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Rotation sets and ergodic measures
for torus homeomorphisms

by

Michat Misiurewicz and Krystyna Ziemian (Warszawa)

Abstract. We prove that for every homeomorphism f of the two-dimensional torus onto itself
isotopic to the identity and a vector v from the interior of the rotation set of f there exists a closed
non-empty invariant set whose each point has rotation vector v. It follows that there exists an
ergodic invariant probability measure on the torus such that the expected value of the
displacement by / is . We also show examples that this is not necessarily true if v is from the
boundary of the rotation set of /, even if the interior of this set is non-empty.

Introduction. There has been recently a rapid progress in the investigation of the
rotation sets for torus homeomorphisms isotopic to the identity. To describe it, we need
some definitions first.

Let T? = R%/Z? be the two-dimensional torus and let =: R* —T? be the natural
projection. We shall denote by # the class of all liftings to R? of homeomorphisms of
T? isotopic to the identity. Then for Fei#": '

L. . F"(x)—x\%
o(F, x) denotes the set of all limit points of the sequence — 5

n=1
Fn(xn)__xn)m

o (F) denotes the set of all limit points of all sequences < " , Where

n=1

x,eR?; we call g(F) the rotation set of F;

Jp: T2 T2 denotes the map whose lifting is F;

A (F) denotes the set of all fr-invariant probability measures on T2,

M ;(F) denotes the set of all ergodic measures from M (F);

@p T*— R? is the function defined by ¢p(x) = F(y)—y for yen~*(x) (this does

not depend on the choice of y);

Qmes(F) = {I‘/’F d#‘l I“E‘/{E(F)};

Conv (P) denotes the convex hull of a set P.

Notice that by the ergodic theorem, if pe.#y(F) then for u-almost all x, if
yen~*(x) then o(F, y) = {] ¢p du}. Notice also that if a point x is fp-periodic of period
n then there exists keZ? such that for all yen™*(x) we have F"(y)=y+k and
consequently o (F, y) = k/n.
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The main results of the papers [F] (see also [H2], where similar results are proved,
although they are stated in a different way), [LM] and [MZ], concerning maps from 2,
are the following.

TaroreM 1 ([F1). If Fe # and v = (p/n, g/n)eint (o (F)) with GCD (p, ¢, n) = 1 then
fv has a periodic point x with least period n such that F"(y) = y+ (p, q) for yen=1(x).

TaeOREM 2 ([LM]+[F]). If Fes# and ¢(F) has non-empty interior then the
topological entropy of f is positive.

TueoREM 3 ([LM]). If Fe i, o(F) has non-empty interior, P is a finite subset of
U o (F, x), where the union is taken over those x for which w(x) is periodic for fy., and C is
a compact connected subset of Conv(P) then there exists yeR* with o(F, y) = C. In
particular (since C can consist of one point), for every veint (o (F)) there exists ye R? with
e(F, y) = {v}. ,

TexoreM 4 ([MZ]). If Fes# then o(F) is compact and convex.

THEOREM 5 ([MZ]). If Fes then

0 (F) = Cony (gmes (F) = {§ ¢y dpt: pre A (F)} = Conv ( Lz o(F, y).
yeR?

THEOREM 6 ([MZ]). The function g from #’ into the space of all subsets of R? is upper
semicontinuous, ie. if Fes and U is a neighborhood of o(F) in R? then there exists
a neighborhood of F in 3’ with the topology of uniform convergence such that if Ge V then
0(G) = U.

The main result of the present paper is the following.

THEOREM A. If Fes# and veint(o (F)) then

(a) there exists a non-empty closed [y-invariant subset X of T* such that
e(F, y)={v} for every yex™*(X),

(b) there exists a measure pe.#Mp(F) with [ppdu=o0.

The proof of the above theorem uses the technique developed by Llibre and
MacKay in [LM]. From the construction we can also deduce the following.

THEOREM B. The function g from o into the space of all compact subsets of R* with
the Hausdorff metric is continuous at all F with int(g(F)) # @.

