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Homogeneous cohomology manifolds which are inverse limits
by

W. Jakobsche (Warszawa)

Abstract. We describe a class of homogeneous cohomology manifolds.

1. Introduction. The aim of this paper is to consider a certain class of compact,
finite-dimensional, homogeneous spaces which are inverse limits of topological mani-
folds. We say that a space X is homogeneous if for every x,yeX there exists
a homeomorphism h: X — X with h(x) = y. The spaces that we consider depend on an
orientable n-manifold L" (with possibly empty boundary) and on a countable or finite
family .#" of closed orientable manifolds of the same dimension n. We will denote them
by X(L", .#™). A first such space was constructed in [J] for L? = §° and the one-element
family .#° = {H} where H was a homotopy 3-sphere # S%, as a potential counterexam-
ple to the Bing-Borsuk conjecture(!). Earlier similarly constructed spaces were
considered in a different context in [P] and [W]. Then Ancel and Siebenmann ([A-S])
noticed that X (S3, H') where H’ is some homology 3-sphere can be identified with
a compactification of the Davis contractible 4-manifold which covers a closed
4-manifold [D]. They also introduced axioms describing spaces X(L", {M}) for the
families 4" = {M} consisting of one element. Axiomatic description seems particularly
useful when applied to spaces X (L, .#") with an infinite family .#. Our axioms for
general spaces X (L", .#") presented in Section 2 differ only slightly from those of Ancel
and Siebenmann. They play an important role in the proof of m-homogeneity of
X(L", A" given in Sections 7 and 8. In Section 4 we use a lemma proved by Torunczyk
to show that the spaces X (L", .#") depend only on L" and .#", and in Section 5 we give
a construction of X(L", 4"). If a family .#" consists of homology n-spheres then
X(L", #") is a cohomology manifold. In this case X(L", .#") can often be identified
with the fixed-point set of a topological action on a manifold or a cohomology
manifold. The theory of such actions was developed in [B]. Such homogeneous
cohomology manifolds also appear as compactifications of contractible 4-manifolds, or
orbit spaces of actions of O-dimensional infinite compact groups. We give some
examples in Sections 9 and 10.

() I have been informed by several people that J. Martin also considered a similar
construction.

2 — Fundamenta Mathematicae 137.2


Artur


82 W. Jakobsche

The spaces X(L", #4") have many'properties of manifolds besides being homo-
geneous and being cohomology manifolds if .4 consists of homology spheres. In [J-R],
for example, it is shown that they have certain general position properties for n =3
Finally, there are many such spaces: in Section 11 it is shown that X(L3, %)
# X(L3, ') if 4 and .4 are infinite families consisting of irreducible 3-manifolds and
A # 4. In particular, there exists an uncountable family of non-homeomorphic,
homogeneous 3-dimensional cohomology manifolds X (5%, .43

2. Axiomatic description of X (L", .#"). Let L" be an orientable n-manifold with
(possibly empty) boundary 8L" and let 4" = {M,, M,,...} be a finite or countable
family of closed, distinct n-manifolds. We define a class X (L", .#") of compact spaces as
follows: X e X(L", 4" if and only if X = 1&1 {L;, di+1} and the spaces L; and maps

‘i1t Livy— Ly i€N, satisfy the following axioms:

(1) L, = L" and every L, is a connected sum of L” and finitely many n-manifolds,
each homeomorphic to some member of 4", with 8L, = OL".

(2) There exists a finite collection 2; of pairwise disjoint bicollared n-cells in L,\0L;.

(3) a1 Li+1—L; is a homeomorphism over the set LAY {intY: YeQ}.

(4) For every YeQ,, 3% 1(Y) is homeomorphic to M\D", where Me.#" and D"
is a bicollared disk in M.

(5) For every j>i if YeQ, and Y'eQ, then dYnay(Y)=0 (here w;
= 0410 ...00_1 ; Lj—~>L;. We also put o;; = idp).

(6) The collection of sets {o;;(Y): j =i, YeQ} is a null family, that is, for every
&> 0, only a finite number of elements of the family have diameter > e.

(7) The sum { J @, of the collection of cells ©; = {;(Y): j = i, YeQ; and «;(Y) is
not contained in o (Y") for any i<k <j and Y'eQ,} is dense in L,

(8) For Me#" let (M) = {a;;(Y)€Q;: Ye, and o} (Y) M\D"). Then the
sum ()@, (M) of @(M) is dense in L\Uremen ([ @:(M,), for every i,jeN.

We will denote by o;: X — L, the natural inverse limit projection.

The axiomatic description of X' (L", 4" presented here was first given by Ancel
and Siebenmann for a one-element family .#" = {M}. The families @', and Q';(M))

defined in axioms (7) and (8) are determined by @,, so the spaces in X (L", ") depend .

on 4" the spaces L;, the maps «;,.; and the families Q,. By a defining system for X we
will mean a family {#", L,, a1, 2} such that X = lim {L;, %141} In Section 4 we

will show that there is only one space XeX(L", .{il"), so we will often write
X = X(L", #"). This will show that X depends only on L, and ", no matter which
defining system for X we choose.

