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where o = {p, p,} is a bipath Which has p as a selection. We homotope p with end points
fixed to a path g so that g(I) = Q is an arc in Int M with Fix¢ = {x, x,}. Then

{g, p,}~{p, p}~9pop~@og. For any ¢> 0 let

p.(s) = g(s—dsinms) for 0<s<1,

where 0 < & = 8(g) < 1 is selected so that d(p,, g) < &. It follows from an easy general
position argument that the path p, is homotopic to a path p3: M —Int M with p5(s)¢ Q
for 0 < 5 < 1. Then ¢y = pogq and «, = {p,, p>} are two bipaths which are special with
respect to ¢, and as

ay~{q, pa}~{p,, P2} =y,

they are bihomotopic. According to Lemma 3.5 they are specially bihomotopic, and
hence the bimaps ¢|Q and a;0q7': Q—M are specilly bihomotopic. Therefore
Lemma 3.6 states that we can choose ¢ > 0 so that ¢ is bihomotopic to a bimap ¢’ with
the necessary properties.
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Making the hugeness of x resurrectable
after x-directed closed forcing

by
Julius B. Barbanel (Schenectady, N.Y.)

Abstract. We consider generalizations, to the context of huge cardinals, of Laver’s result (L7
on the indestructibility of supercompactness.

§0. Introduction. Questions of which large cardinals are preserved by which
forcing notions often arise. Most large cardinal properties are preserved by small forcing
notions. In particular, the inaccessibility, weak compactness, measurability, supercom-
pactness, or hugeness, of a cardinal x is preserved by any forcing notion of cardinality
less than » (see [8]).

In one sense, large forcing notions trivially preserve large cardinals, where, by large,
we do not mean large in cardinality, but large in closure. In particular, the
inaccessibility (respectively weak compactness, measurability, 1-supercompactness, hu-
geness with target ) of a cardinal x is preserved by any forcing notion which is »-closed
(respectively x"-closed, »*-closed, (A%)*-closed, 4" -closed). This is so since a forcing

notion adds no new subsets of the ground model of cardinality less than its degree of
closure.

It is easy to see that all of the large cardinal properties we have mentioned can be
destroyed by a forcing notion which is y-closed, for any y < » we choose, and has
cardinality %. Simply consider the standard forcing notion for adding a function from
y to %. In the extension, % is not even a cardinal.

More interesting questions arise when we consider preservation of large cardinal
properties of x, by forcing notions which are x-closed. These are the types of forcing
notions that allow us to manipulate the value of 2%

Clearly, it is consistent that x-closed forcing can destroy the measurability of .
Consider a model in which » is measurable, and the GCH holds (the standard model
for this is L[U], the collection of all sets constructible from U, where U is
any normal ultrafilter on x). The standard forcing notion that makes 2% =™ ™
is w-closed. Hence, the GCH below » is not affected. It follows that, in the

This paper was written while the author was visiting The Hebrew University, Jerusalem,
Israel. We thank the Department of Mathematics at The Hebrew University for their wonderful
hospitality. We thank the referce for a number of perceptive comments that enabled us to simplify
and clarify in several places.
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generic extension, x is the first cardinal to violate the GCH. Hence, % is not
measurable in the generic extension. We may also reach this conclusion, that the
standard forcing notion that makes 2* = »** can destroy the measurability of x, by
noting Kunen’s result in [5]: Con(ZFC +x measurable +2* > %" is strictly stronger
than Con(ZFC+» measurable).

As Laver points out in [7], it is also easy to see that it is consistent that »-closed
forcing can destroy the supercompactness of x. Silver (see [3] or [4]) showed that it is
possible to preserve the supercompactness of x while, for example, making 2% = »**
His method, now generally known as reverse Easton forcing, consists of a »-1 stage
iterated forcing construction. At almost every y <x (with respect to some normal
ultrafilter on »), we force over the model obtained so far, using the standard forcing
notion from that mode], for making 2" = y* *. The last stage uses the standard forcing
notion, in the model obtained after the »-stage iteration, for making 2 = »**. Silver’s
method shows that for any A > »**, any embedding witnessing that 5 is A-supercom-
pact in the ground model, can be extended to an embedding witnessing that sx is
J-supercompact in the final generic extension. The basic principle here is that a specific
x-closed forcing notion can preserve the supércompactness of », as long as we do some
“preparation” below x. This preparation involves doing “the same type” of forcing
almost everywhere below x (with respect to some normal ultrafilter on ) that is
done at x.

Laver ([7]) generalized Silver’s method to show that this preparation below x can
be made canonical, and thus the supercompactness of » can be made indestructible
under certain types of forcing. In particular, he showed the following: If % is
supercompact, then there is a partial order P such that after forcing with P, x is
supercompact, and remains supercompact upon any further forcing with a x-directed
closed partial order.