Moreover, we show examples of maps Fe#’ for which int (e (F)) # @ but many
points from the boundary of o (F) (among them there are points with both coordinates
rational) are not of the form [ ¢, du for we.# ,(F). However, notice that by Theorem
5 they are of the form [¢udu for some ue.#(F).

2. Proofs of Theorems A and B. In the proof of Theorem A we will need the
following geometric lemma.

LEMMA 1. Assume that O lies in the interior of the triangle with vertices b (s by, bye R,
Then for every K > 0 there exists L> 0 with the following property. If xc R* and ||x|| € L
then one can choose ie{l, 2,3} and a non-negative integer n such that

()] lIx+nbjll < L—K.

Proof. Let §' = {yeR% ||)| =1} be the unit circle. The functions t: S' R
(i=1,2,3) defined by
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<1f

are continuous. If yeS* then the line tangent to §* at y divides R? into two semiplanes.
Denote the one containing 0 by A4(y). Since 0 lies in the interior of the triangle with
vertices by, by, by, then at least one of the points y+b, (i= 1, 2, 3) belongs to the
interior of 4(y). Then the corresponding ¢,(y) is positive. Con'sequently, the function
t, =max(l;, ty, t3} is positive and continuous. Hence, there exists & > 0 such that for
each yeS§* there is i(y)e{l, 2, 3} with t;5)()) 2 6.

Notice that the set

t;(y) = sup {z =0: H y+tH—Z‘ﬂ‘

{y-l-t—-}«’—‘ﬂ’—a 0<t <ty (y)}
b1l

is a chord of the unit disc of length t,4)(y). There exists 8 > 0 such that if a chord C of

the unit disc has length at least ¢ then the intersection of C with any disc with center

0 and radius at least 1~ has length at least ¢/3. Therefore if xeR? and ofllxll < &/3,

where a = max (|[by||, 1b,]l, lIbsll), then |{by/|lx]] | <¢/3 for each i and hence for some

positive integer n and = i(x/||x|[) we have

X nb
[l flxll
Set L= 3a/(c(1~8) and K = SL. If ||x|| € L—K then (1) holds with n=0. If

L—-K < |Ix|| < L then ||x]| 2 L~ K == 3u/e, so (2) holds for some positive integer n. Then
from (2) we get

@ <1-6.

(Ix+nbji < (L—=8)x]| < (1-8) L= L—K.

This completes the proof. m

Remark 1. If |Ix]| < L and (1) is satisfied then ||x-+mb,| < L for all m with
0<m<n

As in [LM], we will have to work in the following situation. Let Ge#. Let W,,
Wy, Wy & T? be three open discs such that /% (W) = W, for some k; > 1, and the sets
Wisfo W), o JETH W) W Jo W), oo S§7 1 (W), W, S (W), ..o S8 1 (W) are
digjoint. Denote the union of all these sets by W. Assume that fg |y2w is psendo-Anosov
(see [FLP]). Then there exists & Markov partition & for f; |42w. We shall say that there
is a transition from Acof to Besf il f,(Int () interseets int(B). A sequence (finite or
infinite) P of elements of .« will be called admissible if there is a transition from each
element of P (except the last one if P is finite) to the next one. We may assume that the
elements of o7 are closed. Then we know that if a sequence § = (B))} » o (Whete r is finite
or r=cw) is admissible then the intersection [iuofs'(B}) is non-empty. We shall
denote this intersection by T(S). ‘

Any pseudo-Anosov diffeomorphism is transitive. Therefore for every 4, Be o/
there exists a finite sequence § such that ASB is admissible (by ASB we mean the
sequence (4, Sy, ..., §,, B) where §=(S,,..., 5,)

If Ae.o then there is a natural partition of 2! (4) into sets with the same diameter
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as A such that for each such set C we have 171 (4) = Ukezz {x+k: xeC}. We shall call
these sets components of n~*(4). We shall use the same terminology for subsets of
Ael. Also, if A, Besf/ are such that f;(A) intersects B then the F-image of any
component of n”!(4) intersects exactly one component of n~1(B). From this by
induction we get the following lemma.

