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On the representation type of
triangular matrix algebras over special algebras

by

Zbigniew Leszczynski (Torun)

Abstract. In the paper the representation type of triangular matrix algebras over finite-
dimensional radical-square-zero algebras is considered. The characterization of algebras with
associated triangular algebras of finite (tame) type is given in terms of Gabriel quivers.

1. In this paper all agebras are finite-dimensional over a fixed algebraically closed

field k. We call
A A
T=T(4)= [:0 A]

a triangular matrix algebra over an algebra A. Our objective is to show that if J *4)=0
(where J(A) is the Jacobson radical of 4), then T and T = To(4) = T/J*(T) have the
same representation type; this term is restricted in this paper to mean finiteness,
tameness, or wildness. We recall that an algebra is of finite type [5] if the category
A-mod has only finite number of isoclasses.of indecomposable modules. 4 is called of
wild type if there is an exact embedding k(X Y )-mod - 4-mod [14]. An algebra is said
to be of tame type if it is neither of wild nor of finite type. The reader is referred to [6] for
the discussion of equivalent formulations of tame type.

One can easily see that the algebra A is basic (connected) if and only if the algebra
T(A) is. From [7] we know that a basic radical-square-zero algebra is a bound quiver
algebra of the form A = kQ/(kQ7)? where Q is the Gabriel quiver of the algebra 4. So
we may assume without loss of generality that our algebras are connected bound quiver
algebras of the form kQ/(kQ{)? for some finite quiver Q. Our main result is

~ THEOREM 1.1. Let A = kQ/(kQT)?, for some finite quiver Q. Then T(A) is of finite
(tame) type iff the agebra Ty(A) is of finite (resp. tame) type.
Let us recall the following useful criterion:
TueoREM 1.2. If A is an algebra with J*(4) =0, then

(a) 4 is of finite type iff the separated quiver of A (for the definition see [1] and
Section 2) is a disjoint union of Dynkin quivers of Fig. 1 and their duals.
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(b) A is of tame type iff the separated quiver of A is a disjoint union of Dynkin quivers,
extended Dynkin quivers of Fig. 2 and the duals of the latter, with at least one extended
Dynkin quiver in the union (in both cases ®—e means cither @ — e or @ — e and each point
is either a source or a sink).
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n ./ . )
E$= O e B e @ e @ e @
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Fig. 2

This together with Theorern 1.1 gives us a diagramatic criterion for determining the
representation type of T(A4). Moreover, we shall give in Propositions 3.4, 3.5, Remark 3.7
and Lemmas 4.4, 4.5 an effective reduction procedure for description of indecomposable
Tmodules in case T is not of wild type.

The representation type of triangular matrix algebras has been studied in [1,2, 11,
12, 15]. .

2. Preliminaries. By the Gabriel quiver of a basic algebra A we mean the quiver
* 0(4) = (Qo, Q) defined as follows. Let A/J(A) 2k, x ... xky; k; =k J(A/I*(A)
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= D=1 k{J (A)/T*(A)k;. We put 0y = {1,..., n} and we have f;; arrows from i to j in
Q,, where f;; = dim,k;(J(4)/J*(4)k; [7]. With a radical-squarezero algebra 4 we
associate the hereditary algebra

_ _ |44 J4)
== [0 ' A/J(AJ
and define the separated quiver of A by S(A) = Q(H(4)). The functor
J(AM
MH[M/J(A)M]

from A-mod to H-mod relates the representation problem for A to the same problem for
H [1]. Hence Theorem 1.2 follows from the results in [3, 7, 8].

For a locally finite quiver Q we take A = kQ/(kQ{)? (for a finite quiver Q this is
a fd. algebra with unit) and we dcﬁne the triangular quiver T(Q) over Q by
T(Q) = Q(T(4).

Observe that we obtain T(Q) by splitting every ie Q, into two vertices i, '€ (T(Q))o.
every arrow a: i—j into two arrows a: i—»j and «': i = in (T(Q)), and inserting for
every ie 0, a new arrow y;: i—1 in (T(Q)),. This means that T(Q) is the disjoint union
of @ and Q' = Q connected by the arrows y;: i—1i'.

w»

O

Fig. 3 Fig. 4

ExampLE 2.1. For a loop L (Fig. 3), T(L) is shown in Fig. 4.
LEmMMA 2.2. Let A = kQ/(kQT)* for a locally finite quiver Q. Then

Q(T(4°) = T(Q*) = (T(Q))® = Q((T (4))).