Let us note the: following:
PROPOSITION (2.1). If every M e.#" is a homology n-sphere, then X e X (L", ") is
a cohomology n-manifold.

Proof. In Section 8 we will prove that XeX(L", 4™ is homogeneous so it is
enough to compute the local Betti numbers p'(x, X) (see [B], pp. 7-9) around

icm

Homogeneous cohomology manifolds 83

_ -1 \ : : .. o
x = ()19, (Y;) where a;: X — L, is the inverse limit projection, Y;, is an element of
some @, and {i,} is a sequence such that a,,, . (¥, )< Y. By continuity

H i(X > X\t (}u’ik)) ~ lim A i(Lj’ Lo 3 (f’ik))

and these groups are vaor i#n,0and Zfor i =0 or n. It is easy to see that the natural
hpmomorphism Jat H(X, X \a;‘(fﬁk))—»ﬁi(X » X\o1(¥,) is an isomorphism, so
p'x, X) =0 for i # n,0 and p"(x, X) = 1. X is locally orientable, so by [B], p. 9, it is
a cohomology manifold.

PROPOSITION (2.2). If X eX(L", 4", then dimX = n.

Proof is the same as in [J], p. 134.

3. Auxiliary lemma. Let 2 be a family of n-cells contained in the interior of a given
n-manifold M. By §(Z) we will denote the sum of interiors of all n-cells Z e%. We
assume that we have fixed an orientation on M and the induced orientation on 8M ,and
also on Z and 9Z for every Ze%.

We will say that a countable family & of n-cells in the interior of a given n-manifold
M is a good stratified family if the following conditions are satisfied:

) Z=% 0Z,0..., where each &, is a countable subfamily of %, and there is
a countable or finite number of the families %,.

(2) Bach S(2) is dense in M\S(Z,u...UZ-, UF U ).

(3) 0Z is bicollared in M for every Ze .

(4) For every Z,Z,e%, Z, + Z,, we have Z,nZ,=0.

(5) & is a null family in M, i.e. for every & > O the set {ZeZ: diam Z > ¢} is finite.

The following lemma (and its proof) is a simple extension of Toruficzyk’s Lemma
from [J].

LemMA (3.1). Let M and N be orientable n-manifolds and let h: M—N be an
orientation-preserving homeomorphism. Let % = %' U H*U...and ¥ =X U F* ...
be two good stratified families (each containing the same number, finite or infinite, of
subfamilies) of n-cells in the interior of M and N respectively. For every (Y, Z)e %' x 2!
let p%: @Y~ 8Z be an orientation-preserving homeomorphism. Then there exist bijective
functions p;: W'—%" and a homeomorphism k- M\S(®#)—> N\S(%) such that
K|oM = h|oM and W|0Y= @™ for every Ye®' and i N.

We set p= ) p: W&

Sketch of the proof. We assume (without loss of generality) that M = N,
h = idy; and diam M < 1. Each ¢% can be extended to a homeomorphism y%: Y— Z for
Ye®' and Ze#', ieN. Let ¥, = {y}: Ye®' Ze ¥, and let H(M) be the set of all
homeomorphisms of M which are identity on M. Set &} = {ZeZ": diamZ > 27"},
Y, = {Ye®' diam Y3 27",

‘(]X" = U .‘2”5” @n =

For any fe H(M) and any family 7 of subsets of M, let f () = {f(T): TeJ}. By (5),
%, and %, are finite families, We construct inductively homeomorphisms f,, g, € H(M),
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n=1,2,..., such that the following conditions are satisfied:

(a,) If Ye %" then there is Ze %" such that £,(Y) = g,(Z) and g, lf'.'l Ye ¥, for every i,

(a,) If Ze %! then there is Ye#' such that f,(Y) = g,(Z) and g, f.| Ye ¥, for every i.

(b,) diamf,(Y) <27" for every YeW\(#,uf; " 9,(Z,)-

(b, diamg,(Z) <27" for every Ze Z\(Z, U g, '1,(¥,).

) fol¥=fu-1|Y for every Ye¥,—y Ufitigu-1(Zn-1).

©) GlZ = gu-11Z for every ZeZ, s U grtifo-1(@n-1)

(d,) dist(fy, fo-a) <2772, dist(fih, frd) <2772

() dist(g,, ga-1) < 27", dist(gr *, gt <272
The construction is exactly the same as in [J], pp. 129-130, so we omit it. The only
difference is that we have to choose the elements Zy and Y, [J] (p. 130) in the appropriate
families & or #. We can also use the annulus theorem for any dimension by [K] and
[Q]. Having f, and g, we put f=1imf,, g =Ilimg,; they are both in H(M), and
B =g~ 'f is a homeomorphism such that b (M\S@)) = M\S(Z), h"(S(#")) = S(Z")
for i=1,2,..., and I"|Ye ¥, for every Ye®’ So we can take K = h”|M\S(‘Z£/) and
p(Y) = h"(Y) for every Ye%.

