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We shall show that although the interior of ¢ (F) is non-empty, there is no measure
peMy(F) with [ @y dp=7v when v belongs to the boundary of ¢(F), unless v is an
extreme point of ¢ (F) (i.e. one of the vertices of the square [0, 1]%). In particular, if
v belongs to the boundary of ¢ (F) but is not a vertex of [0, 1] and both coordinates of
v are rational then there is no point zeR? with =(z) periodic and ¢(F, z) = v.

Suppose that pe.#g(F) and

(10) fordu= (2, 0.
Let ¢f = (¢4, ,)- By the definition of F, we have ¢, = 0, which together with (10) gives
@, =0 p-almost everywhere. This means that

n”(suppy) = Z x R,

However, supp  is fp-invariant, so =~ * (supp p) is F-invariant. The only points of Z x R
for which also their image belongs to Z x R are the points of the form p or p+ (0, %)
where peZ>. Therefore

supp p < {z((0, 0)), =((0, 3)}- .
The measure p is ergodic, so y is concentrated either at z((0, 0)) or at n((0, 4)). In the
first case we have o =0 and in the second case a = 1.
In a similar way we can show that if ue .4 ;(F) and [ @, du is equal to (o, 1), (0, «)
or (1, o) then also o =0 or @ =1 in each case. This completes the proof of described
properties of F.

Remark 3. The functions ; and y, can be chosen even real analytic and then F is
real analytic.
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The Axiom of Choice, the Lowenheim-Skolem Theorem
and Borel models

by
Jerome Malitz, Jan Mycielski and William Reinhardt (Boulder, Colo.)

Abstract. We characterise those cardinal numbers m for which one can prove without using
the Axiom of Choice that if a countable theory has an infinite model, then it has a model of
cardinality m. We prove also that if a countable theory has an infinite model, then it has a model
whose universe is the real line and whose relations and functions are Borel sets.

§ 1. Introduction and results. A, Ehrenfeucht raised the following question. Does
every countable first order theory T which has an infinite model have a Borel model, i.e.,
a model whose universe is the real line R and whose relations and functions are Borel
subsets of the appropriate finite powers of R? We shall see that the answer is yes .
When thinking about this problem it occurred to us that if a Borel model exists then we
should be able to prove this without using the Axiom of Choice (AC), and this in turn
led us to the question of characterising those infinite cardinal numbers for which the
Upward Lowenheim-Skolem Theorem can be proved without using AC. There exists
a simple obstruction which was found by Vaught [4]. Namely if T, is the theory of one
binary function based on the axiom

f(x,9)

and M is a model of T, of cardinality m then, of course, m? = m. But, a well-known
theorem of Tarski says that

(Vm =

=f,v)->x=uny=21)

N [m? = m] « AC._

Hence, in the absence of AC, the Upward éwenheim-Skolem Theorem for m cannot
be proved without the assumption m? = nt. Another obstruction arises if we consider
the theory T, of linear ordering relations. Namely if the Upward Léwenheim--Skolem
Theorem holds for T, and m, then every set of cardinality m can be linearly ordered.
Our main result asserts that the above iwo obstructions are the only ones.

TuzoreM 1. (Without AC) For every cardinal number m > 1 the following two
conditions are equivalent:

() m® =m and every set of cardinality m can be linearly ordered.
(i) Every countable theory which has an infinite model has a model of cardinality m.

('Y See Note added at the end of the paper.
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Remark. In the absence of AC the two parts of condition (i) are independent of
each other. Indeed, by the work of Halpern and Lévy [1], the statement “every set can
be linearly ordered” does not imply AC, and hence, by the theorem of Tarski, the
statement “there exists a set 4 such that 4 can be linearly ordered but |4[? # |4] is
consistent in the absence of AC.

To see that the converse implication also fails recall first that the set PP (w) cannot
be linearly ordered without using AC. If it could, then we could get without AC
a nonprincipal ultrafilter in the Boolean algebra P (w) (W. Sierpinski), which, as is well
known, cannot be proved without AC (Feferman, Solovay). On the other hand
|PP (@) = |PP(w)| is immediate without using AC.

Our second theorem immediately gives a positive answer to Ehrenfeucht’s question
which was stated at the beginning.

THEOREM 2. (Without AC) If T is a countable theory which has an infinite model, then
T has a model of the form (“w, Ry, Ry, ...), where “w is the space of irrational numbers
with its natural topology and all R, are Borel sets of class F, n Gy in the appropriate finite
powers of “o.