This is straightforward from the definition.

A subquiver C of Q will be called a g-connected component if C,=Q, is an
equivalence class of the minimal equivalence relation such that

(a) if o x—1i, f: x—j then agf,

(b) if a: i—y, B: j—y then opf.

Remark 2.3. The set of g-connected components of a quiver Q is equal to the set
of supports of indecomposable representations of kQ/(kQ 7).

3. T-splitting operation. Let Q denote a locally finite qui,vér (i.e. every point has only
a finite number of neighbors) and let C=4,, 2 <n <4, denote a g-connected
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component of Q. The quiver Q is called Tsplittable (at the g-connected component C) if
there are x, y€ C, such that x is a source in C but not in Q, and y is a sink in C but not
in Q.

In this section we define a Tsplitting operation by associating with every
Tsplittable quiver Q a quiver ' having exactly one Tsplittable g-connected component
Jess than Q. We shall prove that the quivers S(T'(Q)) and S(T(Q") (T(Q) and T'(Q") are of
the same representation type. In the proofs we use the covering technique (see [4, 5, 10]).

(b)//////%//%-
‘4\4

/'1\5
‘ "

\

(b)

\

A\

7%

Dy —"" s
(c) / B/ el = //%%

~ Let now Q be a Tsplittable quiver at the g-connected component C = A4, and let
the set Q, be indexed by elements of a subposet of the poset N\{n+1,...,2n} (where
N denotes the set of natural numbers). Also let @ have the form of Fig. 5 (a), (b), (¢) for
n=4, 3, 2 respectively, where R is a subquiver of Q such that @, =R, v, and

for (a): RN Con {2, 4} #@, RynCyn{l, 3} # 0,

for (b): RoynCon{l, 3} #@, Ren Cy > {2},

for (¢): RonCo= {1, 2}. '

y ///%/%///%% ‘

T

3

Fig. 7
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Then we define the quiver Q' by
Qo=0Qou{n+1,...,2n},
Q1= R, U{(i,j+n), (i+n,j); for (,)eCy},

ie. Q' has the respective presentation of Fig. 6.

Moreover, there is a version of the Tsplitting operation for the case (b’):
C = AY = 1«23 shown in Fig. 7. '

Remark 3.1 If the quiver R is not connected (in the usual sense), neither is the
quiver Q'.

Remark 3.2. The T-splitting operation is commutative, i.e. for two T-splitting
g-connected components, the result of successive T-splitting operations does not depend
on the order.

Q=0—>eT " o<—e =
Fig. 8
5\
Q@ =5 — 32— = . 14
1 4 6 3_——’-2/
LT
Fig. 9
\. \.——-—>.
.—-»./ v ./
NN
Fig. 10
= ./\./\. = .QO = .\0/.\‘
(NN 7 T
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ExaMpLE 3.3. (a) For Q of Fig. 8, the result of the T-splitting operation for
C = 1—2 is shown in Fig. 9. Using again the Tsplitting operation on the quiver Q' at
the g-connected component

6«2—1+«5 we obtain the disconnected quiver of Fig. 10.

(b) Another example is shown in Fig. 11. Using again the Tsplitting operation we
obtain Fig. 12.

PROPOSITION 3.4. Suppose the quiver Q is finite or the subquiver R (see above) is
disconnected. Let Q' be a quiver obtained by applying the T-splitting operation to Q. Then

(a) the quivers S(T(Q)), S(T(Q)) are of the same representation type;

(b) the quivers T(Q), T(Q) are of the same representation type.

Proof. (a) follows from the equality S(T(Q") = S(T(Q)) U DU E, where D, E are
connected components of the quiver S(T(Q)) which are of finite type and are
isomorphic to the quiver Dg. Indeed, by the definition of these quivers we have the
equalities of Fig. 13.

S//%%%///////W////

| V4 BB Ay

Fig. 14 Fig. 15

2o,
i
|

v /QW 2’ /////N%/ /@%

Fig. 16

icm

Representation type of matrix algebras 71

(b) Let now C = A4, be a T-splitting g-connected component.

(i) First assume that Q is as shown in Fig. 14. Then Q' and T'(Q) are illustrated in
Figs. 15 and 16 respectively. By straightforward computation or by the one-point
extension method [14] one can prove the following statements.

(I) Assume that ¥ is an indecomposable representation of T(4, v N) such that for
some arrow aeN, we have either & #0 or & 5 0, where &(&) is the inner linear
morphism of V lying on the arrow a(x'). Then ¥; =0.