4. The uniqueness of X ¢ X (L", #"). Let X e X (L", ") where #M" = {M,, M,,...}
and let {#", L;, 0141, ©;} be a defining system for X. Weset #% = ¢ u¥F u... = Q,
where Y9 = &', (M ). Let us index the elements of the family WP Y® = { Y, }1,en, and for
every index i, €N, let us define integers j; = j, (i;) and k, = k,(i,) as follows: j, is an
integer such that Y, e®% and k; is the uniquely determined inteﬂger such that
of () €eQy,, or equivalently, i}, (¥,) ~ D" and orf, +(¥;,) & M;\D".

Now we make the following:

Inductive assumption. Let S = {i,,...,i,} be a finite sequence of positive integers
and that with every | < m we have associated two positive integers

<) k= kyiy, ... )

so that 1 <k, <...<k,, and that there is a sequence of n-cells

Ji=Jy,.. and

@) YL, Ygpcafb+ar(M)on Yt © 041 (Vi )i
and that

@2 ofk(M)eR, itV €@ ok b 1kn (Vi) € Qs
4.3) Yt €2, (M;)  for I<m.

With this inductive assumption, we now define a family # =#f U #{ U... by

Y = {YeQrs1: Yoogl v ipms1 (B
and then & =%’ @, +1(M). We can write @ = {Y, 4 st ien, WhETE
iy,...,ky are fixed by the inductive assumption, and i, €N is a varying index which
distinguishes an element of #. We will also use the notation Yy i., for Yi, and

voendm 1
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Y, for Y, ;.. Then we define numbers

Jm+1 = Jjme1liys o simer)  and kner = knt 1 (i, ooeyimsy)

as the unique integers such that apti4,., (Ys, )€, , and Ysi..€¥%%,,,. Of
course then k, ., >k, and conditions (4.1-3) are satisfied with m+1 in place of m.
Starting the induction with #° we get the families #* = { X5 s 1time en OF n-cells
for any finite ordered set # = {i, ..., i,} of positive integers so that conditions (4.1-3)
are satisfied, and for every ¥, we have a good stratified family #* =¥f @i ...
of n-cells in o’ 414 (Yiy,..oi) & M \D.
We can also define the families

am = U yz/(i\ ..... im}
of course then ¥"=FT L HTU... ‘
Notice that the members of #™ are cells which are contained in many different’
manifolds L.
Then let us consider the family #* = {2 . (¥, . ):meN, i, €N} = {¥¥ .1

consisting of closed subsets of X = lim {L,, 0;i+1). We have
L

(44)

£ 3
YE2 Yhu2o Y, ...

for every infinite sequence of integers {iy, i,,...}.
Moreover, by axiom (6), for every such sequence

~ 0
Y(ix.l'z....) = m Y?; ..... i

I=1
is a point.

The set ¥ consisting of all such intersection pointsis dense in X, with one point
corresponding to onme sequence {i;,i,,...}. Using axiom (3) and the projections
o X —L; to make the necessary identifications in L/s and X we have the equality
@35)  X\T=(L\S@?) 0 U @ik +1(L\S@ )

i1eN

v U (bt + 1 (G NS @) O
iy,i26N

Here in each summand k,, = k,,(iy, ..., i,), where iy, ..., i, are the integers appearing in
this particular summand. Also using the fact that oo (8L,): a7 Y(OL,)— L, is
a homeomorphism, we can assume that L= 4L, c X. Now we prove the following:

THEOREM (4.6). Let X e X(L", A" and XeX(L", #") and let h: L"—I" be an
orientation-preserving homeomorphism. Then there exists a homeomorphism h*: X - X
such that h*|0L" = h]aL". .

Proof Let {#", Ly, 0;;45, Q} and {#", L,, &4+, 3;} be defining sequences for
X and X. For X we will use all the notation established until now, that is we have
families Qi, QM ), #*, ¥, ™, ¥, ¥* and the spaces ¥, Y#. .. ¥ Accordingly

..... ims L hyeeyim?
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Z etc.

We want to prove that X and X are homeomorphic. First we use Lemma (3.1) with
M=IL"=L,, N=L"=L,, and the stratified families % = #? = %9 U#%u... and
X =% =909 0...of n-cells in L" and L" respectively, to find a homeomorphism

ht: L\S@?) > L\S(#°)

with h¥|0L, = h|aL" and bijective functions p;: %% - 2F such that for every Ye#?,
h¥(0Y) = a(pj(Y)). ‘ .

Assume inductively that we have defined a homeomorphism A% which takes the
union of the first m summands of (4.5):
4.7) CAS@ .o U (ot it kot Bt AS @)

i1 yeeeyimeN

onto the corresponding union

(4.8) IAS@%)u...u |

EspoecsdmeN

(Gt s 1ot 1(Z1y i I NS (i)

and bijective functions py: @7 — Z so that h¥%|0L" = h|0L" and for every Ye®) we
have h%(dY) = 8(p7?(Y)); we also denote by p™ the map defined by p”(Y) = p}(Y) for any
Ye%} and any jeN. Take any Y=Y, ... €¥" and let Z=2Zy . ., =p"(Y)
Of course ZeZ™ We have the numbers jyt1=jws+10)...,00+1) and
kps1 =Kms1(y, o simeq) defined uniquely for Y, ..., and the numbers
Jut1 = Jme 1 (s oo atmes) and Kyyg = Kow 1 (8, ..., i) defined for Z;,,..,.,. By the
definition of p™ as p"=|Jp}, we have jnui=jui1. Let F ={i;,..,ins1} and
I = {0tk