LeMMma 2. Let S =(dg, ..., 4,) be an admissible sequence. Then for any k,m
{0, ..., n} with k < m and any component C of n~* (T (S)), the set G*(C) is contained in
some- component of w™ (T (A, ..., Ay)-

From the properties of W, it follows that there are points w; (i = 1, 2, 3) of Q2 such
that for every i€ {1, 2, 3} and every component Vof z™" (W, we have G¥ (V) = V--k,w,.
Notice that then for every yen™*(kI§/% (W) we have ¢(G, y) = {w}.

For each ie{1, 2, 3} and je Z denote by &, ; the sct of those clements of .« which
have a part of its boundary common to /% (/). We can also assume that any component
of 7 1(4) for Aes#,; has a part of its boundary common to only one component of
7~ (f5(W)). We shall call these components of n™*(4) and =~ ! (/4 (W) adjacent.

For a sequence S we shall denote its length by |S].

With all these assumptions and notations we can prove the next lemma.

LemMMA 3. For eachveint (Conv {w,, w,, w,}) there exist ye R®\n~Y(W) and M > 0
such that

@) G (3 ~y—ml| <M for all n20.

Proof We shall construct y as an element of =™ '(T(P)) for some infinite
admissible sequence P. The sequence P will be built up from finite sequences which we
shall call bricks. There will be two types of bricks. We start by describing the first type.

If Ae o, ; then f5(A4) has a part of its boundary common to f4"* (W), so there is
a transition from 4 to some BeZ; ;.. Starting from A4,&./, o and repeating this
procedure k; times we get an admissible sequence (dq, 4y, ..., 4y,) such that 4;6.9; ;
for j=0,1,..., k;. However, /(W)= W,, so &1y, = ;o and 4,, belongs again to
o0 In such a way we obtain for every Ayeof; o a brick S;(4,) = (4o, Ay, -..r Aiy-1)
and an element &;(4,) = Ay, €, such that the sequence S;(4o) & (4,) is admissible. If
V is a component of z™*(W) and C is the component of 7™ (T (dg, Ay, ..., Ax)
contained in the component of 7™*(4,) adjacent to V then by Lemma 2, ¢/(C) is
contained in some component of n™*(4) for j = 1, 2, ..., k, and by induction we see
that this component of ™" (4)) is adjacent to GY (V). In particular, G¥(C) is contained in
the component of n~!(¢,(4,)) adjacent to G*(V)= V+k,w,.

Forevery 4, Be sy o U af3,0U 5,0 we fix a sequence S (4, B) such that the first
element of S(4, B) is A and the sequence $(d4, B)B is admissible, These sequences
S(A, B) will be bricks of the second type.

We are again interested in what happens in the covering space. To measure this we
fix some reference components ¥, of n™* (W) for i = 1, 2, 3. Let Aef,, o, Bealyy 0. If
Vy+u; (where u;€Z% is a component of n~(W,) and C is the component of
n~*(T'(S(4, B) B)) contained in the component of 7~1(4) adjacent to V¥, +u, then by
Lemma 2, G*“-P\(C) is contained in some component of 7~ (B) adjacent to a component
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¥, -+ of m ™" (W) for some u, € Z2 Notice that although u, depends on u,, the vector
u(S(4, B) = u,—u, Is already independent of the choice of u,.

In our definition of bricks each brick R determined the next element 4 of
a sequence such that R4 is admissible. Therefore we can build longer admissible
sequences from bricks, starting a new brick [rom an element determined by the
preceding one.