Remark. In Theorem 2 we have not distinguished between the relational and
functional symbols of T since, in this case, without loss of generality, we can treat
functions as relations. Let us recall also that if F is a Borel relation which happens to be
a ft}nction, then F is a Borel measurable function. This follows from two facts: the
Pr.oje?tion of a function to its domain is continuous and injective, and continuous
injective maps between Borel spaces preserve Borel sets (see [2]).

Theorems 1 and 2 were announced in [3]. As we shall see both theorems easily
follow from a more technical theorem. To state this theorem we need some definitions.

.Let L be any countable first order language without function symbols, whose
relation symbols are Ry, Ry, ... with n(0), n(1), ... argument places respectively. Let
A= (A, <) be a linear order. Then a model M of type L is called an A-model if

M= (B, Ry, R,, ...,
where B and R, are of the following forms:
B=(Kyx A%)U(K, x AL)U (K, x 4%)U...
where the K| are disjoint sets of integers (some but not all of them can be empty) and
A% = {p}, where péA,
A% ={(a;,...,a,)ed"™ a, < ... <a,}, for m>0.

And R, < B"® b, i ruChuTe
3a>—»ml i as the following strllac%ure. R; = U j<wRip and there are functions k:
m: w—a such that k(, j, )€ K, wq, ;. and

Ry ={((kGi.J, 1), @), ..oy (ki 5, n(3), Gygy): &€ A

for r= 1’ e n(l) and ml: (plf(iirn ey ﬁr:)}’
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where r, <...<r, is the sequence of all re{l,..., n()} for which m{k(,j, r)) > 0,
¢; are formulas in the language of % such that ¢; has Y5, m(k(, j, r) free variables
and ¢y; is the truth or falsehood symbol if 5 =0,

TrEOREM 3. (Without AC) If T is a countable theory in L which has an infinite model
and U is a dense linear order without endpoints, then T has an N-model such that K, # @.

Remark. Since a dense linear order 2 without endpoints admits elimination of
quantifiers, we can require also that the formulas ¢;; be quantifier-free. The theorem
does not require that Ko, K, K3, ... be non-empty, but if wanted, this could also be
secured.

§ 2. Derivations of Theorems 1 and 2 from Theorem 3. The proof of the implication
(i)~ (@) of Theorem 1 was already indicated prior to Theorem 1. The proof of (i) — (ii) is
the following: Let m satisly (i) and pick a set A with |4] = m. Let T be a countable
theory with an infinite model, Then (i) yields |4| = ¥, and hence |4 x Q| = |4|, where
Q is the set of ratjonal numbers. Hence it follows easily from (i) that A has a dense linear
ordering < without first or last element. Form the (4, <Y-model for T given by
Theorem 3. It is easy to derive from (i) that the universe B of this model, defined prior to
Theorem 3, satisfies |B| = |A|. (Hint: use the fact that K, # @ and the Cantor-Bernstein
theorem.) So (ii) follows.

To derive Theorem 2 let T satisfy its assumption and let (4,, <) be the structure
of irrational numbers with its natural ordering and order topology. (Recall that A, is
homeomorphic to the product space “w, where the basis  is taken with the discrete
topology.) Consider the {4, <>-model of T given by Theorem 3, with the induced
product topology and disjoint union topology (the sets K, are assumed to be discrete).
Then it is clear that B is homeomorphic to A, plus a closed discrete set of power < N,.

By the structure of the relations R, described prior to Theorem 3 it is also clear that
they are of class F, in B. To prove that R, can be made simultaneously of class G, in Bit
suffices to assume without loss of generality that T is definitionally closed. Then for each
i there is a j such that T+ R;+ 1R,

Finally it is easy to define a bijection between B and “o which preserves the classes
F, and G,. This completes the proof of Theorem 2.

§3. A lemma on linear orders. Let 2, = {Q, <), where Q is the set of rational
numbers and < is the natural ordering of Q.

Lumma. (i) If R < (Q%) is a relation which is invariant under all automorphisms of Uy
extended in the natural way to Q" , then there exists a formula ¢ of nr free variables in the
language of W, such that R @.

(i) If = is an equivalence relation in Q" which is invariant as above, then there exists
a set I<{l,...,n} such that

[(Prs oo ) = (@15 o0 ‘LJ]H{X} pi=4d

Proof. The part (i) is obvious.
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We have worked out a proof of part (ii) in conversations with D. Ebbinghaus
R. Laver and J. Pawlikowski. Since it would be tedious to spell out all the details w;
shall only outline certain parts of the argument.