In this paper, we consider generalizations of Laver’s result to the context of huge
cardinals. We will show that, although hugeness cannot be made indestructible, it can,
under certain assumptions, be made resurrectable.

§ 1. Preliminaries. We work in ZFC throughout. Our set-theoretic notation is
quite standard. ¥ denotes the universe of all sets. Greek letters o, f, , 8, 7, » and 4, refer
to ordinals. ¥, denotes the collection of all sets of rank less than o. For any set x, |x|
denotes the cardinality of x and, if x is a set of ordinals, % denotes its order type. By the
term “inner model”, we shall always mean a transitive class which satisfies ZFC, If M is
an inner model and 4 is an infinite cardinal, we say that M is closed under A-sequences
iff for any x & M, if |x| < 4, then x e M. By the term “inaccessible”; we shall always mean
“strongly inaccessible”.

If U is some. countably complete ultrafilter, [J)JU denotes the associated
ulirapower of ¥, My denotes the transitive collapse of the ultrapower [[W/U, and
iy: V= My is the canonical embedding,

For <4, P,()={x < 1: x| <} and P- () = {x € 4: |x| = %}. % is A-super-
compact iff there exists a normal ultrafilter on P, (4), and x is huge with target A > » iff
there exists a normal ultrafilter on P-,(1). We assume familiarity with the basic
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techniques involving supercompact and huge cardinals; and, in particular, with the
equivalent characterizations in terms of elementary embeddings (see, for example [10]).
We write % (1) to denote the fact that » is huge with target 1. '

We will need certain generalizations of hugeness. A cardinal « is 2-huge with targets
Ao and A, iff there exists an inner model M and an elementary embedding i: ¥— M such
that M is closed under A, sequences, x is the critical point of 1, i(x) = 1, and i(4,) = 1
We write % — (o, 4,) to denote this property. Equivalently, % — (4o, 4;) if and only if
there exists a normal ultrafilter U on P.,,(1,) such-that

{xePuyy(A): Ixnig) = x}eU.

In [2], we considered certain notions that are strictly between huge and 2-huge.
For % < %', we write x—(4; »’, ') to denote the existence of an inner model M and an
elementary embedding i: V- M such that M is closed under A sequences, x is the
critical point of 4, i(») = 4, and i(x') = X'. Equivalently, %~ (2; s, 1') if and only if there
exists a normal ultrafilter U on P., (1) such that

{xePy(X): |xn A =x}eU.

In [11, we studied many-times huge cardinals. A cardinal s is a~times huge iff there
is a set A with 4 =g and, for every Bed, x—(f).

If x < o < ff and U is a normal ultrafilter witnessing that  is S-supercompact, we
define U la, the restriction of U to o, as follows:

ForA< P, (o), Ae U taiff {xeP,(f): xnoeAd}eU. Then, Ul witnesses that x is
a-supercompact. There exists a canonical elementary embédding k: My~ M, which
fixes all sets of rank less than or equal to o. Similarly, we can restrict a normal ultrafilter
witnessing one of the various types of hugeness, and obtain a canonical elementary
embedding between the corresponding inner models.

Our forcing notation generally follows that of [3] or [6]. If P is a partial order and
P, g€ P, p < g means that p extends g, or p is stronger than g. We assume familiarity
with closure and chain conditions. We use the term “x-closed” to mean y-closed for
every y < x. P is x-directed closed iff whenever 4 < P, A is directed and |4| < %, then, for
some peP, p < q for every gqeA. 1, is weakest element of P.

If G is P-generic over V, V[G] is the corresponding extension. If = is a P-name, 7,
is its realization in V[G]. For any x € ¥, & is its canonical name. Thus, for xe V; £ = x.
We shall also use the fact that there is a canonical name I'"e V' for a generic subset of P.
Hence, I'y = G for any G which is P-generic over V.

If P is a partial order and = is a P-name for a partial order, P = {(p, 7). peP
and lp - ten}. I <p, 3, {p', v & Pxm, we define (p, 1) < {p, v ifand only if p < p'
and p |- v < 7. Then, forcing with Pxn is equivalent to forcing with P and then forcing
with the realization of = If G is P-generic over Vand G’ is mg-generic over V' [G], then
GxG' = {{p, ©>: peG and 1;e G} is Pn-generic over ¥; and V[GxG]=V[G][G].

Suppose P is an « stage iterated forcing construction. If peP, then p is an
a-sequence, oz, equivalently, a function with domain «. If f < o, let P;="{p[ B: pe P}.
Then P, is the partial order which accomplishes the first B stages of the iteration given
by P.If G is P-generic over ¥, let G, = {p|f#: peG}. Then, G, is Pygeneric over V.
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For peP, let p? =p[{y: p <y <a}, and define P\P; = {p’: pe P}. In the presence
of any P-generic set G4, we can define an ordering on P\P, as follows: For ¢, r& P\P,,
g < rif and only if for some se Gy, sug < sur. Forcing over V[G,] with P\Py results
in a generic extension of V. by P.