Let P = Ry R, ... be such a sequence made up of bricks. Let A; be the first element
of R;forj=0,1,... We have 4;es#,,,¢ for some i;e{1,2,3} forj=0,1,... Let C be
a component of ™! (T (P)). It is contained in a component of 7! (4,) adjacent to some
component of 7™+ (W,,). This component of m™' (W) is of the form V;,+z, for some
zo€ Z*. Analogously, GIRv-Rs () is contained in a component of 1™ * (4) adjacent to

" some component of ©” ' (W) for j = 1, 2, ... This component of ™' (W) is of the form

Vi, +z; for some z;6 Z 2. Using Lemma 2 and the description of bricks of both types we
see that zj.—2; = ki, wy, if R; is of the first type and zj.1 —z;=u(R) if R;is of the
second type.
Our aim is to construct a point y satisfying (3). Therefore we shall try to make
z;—zo close to [Ry...Rj-1fv. We have
-1
“ 22y~ |Ry... Rpuglv = Y. 2(R,),
e
where z(R,,) = ki (w;,~1) il R,, is of the first type and z(R,) = u(R,)~IR,| v if R,, is of
the second type. .
We are going to use Lemma 1. Set b, = k; (w,—1). Since veint(Conv{w,, w,, ws}),
it follows that 0 is in the interior of the triangle with vertices by, by, b. Set

K = max {u(S(4, B)~|S(4, Blv: A, Besd ;00 20U 3,0}

Now we construct P by induction. Assume that for some k the bricks R, ..
already chosen and ||x|| < L, where

. Ry—q are

k=1
x="Y z(R,)

me=0
and L is the constant from Lemma 1. Then Ry..; determines the next element 4, € /4,0
of the sequence. (We include the case k = 0, ie. when no bricks are chosen yet, x =0
and Age.of( W& 0\ 3,0 is chosen in an arbilrary way,) By Lemma 1 there exist
ie{1, 2, 3} and a non-negative integer n such that (1) holds. Then we choose next n+1
bricks as follows: Ry = 8 (A B) for some (arbitrarily chosen) Be o and R4y = §; (B),
¥, (€11 (B). This gives us

G) llz (Rl < K

and z(Ryy 1) = 2(Res3) = oo = 2(Ry 1) = by By (1) and (5), [Tt 2 (R,)| §L, which
enables us to continue induction (replacing k by k+-n--1). By Remark 1 and (3),
ISeoz(R,)|| < L+K for 1=0,1,...,n This shows that

It
IS z®)| < L+K for all j>0.

mas Q.

©

4 ~ Fundamonta Mathematicne 137.0
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Now we take yen™*(T(P)) and try to estimate G (y)—y—mnvf| for n>0.If
n = YY1 |R,| then by the definition of z, we see that y lies in a component of some
Ae o/ , adjacent to ¥, +z, for some ie{1, 2, 3} and G"(y) lies in a2 component of some
Bes, adjacent to V. +z; for some e{l1,2,3}. By (4) we get
j-1
Q] 6" (»—y—mll < 3 zR)+Ky,
m=0
where
K, = 2max {diam (4): Ae g} +diam (VU VU Va).
For a general n, we have to add an additional constant in the estimate, namely the
number
K, = supp {1G (x) —x—juvll: xeR?*, 0<j<max{I§S:S is a brick}},
which is finite since G is a lifting of a torus map homotopic to the identity. Hence, from
(7) and (6) we get (3) for all n>0 with M = L+K+K,+K,. =

Proof of Theorem A. Let Fext and let veint(Q(F)). There exist

Wy, W, Wy €int (g (F)) 1 Q? such that veint (Conv {w,, w,, w3}). By the result of Franks
(Theorem 1) there exist three periodic orbits @y, @2, O3 of fp with ¢(F, y) = w, for
yen~1(Q). Now we perform the same construction as Llibre and MacKay did in the
proof of Theorem 1 of [LM]. In such a way we obtain a map Ge# with all the
properties used in this section up to now. Moreover, G goye- 10wy 15 homotopic to
F goe-1()» Where @ = 0; 0 0, L Qs Since Wwas obtained by blowing up the elements
of 0, we may identify in a natural way T2\cl (W) with T\Q, so the above homotopy
makes sense. Instead of repeating the details’ of the construction, we refer the
reader to [LM].