Let I {1, ..., n} be the maximal set such that for all elements of Q" we have

("’) (pln""l’n E(ql""v Qn)_)/X\ Py 4y

el
It suffices to prove the converse of (—). First we have to show that for every
(P1s - P)EQY there exists @3, ...pd)e Q% such that

(+) (P10 D) =08 P

We will show that ‘fhis follows from the following proposition: If (py, ..., p,) = (4,, ..., q,),
Uy oon T = (g s S A= (i pi€{qp oo b} and B={iirefs,) ..., s,,}}, the“n
there exists an automorphism o of 2%, such that (4, ..., ¢,) = (a(r)), ..., a(r,) and
{izpe{alsy), .. «(s,)}} = 4 n B. In fact it is easy to check that this proposition is true
for a generic  satisfying ((r,), ..., «(t)) = (@y5 +-+» ). Then, applying the proposition
we obtain some (p, ..., p2) as required in (+). Now we are going to prove the converse
of (=). Let /X\ierp; = g, and let (p}, ..., pJ) satisly (+). Consider the following diagram:

and (ﬂlmp.(/’ —»)'f,mjﬁ',’”.

@15 b)) = (P i
oy Lol
Gl o pd) = 8 )
oy ey
@l om) = 0h o pd)
o, Loy
®hnpd) = 000
Loigy $oiak
@b = 0 LY
Iapt 1 Yookt

@ n i) = g

This .diagram is obtained by applying certain automorphisms «, of %, to both sides of
certain coggruences, but the a, are assumed o be such tlmi only one side of the
corr.espondmg congruence changes. It is also assumed thal no o, moves the coordinates
pywith iel, t.hus p=pl=gloralliclandj=0,..., k Itis casy to check that, under
our assumptions, such a diagram exists, By the transitivity of = this diagram implies

the desi i ¢
d?.sued conclusion, namely (p;, ..., p,) = (¢4, ..., ¢,)- So we have shown that the set
I satisfies the converse of (~»),

This concludes our proof of (ii).

. E:- P?);fh of Thgorem 3. We can assume without loss of generality that the
guage of T'has a set of constants ¢,, g Q, which do not appear in the axioms of T.
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Since T has an infinite model, by the finite theorem of Ramsey, we can add to T, without
inconsistency, the set of all axioms of the form

() W (Cppr s Cond O Y (Cqrs -+ €4)  and ¢y # Cpy n=1,2,..)

where W (Xy, ..., X,) is any formula in the language of T with n free variables and
without any constants ¢, and p; <...<p, and ¢, <...< g,. Let T® be the resulting
theory. Let TS denote the Skolemization of T*. Now consider the theory

T = TRS U (TRSYES ...

Thus T* is a consistent countable theory. The axioms of T™ are without quantifiers,
T* 1 T, and all the sentences of the form (¥) in the language of T* (which of course may
involve quantifiers) are theorems of T™*. Since T* is countable, without using AC, we
can construct a complete consistent extension T*" of T*.

Let S be the set of all terms without variables in the language of T*. Then the
theory T* has a premodel M with universe S based on T**, which means that the
function symbols are interpreted in S in the natural way, the equality symbol is
interpreted by the congruence

c=t1e [T* —o=1]
and for any atomic formula a without free variables we have
M=o e [T*" o]

Let Tgy oves Ty -or DER well ordering of all terms in the language of T* which do not
contain any of the comstants ¢, and are such that if 7, has n variables, then it has
precisely the variables xy, ..., X,. Assume moreover that if =, has m variables and 7, has
1 variables and m < n, then o < f. Now, for any equivalence class in § /= we choose
one representative 7, (Cqy, «--» Cq,) With g3 <... <@y and such that ©,(xy, ..., X,) is the
first available term in the above well ordering. Let S, denote this selector.
Consider any t(c,; -+, Cq,) €So. Of course S may contain more terms of the form
T(Cpys - +» Cpy) than So. Since the sentences (%) are true in M, by Lemma (i) it follows that
for each such t there exists a set I = {1, ..., n} such that, for all elements of Sy,

T(C’ma CERTY Cl’n) = ’L'(qu, CEE) CQn) hnd /X\ P =i
lel

and for every (u;:iel)e Q¥ there exists (py, .- p)€Q% such that

oaCp)€Se and X\ pi=th

T(¢ps )
i &

Let M, be the model obtained by restricting the universe and the relations of M to
S, and modifying the functions of M in the obvious way. We claim that M, is
{isomorphic to) an A-model of T with K, # @, as required in Theorem 3 for the case
A = 9. Of course M, is a model of T* and hence of T. To see that it is a g-model
notice first that, by the above discussion of =, every element t(cg; ---» ) ESo 18
determined (within So) by the triple (v, 1, (g, i) where t and I are as above and
(g;: ie e QY. We can code the pair (t, I) by a single integer k. Let K,, be the set of
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all codes k of those pairs (¢, I) for which |I| = m. We put m(k) = |I| and m(k) = 0 for
k¢{ K, (Of course m (k) = 0 also if }I] = 0.) So there is a natural bijection between §,
and the set B defined prior to Theorem 3 with 2 = 2. Let us identify S, with B via this
bijection. So we can write My = (B, Ry, Ry, ...