We assume some familiarity with Silver’s method of reverse Easton forcing (see [3]
or‘[4]). Familiarity with Laver’s work in [7] would be helpful, but not necessaty.

The following two lemmas will be used numerous times in our work.

CualN CONDITION LEMMA. Suppose o is a cardinal, P, is the direct limit of
(Py: B< a), [Pyl < aforall f<a,and {f <a: Pyis the direct limit of (P, y < pd} is
stationary in o. Then P, has the o-chain condition.

Proof This follows immediately from Theorem 2.2 of [3]. m

CLOSURE LEMMA. Suppose M is an inner model of V which is closed under A-sequences
with respect to V, P e M is a partial order which has the x* -chain condition for some » < A,
and G is P-generic over V. Then M[G] is closed under A-sequences with respect to V[G].

Proof. The proof is as in Lemma 6.4 of [3]. First, suppose x & M[G], xe V[G],
V[G]l= Ix| € 4, and x is a set of ordinals. Let = be a P-name for x. Using the fact that
P has the x*-chain condition, we can find a set of ordinals ye V such that x < y and
V= |yl < A For any a ey, let B, be a maximal incompatible subset of {p€ P: p |- den}.
Then, for each xey, |B,| < ». Hence, by oiir closure assumption, for each aey, B,e M.
Then, since ¥ |= [y} < 4, our closure assumption also implies that {B,: «ey}e M. Then
xe M[G], since x = {eey: B,nG # 0}.

We must show that given any set x (not necessarily a set of ordinals), if x & M[G],
xeV[G], and V[G] = |x| < 4, then xe M[G]. Fix some such x, and let  be such that
x S [Vilumier Let y = |Vjlue1, 20d pick a bijection f: y = [Vz]yey With f € M[G]. Then
feV[G] and, since xe V[G], f~'[x]eV[G]. In V[G], x| <4 and so |f~![x] < 4
Hence, by the previous paragraph, f~*[x]e M[G]. It follows that xe M[G], since
x=f[f'0x]]. =

§2. Preservation of hugeness: An example. In this section, we give an example to
show how hugeness may be preserved for one specific forcing notion. The techniques
used in this example will be central to the remainder of our work.

We consider the problem of getting a model in which x is huge and 2* > x*. Let us
assume that ¥ |=x—(4) and 2* = x*. It seems reasonable to try to generalize Silver’s
method directly, and do a %+ 1 stage reverse Easton iteration, making 27 > y* for, let us
say, every inaccessible cardinal y < x. The problem is that if V[G] is the resulting
generic extension and i1 V[G]— M’ witnesses, in V[G], that %— (1), then, by elemen-
tarity, M’ = {y < A: 2’ > y*} is cofinal below A. By closure considerations, it is true in
V[G] that {y < A: 2" > y*} is cofinal below A. Hence, if we want to use Silver’s method
to obtain an extension of V satisfying x— (1) and 2* > x*, we must force above x.

The next reasonable idea would be to do a A+1 stage reverse Easton iteration,
making 2’ > y* for every inaccessible cardinal 9 < A Those familiar with Silver's
method will quickly recognize that, if i: ¥ — M is a witness to %—(4) in V that we wish
to extend, M does not possess enough closure to guarantee the existence of the
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appropriate mastercondition. Since the cardinality of our partial order is A* *, we need
that M be closed under A* "-sequences, instead of Jjust A-sequences. This is precisely
what we assume.

THEOREM 1. Assume V|= ZFC+x— (A; %**, A**). Then there exists a generic
extension V[G] of V such that V[G]l= ZFC+x — (A; AR AL PR

Proof. Assume V= ZFC+x - (4; x* ", 2" *), and also that 2* = %+ (or else we
are done). We shall also need to assume that 2*** = 1**+ This can be arranged by an
easy forcing argument which does not destroy the fact that (A xtF, AT,

We wish to define a length A1 iterated forcing construction. For each y<Alet P,
be the partial order corresponding to the first 9 stages of the iteration. We note that
there will be no conflict between this notation and that given in the preliminaries. As we
shall soon see, P will be defined in such a way that the P, we define will be the same as
the P, obtained from P, as given in the preliminaries.

Assume that P, has been defined for some y < A. To define P,y from P, we let
P,y = P,xQ, where Q, is defined as follows: If y is not an inaccessible cardinal, then we
let 0, be a P,-name for the trivial partial order {0}. If y is an inaccessible cardinal, we let
Q, be a P,-name for the standard partial order (in a model obtained after forcing with
P, for making 27 =y**

Assume now that (P,: o < y) has been defined, where y € 4 is a limit ordinal. If
7 is not an inaccessible cardinal, then let P, be the inverse limit of (P, a<y). Ifyis an
inaccessible cardinal, let P, be the direct limit of (P,: « < ). Finally, let P = Priq.

