S³ × R, Math. Proc. Cambridge Philos. Soc. 107 (1990), 329-344.
- [K] R. C. Kirby, Stable homeomorphisms and the annulus conjecture, Ann. of Math. 85 (1969), 575-582.
- [K-S] R. C. Kirby and M. G. Scharlemann, Eight faces of the Poincaré homology sphere, in: Geometric Topology, 1979, 113-146.
- [Ko] A. Kolmogoroff, Über offene Abbildungen, Ann. of Math. (2) (38) (1937), 36-38.
- [M-S] S. Mardešić and J. Segal, Shapes of compacta and ANR-systems, Fund. Math. 72 (1971), 41-59.
- [M1] W. S. Massey, Homology and Cohomology Theory, Lecture Notes in Pure and Appl. Math., Dekker, New York and Basel, 1978.
- [M2] J. Milnor, On the 3-dimensional Brieskorn manifolds M(p, q, r), in: Knots, Groups and 3-Manifolds, Ann. of Math. Studies, Vol. 84, Princeton Univ. Press., 1975, 175-226. Math., Dekker, New York and Basel, 1978.
- [M-Y] D. Montgomery and T. C. Yang, Differentiable transformation groups on homotopy spheres, Michigan Math. J. 14 (1967), 33 46.
- [P] L. S. Pontryagin, Sur une hypothèse fondamentale de la théorie de la dimension, C. R. Acad. Sci. Paris 190 (1930), 1105-1107.
- [Q] F. S. Quinn, Ends of maps III: dimension 4 and 5, J. Differ. Geom. 17 (1982), 503-521.
- [S] L. C. Siebenmann, On Gromov's horizon for combinatorially hyperbolic groups, Abstracts Amer. Math. Soc. 6 (1985), 88.
- [W] R. F. Williams, A useful functor and three famous examples in topology, Trans. Amer. Math. Soc. 106 (1963), 319-329.

INSTITUTE OF MATHEMATICS, UNIVERSITY OF WARSAW PKIN, IX p.

00-901 Warszawa, Poland

Received 27 February 1989