(1) Assume that ¥ is an indecomposable representation of T (M U A,) such that for
some arrow aeM, we have either & # 0 or & # 0. Then V5. =0.

() If V is an indecomposable representation of T'(M uA,uUN) satisfying
Supp ¥V T(M) # 0 and Supp Vn T(N) #0, then Supp Ve T(4,).

(ii) Let now C= A, be a Twsplitting g-connected component of @ shown in
Fig. 5(a). We take the covering quiver § of Q depicted in Fig. 17. After using twice the
Tesplitting operation, we know that the support of an indecomposable representation
V of T((J) is contained in the triangular quiver over the quiver of Fig. 18. Hence T'(Q) is
locally support finite. Therefore the quivers T(F), T(J), T(Q) are of the same
representation type by [4].

. ——> @

- B

Fig. 17

i

Fig. 18

The version of the proposition for cases (b) and (c) of Fig. 5 follows from the above
case (a) because the quivers Q and Q' are subquivers of the corresponding quivers of
case (a). Case (b) is dual to (b).

PROPOSITION 3.5. Let Q be a finite quiver shown in Fig. 19 with a g-connected
component LA, (Fig. 20), where the point 2 is a source in the quiver R. We associate with
Q the quiver Q' of Fig. 21. Then

(a) the quivers S(T(Q)), S(T(Q)) are of the same representation type,

(b) the quivers T(Q), T(Q') are of the same representation type.

The correspondence between the quivers @ and Q' will also be called a T-splitting
operation, so each g-connected component LA, is always T-splitting.

‘s Q—;Z/////% LAy = Q—*. ﬁzhzﬁh—*z%

Fig. 19 Fig. 20 Fig. 21
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Proof. (a) Similarly to the proof of Proposition 2.4 one can prove the equality
S(T(@) = S(T(Q) U 45 U D,.

(b) For the quiver Q we denote by 0 the covering quiver which unrolls the loop « at
the point 1. § is shown in Fig. 22. For every integer i the ¢-connected component
022 o™, o is Tsplitting in J. After iteration of the Tsplitting operation we know that
any mdecomposable representation in r(T(Q) )) has support contained in the triangular
quiver over the quiver N(i) (Fig. 23) for some integer i. Hence T'(Q)') is locally support
finite. This finishes the proof because N(i) =~ Q' (see [4]).
ali—-1)

a(i+1) afi)

lﬁh+ﬂ lﬁu~n

- %’C _

Fig. 22
N} = o ali+1) . 0] B(I) %R(//{y
lﬂU+ﬂ Aé%Vvéé%

Fig. 23

Remark 3.6, The above two propositions are also true for an arbitrary locally
finite quiver Q. One can prove this by straightforward computations (without the use of
(4D

Remark 3.7. By iterated use of T-splitting operations one can describe the
supports of indecomposable representations of triangular quivers and simultaneously
determine the representation type.

[ —
Cﬂ———»'———»l ® -

TN
~.

O e B @

N
~

P T 1
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Fig. 27

For example, the quiver Q of Fig. 24 has five g-connected components and for an
indecomposable representation Ver(T(Q)) the support of ¥V is contained in the
triangular quiver of the quivers of Fig. 25. The triangular quiver over the square (Fig.
27) is of tame type (see [11] and the proof of Theorem 1.1). The other triangular quivers
are of finite type. Hence T(Q) is tame.

4. Some necessary conditions for non-wildness. For an algebra A4 the algebra Ty(4) is
a factor algebra of T(A4). If T,(A) is of wild type then so is T(A).

LEMMA 4.1. Let A = kQ/(kQ7)? be such that Ty(A) is not of wild type. Then the quiver
Q has neither double arrows nor double loops.

Proof. Indeed, if Q has as subquiver one of the quivers of Fig. 28, then T(Q) has as
subquiver one of the wild quivers of Fig. 29 and S(T(Q)) has a subquiver @ —e=e.

Fig. 29

PROPOSITION 4.2. Let A = kQ/(kQT)* be a bound quiver algebra such that To(A) is
not of wild type.
(a) Any g-connected component of Q or Q°° has one of the forms:

where (j—1)—j means (j—1)~j for (j—1) a source, and (j~1)«j for (j—1) a sink, D4
(see Fig. 1), A,, (Fig. 30), L (Fig. 3), L4, (Fig. 20).