It is straightforward to show, using standard methods involving closure and chain
conditions, that forcing with P preserves all cardinals, preserves inaccessibility, and, if
G is P-generic over ¥, then V[G]|=2">y* for every inaccessible cardinal <A We
note that we cannot claim that 2” = y** for every such y, since there may well have
been many y < A with 2" > y** in V. However, it is certainly true that for almost every
7 < A, with respect to some normal ultrafilter on x that isin ¥, 2¥ = y** holds in V[G].

In order to employ Silver’s method, we cannot choose an arbitrary G which is
P-generic over ¥, and expect to show that V[G]|=» —(4; »**, 1**). We must be
somewhat more careful in our selection. Let G’ be any set which is P ,-generic over V. We
will define G = G'*G", where G” will be defined shortly.

Let U be a normal ultrafilter witnessing that » — (4; 2%+ *, A**), and let i: V- M
be the associated elementary embedding and inner model. Then, by elementarity,
M= i(P) is a length i(A)+ 1 iterated forcing construction. By elementarity and closure
considerations, for y < A+1, P, =Ti(P)],.

Clearly, G' is P, = [i(P)],-generic over M, We shall consider [i(P)];.:\[i(P)],. Let

A= {gWe[i(PNa+\[I(P]]x: ¢ =i(p) for some peG'}. '
We note that
A= {(ie)A): pePyii},
and hence |A| < [Py =t .

By the chain condition lemma, P, has the i-chain condition. Clearly AeV[G]and

4 £ M[G']. It follows by the closure lemma that A e M [G']. Also, M [G7] |=|4] < x* *,
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A S [P+ \[EP)];, and [i(P)a+:\[i(P)]; is a A-directed closed partial order.
Clearly, A is directed. It follows that some g’ & [i(P)],+1\[i(P)], extends every element
of A.

Of course, [i(P)];+:\[i(P)], is also a partial order in ¥V [G"]. Let G" be any set such
that ¢ € G" and G” is [i(P)],+:\[i(P)]s-generic over V[G"]. Let G = G'*G".

We will show that V[G]|= % — (4; %" *, 1" *). We must construct, within V[G],
a set H which is i(P)-generic over M, and is such that pe G if and only if i(p) e H. We will
define H = G*G", where G" will be defined shortly.

Clearly, G is P(= [i(P)];+1)-generic over M. Consider i(P\[i(P)]s+1. We proceed
to find an appropriate mastercondition, as before.

Let B = {g*** €i(P\[i(P)]1+1: ¢ = i(p) for some pe G}. It is not hard to see that
[P|=A**. Hence |B| < A*"™.

Standard methods establish that P has the A" -chain condition. Clearly, Be V[G]
and Bc M[G]. It follows by the closure lemma that BeM[G]. Also,
MIGl= Bl < 27*, B € i(P\[i(P)]1+1, and i(P)\[i(P)]1+ is a y-directed closed partial
order, where y is the first inaccessible cardinal above 1. Clearly, A*" <y and hence,
since B is directed, it follows that some ¢” €i(P)\[i(P)];+1 extends every element of B.

We cannot proceed now, as we did previously, and simply pick any G which is
I(P)\[i(P)]1+ 1-generic over M[G] and includes g”. We must construct G within V[G].

Let us count the number of dense subsets of i(P)\[i(P)],+; which are in M[G]. The
following cardinality computation takes place in V[G]:

[{DeM[G]: D is dense in i(PA[(P)]as 1} < [P(PNLPY]a+ ]
= 12" Mngarl = 14" | = RPN = AT ) = AT+

The inequality and the first equality are clear. The second equality follows from
standard forcing techniques using the fact that [P| = A** < i(A* *) (see, e.g. [6]). The
third ‘equality follows from elementarity. The fourth equality follows from our
assumption that 2*"" = 2A*** The last equality follows from a straightforward
computation in the ultrapower [[W/U.

Let <D,: « <A***) be an enumeration, in V[G], of all the clements of M[G]
which are dense subsets of i(P)\[i(P)];+;. Since any proper initial segment of this
enumeration has cardinality at most A*™*, any such initial segment is in M[G]. Using
this, and the fact that M[G] |= i(P)\[i(P)] .4, is a p-directed closed partial order, where
7 is the first inaccessible cardinal above A (note that y > A" *), we can inductively define
a sequence {q,: @ <A***) of elements of i(P)\[i(P)],+, such that:

a. For each a <A™ "%, g, <¢". -

b. For each o < 1***, g eD,.

¢ Fora<f<i™*, g,<q,.

Now, d‘eﬁne G" = ‘{r €UP\[(P)]2+1" g, < for some a < A™*++}, It is straightfor-
ward to verify that G is i(P)\[i(P)];+ ;-generic over M [G). Let H = GxG". Then H is
i(P)-generic over M.