Now we use Lemma (3.1) again with M = oY 3 4,0 +1(Y) and N =gty 4, +1(2).
Because jp+1 = ju+1, We have a homeomorphism h: M—N, and we have good
stratified families #* =#{ U@ u... and &* = Z, V¥, U... We can also assume
that h|OM = h¥| ot 1k, +1(0Y). Now using Lemma (3.1) we get a homeomorphism

h%: ak_ml-i» Lok 1 +1( Y)\S(ﬂ'l/") nd o_‘k_;,.l+ kg1 +1 (Z)\S(g)"l)

which extends h%, and functions p: %7 —»#{ and p” = |),pf: ¥* > % so that
r*(@Y) = 8(p”(Y)) for Ye®”.

Finally, we can define h%., to be h} on the union (4.7), and h% on cvery Y, e #";
pF*t can be defined by pf*! =|J,p{ where .# runs over all (m+ 1)-element sets
S ={i},...,in+1} oOf integers. This completes the inductive definition of h¥.

It is easy to see that now we can define a homeomorphism

Be= | bt X\P-X\Z.
m=1
‘Then we can uniquely extend F* to h*: XX by B* Yy t0...) = Zii iz, Where
{i1, #5,...} is the uniquely defined sequence of integers such that for every m,
pm(Yi1,-~~Jm+1) = Ziiu--.":nn‘
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COROLLARY (4.7). Let X e X(L" # N, M) and let X' e X(L" # N', ), where N and
N’ are connected sums of a finite number of manifolds homeomorphic to elements of . /7"
Then X and X' are homeomorphic.

Proof. We can construct systems {.#", L,, ., QY and { ", L, &\, 3, with
Ly=L;=L"suchthat Ly ~ L" # N and Ly~ L" # N’ for some integers 7/, i”, so that
both systems define a space from X (L", 4" but after restricting the first of them to L,
with i > i and the second to L; with i > i they define spaces from X (L" # N, .#") and
X(L"# N', #") respectively.

5. Construction of X(L", .#"). We now know that for every L" and .#" there exists
at most one space X € X(L", .4"). We will denote it simply X (L", .4"). In this section we
will construct a space X(L", .#") for any L" and 4", thus proving that for every L" and
A" there exists precisely one space X(L", .#"). We assume the following:

Data (5.1). If 4" is infinite, then {j,, j,...} is an infinite sequence of integers in
which every integer appears infinitely many times. If .#" is finite, then {j,, j,,...} is an
infinite sequence of integers < s, where s is the cardinality of .#", in which every such
integer appears infinitely many times.

For any L" and 4" = {M}.y we will construct a system {#t", Ly, 0141, Q3}
defining a space X = X(L", .#" which moreover satisfies the following condition:

A({jisJas---}): For every keN and every YeQ, we have o, (¥) ~ M \D".
Moreover, for every ¢ > 0 there exists k, such that for every & > k, we have
diam (e *(Y)) < ¢ for every Ye(, and for every xe X (L" .#") there exists Ye Q,
with dist(x, & }(Y)) < &.

The construction is inductive: let {e,,¢,,...} be a sequence of positive numbers
converging to 0. We take L, = L" and for Q, we take any finite collection of disjoint,
bicollared n-cells in L; having diameters < ¢; and such that for every xeL, there exists
YeQ, with dist(x, Y) <¢,. Then assume inductively that we have defined spaces
Ly,....,Ly, maps a4, for i <k and families Q; for i < k so that axioms (1), (2) are
satisfied for i <k, axioms (3), (4) are satisfied for i < k and axiom (5) is satisfied for
i, j < k. Moreover, we require that diam(Y) < ¢, for i < k and Ye Q,, for any xe L, there
exists YeQ, with dist(x, ¥) < ¢, and o34 ,(Y) = M;\D" for every i <k and Ye Q.

Then we construct L., as follows: we remove the interior of every Ye @, from L,,
and instead of it we glue in a copy of the manifold M, \D", identifying its boundary with
8Y. We choose a metric on L. ; to coincide with the metric of L, on L, N Ly, and on
the attached manifolds we choose it so that each attached copy of M, \D" has diameter
< &. Then we define o+ to be identity on L, n Ly.; on every attached copy of
M \D" we Jet Ok1 DE any map onto the corresponding Ye £, which extends identity
on JY and for which a4 1 |oc,; L1 (0Y): oty 1(0Y)— Y is a homeomorphism. The set
Ziwr = Uiz 1 (U {@Y: YeQy}) is closed and nowhere dense in Ly, . Therefore we
can define Qy .1 to be any finite family of disjoint, bicollared n-cells in L, ., such that for
any YeQ,,, we have Yn Z,,, = @, diam(Y) < ¢, ,, and for any xe L, , there exists
Ye Q. with dist(x, Y) < g.+y. It is easy to see that then the inductive hypothesis is
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met with k replaced by k+ 1. If we perform all the steps of the induction, we get a system
{A", L;, 0541, Q;} which satisfies axioms (1)~(5). Axioms (6) and (7) are satisfied
because of the way in which the families €2; depend on {&}ien- Finally,_thc system
satisfies A({iy, i, ...}), so axiom (8) is satisfied because of the properties of the sequence
{iy igyee )