A =1-2«3—4.. 1<j<5

1 3
N
Fig. 30

(b) Let Q be a connected quiver. If C or C° is a subquiver of Q of one of the forms As,
D,, 4., then C=Q.
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Proof. (b) Suppose to the contrary that C +# Q. If C is one of 45, A%, D,, DY
A, 3, then S(T(Q)) contains as subquiver at least one of one of tame quivers D, E7, D4,
Eﬁ, D ,. It is sufficient to prove that for C 5 @ the quiver S(T(Q)) contains an extension
of one of the above extended Dynkin quivers which is by Theorem 1.2 of wild type,
contrary to our assumption on T,. We present the proof only in the case C = D, in the
remaining cases the proof is similar. So suppose C = D, < Q. If we attach a new arrow
then we get a subquiver D o C of Q of one of the forms shown in Fig. 31 and S(T)
contains S(T(Q)) of one of the forms shown in Fig. 32, each of wild type by Theorem 1.2.
L] L] ‘ -
\ L] \ * - @ —— B \\
./ ./ [ ]

Fig. 31

@ s @ e G

I\}\/I \// A N
N N
A \//\ L

(a) First we note that Q has no g-connected component C of type A, with m > 4
For, if Q contains such a subquiver, then from the definition of ¢ it follows that
Q contains a subquiver of one of the forms

. *—e - e—>0—e o *>0+—8®
A2.2= ! T, Az,a =l T, Aa,a =1 l
o—e o——@ o—0—e

or 4,, with p+q>7, where 4,, is a non-splittable oriented cycle such that p (9
arrows have the same orientation. If Q contains a subquiver Am,,, then T'(Q) contains
a subquiver J,,,,. obtained from 4,,, by attaching a new arrow. This contradicts the
assumption on Ty because of Theorem 1.2 and Lemma 2.2. If Q contains 4,, with
p+q =7, then Q contains a subquiver 44 and T is of wild type because §(T,) contains
8(T(Ag)) llustrated in Fig. 33. If Q contains A, 3 then S(T(Q)) contains the wild quiver

SO T
RPN ERSNPY
NN ]

Fig. 34
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Let C be a g-connected component of Q. First we suppose that C contains no loop.
If C contains a cycle then according to (b) and the statement proved above we have
C = Ay . If C has no cycle then either D, (D) is contained in C or C is linear. Then (a)
follows from. (b).

Next suppose C contains a loop L. If C is neither L or L4, (nor (L4,)°") then
remembering that Q has no double arrows, Q contains one of the quivers of Fig. 35 and
therefore S (T, (Q)) contains the respective quiver of Fig. 36. It follows from Theorem 1.2
that T, is of wild type contrary to our assumption. This finishes the proof.

[ W G =0 G=

o—>e e , 0T —>8
Fig, 35

FANAN

NN AN
N
i

s—=e0

hat

NN had

te—e—>0 <8
| o—ne
- —m 0208
@ —r GO
o ——0—>0—0
0

Lo

LEMMA 4.3. Let Q be one of the quivers A, D4, Ay 5. Then the quivers S(T(Q)), T
To(Q) are of tame type.

Proof. By Theorem 1.2 we know that T,(Q) has the same representation type as
S(T(Q)). One can easily see that in all cases S(T(Q)) is of tame type. The tameness of
T(4s), T(D,), T(A,.) has been proved in [11, 15].

LeEMMA 4.4. Suppose that Q is not a T-splittable quiver and that Ty is not of wild type
Denote by N the quiver

(@),

[ Bnd Ragl Bud Sud N

(@) If C = A, = 12«34 is a g-connected component such that neither of the
points 2, 4 is a sink in Q, then Q = N.

b) If C = A, as above is a g-connected component such that neither of the points 1,
3 is a source in Q, then Q = N°P. Moreover, the quiver T(Q) is of finite type.

Proof. Since 2, 4 are not sinks in Q, we may choose arrows a: 2—a, f: 4—b with
a,beQq. If we have a = 2,4 (b =2, 4), then Ty, is of wild type. If ae{l, 3} (be{l, 3}),
then C is splittable. Hence we have {a, b} n {1, 2, 3, 4} = @. Also we have a #b;
otherwise we obtain the quiver S(T(F)} of wild type, with F as in F1g 37. Indeed,

S(T(F)) is illustrated in Fig. 38 and contains the quiver

00—

|

P30 —0—0
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F= ¢6——>r@c—-@—re

Fig. 37

of wild type. Similarly, one can easily see that, if the quiver Q has another arrow, then
either Q is Tsplittable or T; is of wild type.