It follows. from our construction that for any peP, peG if and only if i(p)e H.
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Silver’s method now allows us to extend i: V'— M to i*: V[G] — M[H] as follows: For
any xe V[G], let meV be a P-name for x. Then, in M, i(r) is an i(P)-name. Define
i*(x) = [in)]y. As in [3] or [4], the fact that pe G if and only if i(p)e H implies that i* is
well defined and elementary.

It is important to note that M[H] and i* have been defined within V[G].
Since, by the closure lemma, M[G] is closed under 1**-sequences with respect
to V[G], it follows that *[A*"*]eM[G], and so *[A**]eM[H]. We define
W= {x < Paper+(A" ") *[A" *]€i*(x)}. Then WeV[G], and it is straightforward to
verify that, in V[G], W witnesses % — (1; x™*, 7). m

We close this section by noting that our extra closure assumption on M is not
necessary. We were informed by Moti Gitik, and by Jean-Pierre Levinski, that it is
possible to show, using a technique developed by Hugh Woodin, that if
V= ZFC+% — (1), then there exists a generic extension V[G] of V such that
V[G]l= ZFC+x — (A)+2* > x*. We did not present the proof here, since the
technique does not generalize to the settings we consider in the remainder of the paper.

§ 3. Making the hugeness of x resurrectable. In this section, we consider how
Laver’s theorem (which we stated in the introduction) on making the supercompactness
of % indestructible under x-directed closed forcing may be adapted to the huge case.

It is not hard to see that Laver’s result is not true if “huge with target A” is
substituted for “supercompact”. There are two central problems that we run into in
trying to obtain something like Laver’s theorem for huge cardinals.

Firstly, as we saw in the previous section, some forcing above » will generally be
necessary. Thus, the best we can hope for is to obtain a model such that, following some
forcing at » which, in general, will kill the hugeness of %, we can further force above
» and resurrect the hugeness of »x. .

Secondly, it is easy to see that x-directed closed forcing can kill the fact that x - (4)
and make it non-resurrectable. For example, using a »-directed closed partial order, we
can collapse 1 to x. Clearly, we cannot have x — (1), since A is no longer a cardinal. Since
forcing cannot create cardinals, » — (1) cannot be true in any further extension. Hence,
we will have to consider only a certain restricted family of x-directed closed partial
orders.

THEOREM 2. Suppose V |= ZFC+x — (g, A,). Then there is a x-chain condition
partial order P such that if G is P-generic over V, and P'e V[ G] is such that V[G] = P is
a w-directed closed partial order and |P'| < A, then the following holds: For any G' which
is P'-generic over V[G), there exists a P"eV[GxG'] such that V[GxG]l=P" is
a |P'|"-directed closed partial order, and there exists a set G" which is P"-generic over
VIG*G'] and is such that V[GxG xG"Tl= % — (Ao).

We first note that the fact that V[G*G']|= P" is |P'|"-directed closed is important,
because it will imply that no new sequences of size less than or equal to |P'| are added by
forcing with P", and hence this forcing will not undo what forcing with P’ did.

We do not know whether assuming %—(1q, A,), rather than just x— (), is
necessary. However, we strongly conjecture that some such stronger assumption is
necessary. The reason we make this conjecture is the following: As we will see, the
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normal ultrafilters in V[G*G'*G"] that we will use to witness % — (4,) are extensions of
normal ultrafilters witnessing x — (4,) in V. By using different partial orders P, we can,
for example, obtain various different values for 2% This implies that the corresponding
normal ultrafilters that ultimately witness % — (o) in the extensions by the appropriate
P"’s have restrictions to » which differ. It follows that there must be many normal
ultrafilters witnessing » — (4,) in V. Hence, we need some assumption which implies that
many such normal ultrafilters exist. % — (1o, 4,) implies (by directly generalizing the
rroof of the corresponding result for supercompactness in [10]) that there are many
normal ultrafilters witnessing that » — (1,). We conjecture that » — (4,) does not imply
the existence of many such normal ultrafilters.

In order to prove Theorem 2, we prove a lemma which is an adaptation of the
central lemma of [7]. First, we give a definition.

DeriNiTioN. We write L(f, o, f, ) to denote the fact that f is a function, o, f, and
y are ordinals, f* «— ¥, and, given any xeV¥, with |x| > o, there exists a normal
ultrafilter U witnessing o — (8; |x|, f') for some f' <y where [iy(f)] (@) = x.

LemMmA. Assume % — (Lg, A). Then, for some f: % — Vo L(f, %, Ao, Ay) holds.

Proof. Assume that W witnesses » — (4o, 4,), and suppose, by way of contradic-
tion, that for every f: % = V,, ~L(f, %, A9, 4,). Let 4 = {5 < s: for every f: § — Vs,
~L(f, 8, %, A5)}. Then AeW [x.