6. Embeddings of X (L", .4") into manifolds. Let X = X(L", "), let {4", Ly, 0141, Q)
be a defining system for X, and let P be a manifold (possibly with boundary) of
dimension k > n. We will use all the notation introduced in Section 4. In particular, we
have A" = {M}jen, @1 = @°, @4 (M)) = %% and we have families #* =&, V¥, u..,
for 4 ={i,...,i,}. We assume the following:

Data (6.1). There exists a bicollared topological embedding e;: L"— P with
e, (OL") = e (L") n 8P, and for every Me.#" there exists a bicollared embedding
ey M\D"— D* (where D" = M) such that e, (8D") = eM(M\ﬁ")n 2D* and e,,(dD") is
a standard (n—1)-sphere §"~* = S¥~! = gDk

Assuming (6.1) we will construct an embedding of X into P. First, having e;: L—P
and any fixed sequence é, > 8, > ... of positive numbers converging to 0, we construct
inductively a sequence of embeddings

(6.2) e L,—~P,
where Ly = L, and

L, ={I\S@*) U U (@Th+ I(Kl)\S(@“")) u...

iteN

Fryeeny imeN Elarees imeN
where k, = k,(i,,...,i,) in every summand.
We claim that these embeddings have the following properties:

1

a(m). For every m the maps ef and ef™! coincide on the space

Lp-y 0 L, = (LN\S@?) U U (ath +:(ENS@) ...

i1e

Y U ettt 1 (B J\NS (@011

{yretm—~ 16N
b(m): For every m and every set J = {i,,...,1,} consisting of m integers there is
a bicollared embedding
e’ D> P

sets # # .#'; moreover:

c(m): e" (DY) nef(L,) = ef (ot 4 1km+1 (i) i a topological, bicollared sub-
manifold of e”(D¥) for # = {i;,...,i,} and (e”)"*(e”(3D*) N ef(L,) = S""* = ¥~ is
the standard. (n—1)-sphere in 9D* = §¥~1,

d(m): diam(e* (DY) < 5, for S = {ij, ..., i}

..........
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Let us take the map ¢,: L' P, Using Bing’s shrinking criterion described for
example in [F], p. 417, Lemma (7.1), we can find a homeomorphism &: L*— " such
that the embedding ef = ¢, &: L"— P has the following property: {e}(¥;,): ¥, e®?} is
a null family with all elements of diameter < ;. We start induction with tlhis map.

Assume now that we have constructed e satisfying a(m) — e(m). Let S =
{iis-+»in} and consider the manifold ef(orl 1y ey (Y. i) Which is a bicol-
lared topological submanifold of e”(D¥) (by c(m)). Using e(m) we can easily produce
embeddings ¢l/t~imr 0 DX P for every i,.,eN so that b(m+1) and d(m+1) are
satisfied. Then let 71 ol o 0¥ 0 )~ M jm+1 D& @ homeomorphism, where
Jua1 = w115 oovsimr1). We define an embedding

= ol R ;
Sy = eltmmime o, Bt Lo 1+ 1By ) > €0 11 (D),

The map fy,,, extends ef|L,., L, if 4 chosen properly on the boundary, but we
cannot put ef "' =fy; . because e(m) would not be satisfied. But again we can
compose f,q,, ., With an automorphism ¢ of a1 4., +1(¥... im+,) Obtained by Bing’s
shrinking criterion so that if we put ef " oYy 1 4, 41 (%t ) = frins, OF then both
e(m-+1) and c(m-+1) are satisfied.

So we have defined e** as equal to e} on L,AL,+; and to f5ime @& o0
it 1o 1+ 1{F s ). NOW, notice that L, L., is the union of the first m+1
summands of (4.5). This implies that we can define an embedding

exyp: X\Y—p

by ex\p'L,,, A Ly = e}’j|L,,, O Ly 1. This is well defined because X\ ¥= Um(L,,, ALy
by (4.5). Now, we extend exyp to a map ey: X —P putting

©
eX(Yiil-lz.-..))= ﬂ eul """ im)(Dk).

m=1
It can easily be seen from a(m)-e(m) that ey is an embedding.

7. Defining systems satisfying a special condition. Let X = X (L", .#") for some L"
and 4" and let {#", Ly, 014, ©2;} be a defining system for X. Of course we have much
freedom in choosing a defining system. Let p,,...,p,€X be any finite sequence of
distinct points in X. We are interested whether {#" L;, o4+, Q;} satisfies the
following condition:

B(py...,p,): There exists an increasing sequence k,,k,, ... of integers, a manifold
Me.#", and a family of n-cells {Y4, Y4,...} for every j <m such that YieQ,,
k1 (V) & MAD", ot g1 (Yi41) = Y for any ieN, and Py =210 (Y.