The finiteness of the type of T(N) can be proved starting with r(T(A4)) by the
one-point extension method. In this way one can show the equality

ind (r(T(N)) = ind (H(T(4,))) U ind (r(P)) L ind (r(R),

where

— -0

I , >0 O
[ ]

R =

[ Rad Ro¥ Rod 3

*—e
P=] |
0@ —0—

and hence the representation type of T(N) is the same as that of T(A,) so it is finite
[13, 12].

LEMMA 4.5. Suppose that Q is not a Tsplittable quiver and that T, is not of wild type.
If Q has a g-connected component C = A, = 12«34 such that the point 2 is not
a sink in Q (or 3 is not a source in Q), then Q is isomorphic to a subquiver of the quiver

N from Lemma 4.4.
NN
Ry
R NN
Fig. 39
Proof. Indeed, if Q contains the quiver
5+6

122354

thg:‘n S(T(Q)) is of wild type, because it contains the quiver of Fig. 39 which is a disjoint
union of the quivers Dy, D,, and the quiver E, of wild type.

5. The proof of Theorem 1.1. First observe that if Q has a loop then either
(D) A=k[x]/(x*) and T(4) is of finite type [1], or

icm
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(i) Q has a g-connected component LA, or (L4,)°® and is T-splittable, or
(i) Ty is of wild type (see Prop. 4.2).
_ An epimorphism T- T, induces an embedding Ty-mod & T-mod, hence if Tj is of
wild (not finite) type then so is T.
Another observation is that for a p-connected component C equal to one of 45, Dy,
A, , the category r(T(C)) is of tame type and so is S(T(C)) ([11, 15] and Lemma 4.3).
So by the above facts together with Lemma 4.1 and Propositions 4.2, 3.4, 3.5 we
may without loss of generality assume that

(1) the quiver Q is connected, not Tsplittable, has no double arrows, and has
g-connected components 4, only, n <4,

(2)if C = A, = 1 »2«3 -4 is a g-connected component of @, then 2 is a sink in Q,
3 is a source in Q (Lemmas 4.4, 4.5) and either the point 1 is a source in Q or 4 is a sink
in Q (because Q is not T-splittable),

(3)if C = A, = e > e« e is a g-connected component of Q then either the sink in
C is a sink in Q or the two sources in C are sources in @ too. (For the dual case
C = AT = e —e— e cither the source in C is a source in Q or there are in C two sinks
in Q)

(4) if C = A, = ®@—e is a g-connected component, then C, contains at least one
sink or one source of Q (we know that T(4,) is of finite type [1]).

Therefore if C = A, or C = A,, then there is at most one g-connected component
D such that Do C, # @. :

Similarly, if C = A; = a—»b«c is a g-connected component in Q (or in Q°) such
that

()

then there is in C at most one g-connected component D such that Do nCo = {b}.

Let CW, ..., C® denote the set of all g-connected components of the quiver Q. If
one of C% is equal either to A, or to 4,, or to A, (A¥) satisfying the condition (x), then
putting i = 1 we may order the set of g-connected components in such a way that

card (CP N CE* V) = 1;

b is not a sink in Q (resp. a source in Q),

i=1,..., s—1.

(a)

¢ —r OO —— O —>O

(b) e @ At @ e @ e @ A @ A O ——— = @O
{c) PP o—" Y By B
(d). e e
- ./ .,
W e
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Hence the starting part of @ (or Q°) is one of those shown in Fig. 40 (a)-(c) and if C¥ s
equal either to 4,, or to A,, or to 4, (A¥) satisfying the condition (), then the ending
part is equal (or dual) to one of (a), (b), (c).

If for each i the quiver C? is equal or dual to 4, and for C¥ the condition (x) does
not hold, then @ is a subquiver of the quiver A,, of Fig. 40 (d).

We start the proof of the theorem with case (d). Assume that Q = Ay, 1t is easy to
check by the one-point extension method that

s

ind (r(T(Q))) = i'nd(r(S(T(Q)))) v U1 ind (r(T(cU)))),

(%)

Hence T(Q) has the same representation type as S(T'(Q)) because T(C®) is of finite type
for i=1,...,s [13, 12]. This type is tame hence S(T(Q)) has a connected component
equal to D, and a component of the form 4, (see Fig. 41), where ¢ = 3s+ 1/2 (it is easy
to see that for C = A,,, s must be even).