We define, by induction, a function f: % — V.. Suppose 6 < x and we have defined
f16.1f6¢ 4 or itis not the case that f [6: 6 — ¥V, let f(6) = 0. If 6e 4 and f }5: 6 -V,
then, by the definition of 4, ~L(f |'6, 8, %, A,). Hence, we may define 1) to be some
x€ ¥, with |x| > 6 such that for no normal ultrafilter U witnessing & — (»; ||, f"), where
B <4, do we have [iy(f [6)](8) = x. In this manner, we obtain f: x — V.

Clearly, iy (f) [ % = f. By elementarity and the definition of f, My |= [iy (/)] (%) = x,
where x€Vy,, [x| = %, and for no normal ultrafilter U witnessing » = (Ao |}, B) for
B < A, do we have [iy(f)](x) = x. By closure considerations, this must also be the
case in V.

Let § = ip|x|. Note that x < ' < A,. Then, W | §’ witnesses % — (,; |x|, #). Recall
that there is a canonical elementary embedding k: My — My, which fixes all sets of
rank Jess than or equal to f, and is such that koiwyy =iy. It follows that
Uiwip ()] () = x. But it was shown in the previous paragraph that there is no such
W 1B This is a contradiction. m

Proof of Theorem 2. Assume that ¥V |= % — (A9, 4,) and f is as in the lemma.
We will define P as a length x iterated forcing construction. For each 7 < x, let P, be the
partial order corresponding to the first y stages of the iteration.

As we define each P, for y < x, we shall also choose an ‘ordinal a,. For each such v,
we shall have [P <x, and 0, <%

We define the P)s by 1nduct10n To define P, from P, welet Pyyy = Py*Q,,
where Q, is defined as follows:

1. If f(y) is not a P,-name for a y-directed closed partial order, or if y < o,, then let
Q, be a P-name for the trivial partial order {0}, and let Oyt1 = 0y

icm

Making the hugeness of resurrectable

17

2. If f(y) is a P,-name for a y-directed closed partial order, and Y=o,letQ, =1()
and let 0,4, be the least inaccessible cardinal o < % such that ¢ > o, and o > [f (y)|.
We note that since % is inaccessible and f(y)e ¥, we have 1) |<,f Hence our
definition of o,,, makes sense. We also note that O,41 > |f(y)| implies that
1p,I-6y41 > 1S Q-

Clearly we have, in cither case, |P,. | < x.

Assume now that (P,: o < y) has been defined, where y is a limit ordinal. If y is
not an inaccessible cardinal, then let P, be the inverse limit of <P,: a < y). If y is an
inaccessible cardinal then let P, be the direct limit of <P,: & < p). In cither case, let
0, = SUPy<, 0. It is clear that if, for « <7y, |P,| < and o, < %, then, if y < %, the
inaccessibility of » implies that |P,| < % and o, < x. Finally, let P = P,. Then |P| = x.

The idea behind our use of the ¢,’s in the definition is that if we do some non-trivial
forcing in forming P,.; at stage y, then, if y' is the next stage at which we do some
non-trivial forcing, y' is at least as big as the first inaccessible cardinal above [Pyt
Hence, any generic extension obtained by forcing with P, ., satisfies that P\P,., is
a d-directed closed partial order, where § is the first inaccessible cardinal above [Pytal
We will use this fact frequently.

Clearly, we have taken direct limits on a measure one set (with respect to any
normal ultrafilter on ), and hence, on a stationary set. If follows from the chain
condition lemma that P has the x-chain condition.

Let G be P-generic over ¥, and suppose P'e V[G] and V[G]k P'is a »-directed
closed partial order, and |[P'| < 4,. Clearly, we may assume, without loss of generality,
that, in V[G], P'eV,,, since all that matters about P’ is its ordering, and not its actual
elements.

Let = be a P-name for P'. Clearly we can choose me V3,. Also, let us pick = such
that |nf > % and |n| is a singular strong limit cardinal. This presents no difficulty, since
a P-name can always be made bigger and, since A, is inaccessible, there are
unboundedly many singular strong limit cardinals below A,. It follows from work of
Solovay (see [9]) that 2I* = |z|*,

By the lemma, let U be a normal ultrafilter witnessing % — (4o; |xl, #) for some
B < Ay, with [iy(f)1(x) = . Then, by elementarity, iy(P) is a length A, iterated forcing
construction, which is defined in My, from iy(f) in precisely the same manner that P was
defined in V from f. Since iy, fixes all sets of rank less than x, P = [iy(P)],. It follows
from the way P was defined, and from our choice of U, that [iy(P*m)]esy
= [iy(P)y+1 = Pxm.

Let G' be P'-generic over V[G]. Then clearly G+ G’ is P*x = [i,(P*n)],+;-generic
over My, We shall consider the partial order iy(P*m\[ig(P*m)]ys1 = iy(P*m)\(P*m).