LEMMA (7.1). For every L" and " and any points p,, ...,p,€X = X (L", M"), there '
exists a system {M", Ly, o141, 2} defining X which satigfies condition B(p,, ..., P,).

Proof. By the uniqueness theorem (4.6) and by the construction described in
Section 5, we can find a system {.#", L;, 041, {,} defining X and satisfying condition
A({ji+jgs .-.}) for some sequence {j,,j,,...} which satisfies (5.1). Note that in
A({jysda, -..}) we assume our family .#" to be indexed: A" = {M};cy. Forevery j <m
we can choose a family {Uf},y of open subsets of X such that U{=> Ui>...,
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UinU{=@forj#jand p;= (i1 U{. Moreover, we can assume that Vi, = o, (U}
is an open (j-saturated subset of L for any k >, i.e. for every Ye () either YN Vi, =@
or Yo Vi, -

We will modify inductively the families 0, in the system {#4", L, 041, €} s0 as to
get a new system {.#", Ly, oy iv1, Q,} defining X and satislying B(p,,...,p,).

By A({j;,j2,---}) we can find an integer ky > 1 such that for j < m there are n-cells
Y;e {0, such that o (Y) < U4 and M, = M, and consequently agk, +1(Y) & MAD",
Moreover, if ay,(p)eY for some Ye Gy, then we can assume that ¥, =Y,

Now for j <m we will define n-cells Y e Vi, = u, (UD) with the following
properties: Int(Y}) = YU {a,(p)}, 0Y{ does not intersect any element of %, and
Y4 does not intersect any element of the family

(b (T): k <k, and TeQN\{Y}.

We construct the sets ¥4 as follows: we take a decomposition m: Ly, — Ly, /@, = Ly,
By a theorem of Bing (Theorem (7.2) in [F]) Ly, is homeomorphic to Ly, and the
non-degenerate elements of this decomposition form a dense countable subset in Ly,
Then for every j<m we find a bicollared n-cell Yo L, such that Int¥ contains
n(ockl(pl))un(Yj). Because of our choice of Y, we can assume that

Pra({oph(T): k< ky and Tedy}) = n(¥).

By [B-P], p. 140, Theorem (7.2), we can assume that a¥nn((,) = @ Finally, we can
choose ¥ so small that ¥< n(V4,,). Then we define Y4 = n~*(¥). It is casy to sec that
Y/ so constructed has all required properties. To complete the first step of induction we
put Q=@ for i #k, and @, = @, v {¥}, ..., YIN\[Y,,.... Y,}.

Now assume that we have intégers ky < ... < k, and a system {.#", Ly, o441, 3}
defining X such that for every j < m there exists a family of n-cells {¥4,..., Y{} with
Ve i, tibor 1 (V) & MAD" for i < 5. 04 (Y1) € Viygas 0 Y for i < s and Yio04,(p)
(the definition of Vi, remains unchanged). By A({j;,Jj;,...}) we can find an integer
Kker1 > kg such that for j<m there are n-cells Yje By, such that ol (Y)
© Ulyy nInt(o;* (YY) and that M;, =M.

Moreover, we can assume; that il oy, ,(p)eY for some Y&, , then ¥j =Y.

Now we define n-cells Yi.; < Vi,,, 401 N oid,, (Y] in the same way as for Y4,
We complete the induction by putting @, = for i k. and &, = (9
STEETA (T AR A

Every step of this induction changes only one family £,. This implies that
performing all the steps we get a system {#", L, o141, ©;} which still satisfies axioms
(1)~8) and A({j;,j,...}) and additionally it satisfies B(p,,...,p,).

8. The m-homogeneity of X (L", 4"). A space X is said to be m-homogeneous if for
any two ri-element collections of distinct points {p,, ..., p,} and {f,, ..., f,} in X there

exists a homeomorphism h: X —X such that h(p) =, for i <m. We prove the
following:

icm
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THEOREM (8.1). For every closed manifold L', every Jamily 4"

‘ and every positive
integer m the space X = X(L", .#") is m-homogeneous.

Proof. Let {p,,...,p,} and {p,, ..., P} be two collections of points. Without loss
of generality we can assume that the collections are disjoint. By (7.1) there exists
a system {4", Ly, 0441, 2;} defining X and satisfying B(py, ..., P B1»-.., b,) Then of
course the conditions B(py,...,p,) and B(p,,...,p,) are also satisfied, and m:;reover an
increasing sequence ky < k, < ... determined by these two conditions is the same.

This implies that for ¢very j < m there are families {4, ¥4, . .} and {¥}, ¥4,...}
with Y1, ¥l Q. aik o (YD % 04,0 (F4) m MBS for some fixed Me .47, ,: (if’n )
c v, uk,.k,u(yf v1) < ¥/ and py= ﬂfx;=1°51c~.1(Y{), b= ﬂﬂlaﬁl(ﬂ)- B

We construct inductively a homeomorphism h: X — X with h(p) = p;, j < m. First .
we take the spaces '

m
Xy =X\ (U Y]
J=1

C=

and X, = X\o}(

i

1).