By Lemma 3 there exist M >0 and z € R? such that (3) holds. By Theorem 1(ii) of
[H1] (as in [LM], we can use it on an open manifold) there exist M, >0 and 7 eR?
such that

IF*(z)—G" (2| < My  for all n>0.
Therefore we obtain
®) |F?(z)—2 —nmol| S M, for all n20,

where M, =2M,+M.
Let X be the set of w-limit points of 7 () for the map f;.. From (8) it follows that if
k,n>0 and yen™'(n(z)) then

| (F* () — F* (y)—noll < 2M,.
By passing to the limit over subsequences (k;), we obtain
) IIF*(y)—y—no|| <2M, for every yen™ ! (X).

From this we get o(F, y) = {v} for every yen~1(X). Since the set X is non-empty,
frinvariant and closed, this proves Theorem Afa).
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By the Krylov-Bogolyubov Theorem, there exists an ergodic f-invariant probabi-
lity measure u on X, By (9) we have

M,

< —=
n

1 n=1
= 2 op(fE)—v

Ny'zo

for all xe T? and n 3 0. Therefore by the ergodic theorem, [ ¢@pdu = v. This proves
Theorem A(b). =

Proof of Theorem B. Let Fe# and let veint(o(F))~ Q*. As in the proof of
Theorem A, we construct w;, Q; (i =1, 2, 3) and G. Since veint (Conv {w, w,, w;}) ©
 int(0{(G)), by Theorem 1 there exists a periodic point x of f; such that if v = (p/n, q/n)
with GCD(p, ¢, n) = 1 then G"(y) = y+ (p, q) for yen ™ !(x). Since v # w,, w,, ws, We
have x¢ W. It is known (see e.g. [H1]) that a fixed point index of a fixed point of an
iterate of a pseudo-Anosov map is non-zero. Therefore by Theorem VI E3 of [B], the
fixed point class of f§lrayw to which x belongs is #-related to a fixed point class of
fhlrag, where h is a homotopy between f&lragr and fHrag (we use here the
terminology of [B]). For each element x of this class, (f}r2, x') is Nielsen equivalent
to (f%| raw, x). Thus, also (f}, x) is Nielsen equivalent to (f, x). This means that for
each yern~'(x)) we have F"(y)=y+(p, q).

In such a way we obtain a bounded open set U < R* without fixed points of
F"— (p, q) on its boundary and with a non-zero index of the set of fixed points of
F"— (p, q) contained in U. This situation will not change when we replace F by a map
He s which is sufficiently close to F. Therefore for such H therc is yeR?* with
H"(y) = y+ (p, q). In"particular, o(H, y) = v.

Now, if Fe.# and int(p (F)) = @ then we can approximate int (@ (F)) from within
by a polygon with vertices in O, with an arbitrary precision. By the properties proved
already, if He # is sufficiently close to F then this polygon is contained in ¢ (H). Along
with Theorem 6, this proves Theorem B. m

Remark 2. Since Fe## is homotopic to a map without periodic points, from
Theorem VIE3 of [B] it follows that index sum of the set of fixed points in any Nielsen
class for /% is zero. Therefore from the above proof of Theorem B it follows that
Theorem 1 can be strengthened and one gets at least two periodic points x with
F"(y) = y+ (p, g) for yen™* (x).

3, Examples. Let /,, /,: R->[0, 1] be continuous periodic functions with period
1 and such that for each ie {1, 2} we have i, (x) = 0 if and only if xe Z and 1, (x) = 1 if
and only i x~}eZ. We define ¥, F,: R* - R? (in similar way to Example 2 of [LM])
by the formulac

Fy(x,p) = (X, p+v (), Fyle, p) = (x+¥5(9), )

Then we set F = F,oF;. Clearly, Fe.