Now we have to show that all the relations R, have the form prescribed prior to
Theorem 3. Let <(k(i,j, 1, ..., ki, ], n(i))):j =0,1,...>) be an enumeration of all
n(i)-tuples of integers. Let

Ry =R, ({k(, j, D} x AnESID G0 {k(i, j, n(i)} x 4405n00),

Then, if we look again at the meaning of the codes ke | JK,, and we usc the fact that 9,
satisfies the axioms (x), by Lemma (i) it is clear that Ry is of the form required prior to
Theorem 3, with a formula ¢y in the language of %, with Y #%; m(k(i, j, r)) variables.

This concludes our proof that M, is an W,-model of T The inequality K, # &
follows from the fact that K, must contain a code of the pair (x,,{1}).

Now let 2 be an arbitrary dense linear order without endpoints. The same
functions k(i, j, r), m(k) and formulas ¢;; which we found for M, yield a certain
A-model N with K, 5 @. It remains to check that N satisfies T. But it is clear that every
finite part of M is isomorphic to some finite part of M,,. Since M, k= T* and the axioms
of T* are universal, M= T*, Since T*}- T, the proof is complete.

Note added in July 1989. After this paper was written the authors learned that the problem of
existence of Borel models was independently posed and solved by H. Friedman, see

[a] C.1. Steinhorn, Borel structures for first order and extended logics, in: Harvey Friedman
Research in the Foundations of Mathematics, L. A. Harrington et al. (eds.), Elsevier Science
Publishers B. V. (North-Holland), 1985, 161--178.

[b] — Borel structures and measure and category logics, in: Model-Theoretic Logics, 1.
Barwise and S. Feferman (eds.), Springer, New York 1985, 579-596.

The proofs of the existence of Borel models presented in those papers are closely related to
ours, but we decided to keep Theorem 2 and its proof because it gives a sharper estimate of the
Borel classes of the relations and because the concrete structure of the model described in Theorem
3 may be of independent interest. The papers [a] and [b] discuss additional aspects and extensions
of Theorem 2 but its proofs given there are not as detailed as ours.
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The shrinking property of products of cardinals
by

Nobuyuki Kemoto (Oita)

Abstract. It is known that for cardinals ¥ > @ and A > 1, x* is normal if and only if « is
regular and 4 < . We show that normality can be replaced by the shrinking property in this result.

Ordinals and cardinals are considered as sets of smaller ordinals. In particular,
n=1{0,1,...,n—1} for each new. Let {x,: €4} be a collection of spaces. [lecaX.
denotes the usual Tikhonov product space of X,’s. Each element f of [T, X, is
considered as a function whose domain is 4 and f () is in X, for each xe 2. Whenever
X, is a single space X for each wel, [lec2X, is denoted by X*.

Let X be a space and let k be a cardinal. Assume % is an open cover of X. A cover
¥ = {V(U): Ue} is said to be a shrinking of % if dlV (U) = U for each-Ue%. In
particular, ¥ is said to be an open (closed) shrinking of % if each member of ¥~ is open
(closed, respectively). X is said to have the r-shrinking property if every open cover of
size < has an open shrinking. A space has the shrinking property if it has the
x-shrinking property for every infinite cardinal x. Note that 2-shrinking property is
normality and that w-shrinking property is countable paracompactness plus normality.
It is easy to show that a normal space which has the property that every open cover of
size <k has a closed shrinking has the x-shrinking property. Note that paracompact
spaces, in particular compact Hausdorfl spaces and regular Lindeldf spaces, have the
shrinking property. On the other hand, w; with the order topology has the shrinking
property but is not paracompact. In general, ordered spaces have the shrinking
property, see [Ke]. But the product space w; X (@;+1) does not have the shrinking
property, in fact it is not normal, see [Pr, 22]. But note that it is countably
paracompact since it is a perfect preimage of the countably paracompact space ;. Note
that x-shrinking property implies normality if « > 2. It is strangely difficult to find an
example of a normal space without the x-shrinking property for x > w. For each k = o,
we know of essentially one real such example, namely the x-Dowker space, see [Rul],
[Ru2].
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