1

Obviously

m

X eX(Li\\J IntY], #) and Xiex(L )\ Int¥i, #)
JE=lo j=1
so by Theorem (4.6) there is a homeomorphism h;: X, —»X, such that
by (o OY4) = 05,1 @YY)  for j< m.
Then we set
m m
Xy=X\{Jop'(IntY) and X,=X\{J o' (Int¥i)
Il J=1
and assume inductively that we have a homeomorphism h;: X~ X, such that
by (YD) = o (079

For every j<m we [ind a homeomorphism

for j<s.

his i o (YNoi b (Int Y ) o (PN, (Int Fq)

which extends h, i.e. agrees with h, on 0,1 (9Y)). Indeed, the spaces o (Y)\ei !, (Int Y, )
and o ' (F\e,! (Int ¥, ) bolong to the classes X{(MA\B]\D3) # N, #) and
X((M\DI\BY) o N, ) respectively where DY and DY are two disjoint n-disks in M, and
N and N are both connected sums of a finite number of manifolds from .# (even
though not necessarily N = N). So by Corollary (4.7) the required homeo-
morphism b}, exists, Then we deline hyi: Xyu1—Xyu1 by hesy|X,=h, and
s ot (VN0 b (It ¥y ) = By for j < m,

Finally, we define h: X ~+X by h|X, = h, and h(p) = p, for j<m.

9. The spaces X (L", #") as fixed-point sets of topological Lie group actions on

manifolds. In this section we show how the spaces X (L", ") can naturally appear as
fixed-point sets of topological actions of compact Lie groups on manifolds.
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ExampLE (9.1). Let 4% be any finite or countable family of homology 3-spheres,
* and let L? = $3 We take e,: S>  S* to be the standard inclusion. By [F], Theorem
(1.4), p. 367, for every M e #° there exsits a topological, bicollared (but not always
smooth) embedding ¢,: M\D®— D* such that there exists an involution iy: D*—D*
with Fix(iy) = ey, (M \D?. Now, applying the construction from Section 6 to the space
X = X(S3, #%), we get an embedding

ey X 5%,
We have the standard orientation-reversing involution i: $*-»$* with Fix(i) = §?,
and for every JJ = {i;,...,i,} we have an involution
iy e (DY) —e” (DY)
with Fix(i,) = * (D% A (L) = €8 (052 + 1o+ 1 (¥iy,.ot,)) (820 c(m), Section 6). More-

over, we can assume that for any J we have

Of course i, is an involution induced by iy, , Where j, = jy, (i1, "5 i)
Now we can define an involution iy: $*-+S* by
54\ () efi(pY),

ileN

iy=1 on

(DY {J elimtmin (DY,

I 16N

iy=i, on

where S = {iy, ..., i,}. Of course ey(X) = Fix(iy). The quotient space S*/iy consists of
a contractible, non-compact 4-manifold and a “compactifying” cohomology manifold
X. As was discovered by Ancel and Siebenmann, for certain homology spheres M,
X (83, {M}) compactifies a simply connected 4-manifold of Davis which covers a closed
4-dimensional manifold.

ExampLE (9.2). We take again L®= 5% and let #° be a family of homology
3-spheres. Let Me#® and let e, M\D*—D’ be a smooth embedding with
) (8D%) < 8D°. By [M-Y] if every M e 4 bounds a contractible manifold, then there
is an action ¢,, of S* on D, standard on dD%, and such that e, (M\D?) = Fix(py).
Using the same procedure as in (9.1) with involutions replaced by S'-actions, we get an
St-action ¢, on §* with Fix(py) = ex(X) where ey X —$° is the embedding of the
space X = X(S°, ) described in Section 6.

The two examples show the way of obtaining a great variety of topological Lie

group actions on manifolds with fixed-point sets X (L", .#") and orbit spaces quotients
which are manifolds compactified by X(L", .4").

10. The space X (5%, {H?)}) as the orbit space of an action of an infinite 0-dimensional '

compact group. In [Ko] Kolmogorov gives an example of a 2-adic group acting
effectively on a 1-dimensional locally connected continuum so that the orbit space is the
2-dimensional continuum of Pontryagin (see also [W]).
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Here we give another similar example of an effective action of an infinite compact
0-dimensional group on a locally connected continuum P such that the orbit space is
the cohomology manifold X (S*, {H3}). Here H3 is a Poincaré homology sphere (see
[K-81). First we construct P: let ¢ be an action of the binary icosahedral group I* on
5% so that $¥/I* is a Poincaré 3-sphere H3, and the projection onto the orbit space of
this action 7,: $*—S%/I* = H* is a 120-fold covering. Let D® = H® be a bicollared
3-cell. Then we take the space R’ = §*\n, (D)%) which is a 3-sphere with 120 holes, We
identify all the components of AR’ which consists of 120 copies of a 2-sphere, to one
2-sphere. We get a projection 7: R'— R onto a space R. R admits an action ¢’ of I*
with quoticnt map my: R-» HA\D? such that the following diagram commutes:

I°% T i

ﬂ'.p‘}\ T
HND?