Note that [P#n| = sup {|P], ||} < Ay < B'. Hence Pxn trivially has the (f)* chain
condition. Then, the closure lemma implies that M, v[G*G'] is closed under f'-sequences
with respect to V[G*G']. In V[G+G'], |GxG'| < |Pxn| < f. It follows that if we define

A= {q"”eiU(P*an =

then 4e My[G*G'].

iy(p) for some pe G+G'},

2 ~ Fundamenta Mathematicae 137.1
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Clearly, 4 is directed. Hence, since [A] < |P*x| and My[G* Gl iy(P*n)\(P*n)
is |P# x| *-directed closed, we can find a g’ iy, (P *m)\(P*=) which extends every element
of A. Let G” be any set which is iy(P+m)\(P*n)-generic over V[GxG] with g'eG".

We must show that V[GxG'xG']l=x— (1) We first note that
#(P+n) = iy(iy(P*m)) is, in My, a length iy(})+1 iterated forcing construction, and
[Z(P*m)]1+1 = ig(P*m). Clearly, GxG'*G" is iy(Pxm)-generic over My. We must
consider iZ(P*m)\[i3(P*m)]1+1 = i(P*xm)\iy(P*n) in M[G*G' xG"].

We proceed to find an appropriate mastercondition, as before. Let

B = {g**1eif(P+m)\iy(P*n): q = iy(p) for some peGxG'xG"}.
The following cardinality argument takes place in V[G*G'%G"]:
[Bl < |G*G'+G"| < lig(Pxm)| = [iy(m)| = iy(|n]) = f".

Next we wish to apply the closure lemma. In order to do so, we first note that
iy(P*n) has the (8))*-chain condition. This is trivial, since the above computation shows
that |i;(P*m)| = f'. Then, since My is closed under f'-sequences with respect to V, and
G+G'+G" is iy(Pxm)-generic over V, the closure lemma implies that My[G*G'*G"] is
closed under f'-sequences with respect to V[GxG'+G"]. Hence Be My[G*G'*G"].

Clearly, B is directed, and we have shown that |B| < |iy(P+n). Hence, since
My[G+G' %G1 =i5(P+m)\iy(P*m) is [iy(P*m)| T-directed closed, we can [ind
a q"eif(P*m)\iy(P*n) which extends every element of B.

The rest of the proof is very similar to the end of the proof in the last section. We
wish to construct, within V[G* G’ *G"], a set G which is i3 (P *m)\iy, (P *7)-generic over
My[G*G'+G"], with ¢"eG".

We first claim that we can construct, within V[G*G'*G"], an enumeration, of
length at most (f)*, of all the dense subsets of i#f(P#m)\iy(P*m) which are in
My[G+xG'xG"].

To show this, we first consider the following cardinality computation in
My[GxG'*G"]:

IP(3(Pxm\iy(Prm) <

The inequality and the first equality are clear and the second equality follows from
the fact that |iy(P+m)| = §'. We have also used the fact that, by standard chain condition
arguments, ' and i,(f') are cardinals in M,[G*G'*+G"].

As in the previous section, standard forcing techniques, using the fact that
liy(Pxm) = B <iy(f), tell us that (2U®) ceuen =(2"¢"),. By elementarity
(2997, = 1y(27). Putting this all together, we have shown that, in V[G+G' *G"],

|P lU(P*ﬂ)\lU(P*TC))Mu[GsG’aG"]I < Iiu(zﬁ .

We note that by standard chain condition arguments 2% =
Next, we wish to show that 27 = (8)*. We have

200 = 2] = 1@y = [ @YD) = fig )| = [liu(mD)i] = [(B)3d = (B)*

The first equality follows from the fact that M is closed under f'-sequences, and hence
P(B) = (P(ﬂ’))M. The second and sixth equalities are immediate, since iy(ln]) = B. The

[P(3(P«m))| = 21%@mI = 21,

(zﬁ’)V[G‘G"mG"] .
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third and fifth equalities follow by elementarity. The fourth equality follows from
the fact that, by our choice of = (as discussed previously), 2 = |z|*. The last
equality follows from the fact that M is closed under p'-sequences, and hence
(B = (B)"
Putting together the previous two paragraphs, we have that in V[G+G'+G"],
P i%’(P*n)\iU(P*n))M[GtG’*G"]’ < liu (B

We have used the fact that, by standard chain condition arguments, (8)* =
(B)16e6- :G] A straightforward | calculation", in ‘_the ultrapower HV/U tells us that
lin((8)*) = (8)*. Hence, in VGGG,

IP (B Pxm\iy(P *n))M[GcG'sG”]I <(B)*.
Next, consider the following cardinality computation in VIGxG'+G"]:
{DeMy[GxG'*xG"]: D is dense in i%(P*n)\iU(P*n)}I

< ]P(i%r(P*”)\iu(P* n))MU[G’tG'*G"]I <(A)*.
The first inequality is obvious, and the second equality follows from the previous
paragraph.