R T o ——ro e
e | | | N
e I i I D
/ ! ! | N
Va I I I N
f\ e ity @ —n @ L et . Y
-~ [N A
Ay = 1 X )
I N - {
. @@ . [ Y Y R— [}
i ' |
! i |
| | |
O @ e @ e @ ¢ I .
Fig. 41

If now in case (d) Q& A, then similarly one can show that T(Q) is of finite type.

We leave it to the reader to check that the equality (++) holds for C™ # A, # C©.
Consequently the theorem follows from (x*). Moreover, T(Q) is of finite type except in
the case CM =4, (or CM = A¥) and C¥ = 4, (CW = A¥), where both C'Y), C¥
satisfy (*). v

Finally, assume that each of C'Y), C*® is equal either to 4, or to 4, (4A%Y) satislying
(*). Let us study only some of the relevant cases:

@ C(1)=A4, c® = Ay,

(i) CV=A,, C¥ = A, (satisfying (+)).
Then by the ome-point extension method one can prove the equality

1

s

ind (r(T(@))) = ind (X)) U | ind ((T(CY)),
. =1
where, for (i), X is the quiver with two commutativity relations shown in Fig. 42, and,
for (i), X is the quizer with one commutativity relation of Fig. 43. In these two cases the
quiver X (of type D,) is of tame type [14] (n = 3s+5 for (i) and n = 3s+2 for (ii)) and
S(T(Q) haf only one connected component not of finite type which is equal to Dy, 5 for
(i) and to D3y, for (ii). Hence, S (T(Q)) is also of tame type. Similarly one can prc;ve the

. other cases.
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We. have the following corollary of the above proof:

COROLLARY 5.1, Suppose_the quiver Q is not T-splittable and T(Q) is of tame type.
Then either Q is equal to A, for some natural number s or each of C%, C® (in the
notation above) is equal either to A, or to Az (or to AF) satisfying (%).

The author wishes to thank Prof. A. Skowronski for fruitful discussions and
remarks concerning the constructions of proofs with the application of the covering
technique and to Prof. D. Simson for friendly care during the preparation of the
manuscript. He is also grateful to the referee for suggestions and comments.
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Homogeneous cohomology manifolds which are inverse limits
by

W. Jakobsche (Warszawa)

Abstract. We describe a class of homogeneous cohomology manifolds.

1. Introduction. The aim of this paper is to consider a certain class of compact,
finite-dimensional, homogeneous spaces which are inverse limits of topological mani-
folds. We say that a space X is homogeneous if for every x,yeX there exists
a homeomorphism h: X — X with h(x) = y. The spaces that we consider depend on an
orientable n-manifold L" (with possibly empty boundary) and on a countable or finite
family .#" of closed orientable manifolds of the same dimension n. We will denote them
by X(L", .#™). A first such space was constructed in [J] for L? = §° and the one-element
family .#° = {H} where H was a homotopy 3-sphere # S%, as a potential counterexam-
ple to the Bing-Borsuk conjecture(!). Earlier similarly constructed spaces were
considered in a different context in [P] and [W]. Then Ancel and Siebenmann ([A-S])
noticed that X (S3, H') where H’ is some homology 3-sphere can be identified with
a compactification of the Davis contractible 4-manifold which covers a closed
4-manifold [D]. They also introduced axioms describing spaces X(L", {M}) for the
families 4" = {M} consisting of one element. Axiomatic description seems particularly
useful when applied to spaces X (L, .#") with an infinite family .#. Our axioms for
general spaces X (L", .#") presented in Section 2 differ only slightly from those of Ancel
and Siebenmann. They play an important role in the proof of m-homogeneity of
X(L", A" given in Sections 7 and 8. In Section 4 we use a lemma proved by Torunczyk
to show that the spaces X (L", .#") depend only on L" and .#", and in Section 5 we give
a construction of X(L", 4"). If a family .#" consists of homology n-spheres then
X(L", #") is a cohomology manifold. In this case X(L", .#") can often be identified
with the fixed-point set of a topological action on a manifold or a cohomology
manifold. The theory of such actions was developed in [B]. Such homogeneous
cohomology manifolds also appear as compactifications of contractible 4-manifolds, or
orbit spaces of actions of O-dimensional infinite compact groups. We give some
examples in Sections 9 and 10.

() I have been informed by several people that J. Martin also considered a similar
construction.
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