Let dR = m(dR’). Now we construct P in the following way: we remove from S° the
union of interiors of a dense, countable null family of bicollared 3-cells. We get a space
Z, with “boundary” consisting of a countable family of 2-spheres. Then we attach to Z 1
a countable family {Ry,};,en of copies of R so that each 4R;, is identified with one of the
2-spheres in the “boundary” of Z,. We also require that the diameters of the sets
R, converge to 0, so that {Ry, }; ey is a null family. The action ¢’ of I* on R gives rise to
an action @, on cach Ry, with Fix(p;,) = 0R,,. We get a space P, = Z, U | J;;ev Ry, and
an action ¢y of I* on P, with rp’1|Ri1 = @, and Fix(¢}) = Z,. Then from each manifold
Ri,\OR;, we remove the union of interiors of a dense, countable null family of 3-cells.
This time we also require that this family be ¢;,-invariant. We get a new space Z, and
a countable number of 2-spheres in the boundary, and to each of the 2-spheres
contained in Ry, iy € N, we attach a copy R;,;, of R. Of course we must ensure that
{Ri,.,} is a null family for every i;eN. Again the action ¢’ of I* on R gives rise
to an action ¢,,,;, of I* on every Ry, ;, with Fix(¢y, ;,) = 0R;, ;,. These actions, together
with the actions ¢, ijeN, give an effective action ¢ of I*xI* on the space
P,=2Z,u Uh.ﬁi‘NI{ll'l;'

We continue the same procedure infinitely many times, obtaining the spaces P,
with an effective action ¢, of I*x ... xI*. Then we put P = 11_131 {P,, tyn+1}, Where

(10.1)

Uy gy 18 equal to id on Z, . . It is easy to see that we have a natural action ¢, of 4,, on
P, where
Ay = Hm (%), Pyyiq}s P =Dx . oxI*
T

and Punt 1t (l*)nl ! "’(I*)" is given by pn|n+1(q1’ "'>qn’ qn-H) = (‘11! N "!qu)'
It follows from the commutativity of (10.1) that the orbit space of ¢, is
homeomorphic to X($% {H?}), where H® is the homology sphere of Poincaré.

11. An uncountable family of homogeneous cohomology 3-manifolds. Let now .4 be
a countable family of 3-dimensional irreducible homology spheres such that no two
elements of 4> have the same fundamental group. There is an abundance of such
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families. Brieskorn homology spheres [M2] can serve as a good example. The aim of this
section is to prove the following theorem, yielding the existence of uncountably many
different spaces X (S, 4 3) which are cohomology manifolds.

TugoreM (11.1). If ' and M" are two subfamilies of M* and M’ 5 H" then the
spaces X' = X(S°, M') and X "= X($3, A") are not homeomorphic.

Proof We have either '\ A" # @ or M"\M' # @, so suppose that M e.#"\ ',
and let {4, L}, 41 Q) and { A", L{, o341, Q1 be defining systems for X' and X"

oy Lafy LD 2 N » 5 .
respectively. .

Suppose that X’ and X" are homeomorphic, and consequently have the same
Borsuk shape ([B] or [M~8]). That means that there exist increasing maps y': NN,
y': N—N of the set N of positive integers, and families of maps

./’ = {f;l: L;"(")’;L:I’}IIEN and .[” = {‘/;:: I‘;/("(n) i l‘;}m N
such that £ yr n = Cks 1 Lo ts S0 w000 1 % S 151 ‘fm: any ke N, and for
every ie N there exists ke N such that fif 5ok = ol and f1 frem@ypyinge & %

4 .. Ly Ly Ll e

fynn

I iy Ly . Ly

Take any i and k > i such that the last two homotopies hold. Then Ly = Li # P for
some homology manifold P, and consequently , (L) = 7, (Li')*x, (P) (the choice of base
points is irrelevent in our discussion). The map

o= (o g)ws my (L) (L)

is a contraction of 7, (L}« (P) onto m, (L{) given by a(a,by azh, ...) = da,a; ..., and of
course it is surjective. This implies that (D) (i) e e = @) 4 is surjective,
and consequently (f), is surjective. So we have proved that for any I, (f1), and
analogously (f{), are surjective, Set Hy = (M), Every LY is a connected sum of
elements of .#", and there must exist an index i such that L{ conlains a summand
homeomorphic to M. Again, let keN be such that f]/%uogeums ™~ diks then
Li=M#P and let Lj = M#P#P, and so n(Lj) = Hywdl, n,(L§) = HywHH,
where H = n,(P), H = n,(P). Set m,(Liy) = G Then we have maps

HyxBEGEH Hu 1T

where B = (D4 &= (lw)u@pmu. As we have mentioned both maps are
surjective, and o = p¢ is a contraction of (Hy« H)x H onto H,» H. Set Gy, = £(H,,) and
.G = ¢(HxH). We have a|H) =idy, and p}Gy: Gy - H,, is an isomorphism. Also
Gy 1 G = {1}, because a(H+H) = f(G) = H. The fact that & is surjective now implies
that G = GG ~ Hy*G, so m;(Lj) & G+ Hy,. The Kneser conjucture ([H]), yields
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that Ly =M#M' for some closed 3-manifold M'. But there is no manifold
homeomorphic to M in .4, so using Milnor's theorem about the uniqueness of
a decomposition of a 3-manifold into a connected sum we get a contradiction.
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