We have F((0,0)=(0,0), F(d 0) =@, 1, F(0,3)=(1.9, F(d. 1)=06 3
Therefore o (F, (0, 0) = (0, 0), (F, 3. 0) = (0, 1), o(F, (0, 3) = (1, 0) and o(F, (3, 3)) =
= (1, 1). Hence, by the convexity of g (F) (Theorem 4) we have [0, 17 = g(F). On the
other hand, if F(x,y)=(x,)) then 0< x'~x<1 and 0<y—y< 1 Therefore
o(F) < [0, 1]%. This proves that o (F) = [0, 1]2.
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We shall show that although the interior of ¢ (F) is non-empty, there is no measure
peMy(F) with [ @y dp=7v when v belongs to the boundary of ¢(F), unless v is an
extreme point of ¢ (F) (i.e. one of the vertices of the square [0, 1]%). In particular, if
v belongs to the boundary of ¢ (F) but is not a vertex of [0, 1] and both coordinates of
v are rational then there is no point zeR? with =(z) periodic and ¢(F, z) = v.

Suppose that pe.#g(F) and

(10) fordu= (2, 0.
Let ¢f = (¢4, ,)- By the definition of F, we have ¢, = 0, which together with (10) gives
@, =0 p-almost everywhere. This means that

n”(suppy) = Z x R,

However, supp  is fp-invariant, so =~ * (supp p) is F-invariant. The only points of Z x R
for which also their image belongs to Z x R are the points of the form p or p+ (0, %)
where peZ>. Therefore

supp p < {z((0, 0)), =((0, 3)}- .
The measure p is ergodic, so y is concentrated either at z((0, 0)) or at n((0, 4)). In the
first case we have o =0 and in the second case a = 1.
In a similar way we can show that if ue .4 ;(F) and [ @, du is equal to (o, 1), (0, «)
or (1, o) then also o =0 or @ =1 in each case. This completes the proof of described
properties of F.

Remark 3. The functions ; and y, can be chosen even real analytic and then F is
real analytic.
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The Axiom of Choice, the Lowenheim-Skolem Theorem
and Borel models

by
Jerome Malitz, Jan Mycielski and William Reinhardt (Boulder, Colo.)

Abstract. We characterise those cardinal numbers m for which one can prove without using
the Axiom of Choice that if a countable theory has an infinite model, then it has a model of
cardinality m. We prove also that if a countable theory has an infinite model, then it has a model
whose universe is the real line and whose relations and functions are Borel sets.

§ 1. Introduction and results. A, Ehrenfeucht raised the following question. Does
every countable first order theory T which has an infinite model have a Borel model, i.e.,
a model whose universe is the real line R and whose relations and functions are Borel
subsets of the appropriate finite powers of R? We shall see that the answer is yes .
When thinking about this problem it occurred to us that if a Borel model exists then we
should be able to prove this without using the Axiom of Choice (AC), and this in turn
led us to the question of characterising those infinite cardinal numbers for which the
Upward Lowenheim-Skolem Theorem can be proved without using AC. There exists
a simple obstruction which was found by Vaught [4]. Namely if T, is the theory of one
binary function based on the axiom

f(x,9)

and M is a model of T, of cardinality m then, of course, m? = m. But, a well-known
theorem of Tarski says that

(Vm =

=f,v)->x=uny=21)

N [m? = m] « AC._

Hence, in the absence of AC, the Upward éwenheim-Skolem Theorem for m cannot
be proved without the assumption m? = nt. Another obstruction arises if we consider
the theory T, of linear ordering relations. Namely if the Upward Léwenheim--Skolem
Theorem holds for T, and m, then every set of cardinality m can be linearly ordered.
Our main result asserts that the above iwo obstructions are the only ones.

TuzoreM 1. (Without AC) For every cardinal number m > 1 the following two
conditions are equivalent:

() m® =m and every set of cardinality m can be linearly ordered.
(i) Every countable theory which has an infinite model has a model of cardinality m.

('Y See Note added at the end of the paper.
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