Hence, an enumeration within V[G+ G'+G"], of length at most (§)7, of all the
dense subsets of if(P*m)\iy(P*n) which are in My[G+G'«G"], is possible.

Any proper initial segment of this enumeration of dense sets must be in

My[G+G'+G"], by the closure lemma. Using this, and the fact that My[G+G'«G"]
l= i3 (P*m)\iy(Pxn) is an |iy(P*m)|* * = (§)*-directed closed partial order, we can
obtain the desired G".

We have been careful to choose our generic sets so that, for any p, pe GxG'«G" if
and only if iy(p) e GxG'*G"x G"". As in the previous section, Silver’s method allows us to
extend iy: V- M to i} VIG*G'+G"] - My[G*G' +G"+G""].

Since, by the closure lemma, M,[G+G'%G"] is closed under B'-sequences with
respect to  V[G+G'+G"], we have iy[f1eMy[GxG'*xG"]. Thus, iy[B]
eMy[G+G'*G"+G"™]. We define W= {xgc P_,(B): ip[f1eiy(x)}. Then, since
My[G*G'«G"*G"] and i} have been defined within VIG*G «G"], it follows that
WeV[G+G'+G"]. It is straightforward to verify that, in V[GxG'xG"], W witnesses
%= (Ao; [n}, B'). This is strictly stronger than x — (1,), which we needed to show. m

§4. Making the many-times hugeness of » resurrectable. Suppose that 4 is a set of
targets for the huge cardinal » with |4| > 1. We consider the problem of making » — (o)
simultaneously resurrectable for all ‘@ed. The central problem in generalizing the
method of the previous section is that the associated generic sets that do the resurrecting
must be made to cohere.

We first present a theorem which gives sufficient criteria to allow us to make many
targets simultaneously resurrectable. Then, we give as corollaries two examples
illustrating how these criteria may be satisfied.

THEOREM 3. Suppose that A is a set of targets for the huge cardinal %. Assume that the
Jollowing hold:
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1. A is a limit ordinal.

2. A contains none of its limit points.

3. If {o5: 6 < A} is an increasing enumeration of the elements of A, then, for some
fr %>V, L{f, %, 05, 054 1) holds for every § < A.

Then x— () for every aeA can be made simultaneously resurrectable after
x-directed closed forcing of smaller cardinality. That is, there exists a x-chain condition
partial order P such that if G is P-generic over V, and P'e V[G] is such that V[G] = P’ is
a x-directed closed partial order, then the following holds:

For any G' which is P'-generic over V[G], there exists a P e V[G*G'] such that
VIG*G]k= P" is a |P'|*-directed closed partial order, and there exists a set G which is
P"'-generic over V[G+G'] and is such that for any & < A with V[G] = |P'| < a5, we have
VIG*G'#G"] = % — (a).

Proof. Let f be as in the statement of the theorem. Define P from f precisely as in
the previous section, and let G be P-generic over V. Assume P'e V[G] is such that
V[G]E P'is a »-directed closed partial order, and suppose G’ is P'-generic over V[G].

Let B={fecd: |P|<p}. We will construct a P"eV[G+G'] such that
V[G+G]k P” is |P'|*-directed closed, and a G which is P”-generic over V' [G*G'] and
is such that V[G*G'*G"]|= x — (B) for every feB.

Let {B;: & < B} be an increasing enumeration of the elements of B. Then, for each
8 < B, L(f, %, Ps, Bs+1) bolds. We will construct a sequence of partial orders
{R(6): 6 < B} in V from which we will eventually define P”. Each R(9) will be an
iterated forcing construction. We will not directly define each R(5) as an iteration, but
shall define it as the image, under an elementary embedding, of a previously defined
iterated forcing construction. At each stage of the construction, we shall have R(®)eV,,
and [R(d)], = P.

Since in V[G], |P'| < f,, we may assume that P’ €(V;,)y(g). Let n be a P-name for
P'. As in the previous section, we can choose © with ne Vj,, || > %, and |z a singu-
lar strong limit cardinal. Then 2" = |n|*. Let R(0)=P+m Then R(0)eV}, and
[RO], = P. _

Assume now that R(6)e Vj, has been defined, where [R(8)], = P. Then R(O\[R()],
is a partial order in ¥ [G]. Let 7y be a P-name for this partial order, where, as above, we
can choose m; with m,€ V,, |nsl > %, and |n,| a singular strong limit cardinal. Then
2l = |,1 *. We note that the = of the previous paragraph is a legitimate choice for m,.
Let us make this choice, and set n, = 7.

By our assumption that L(f, %, f;, Bs+1) holds, let Uy be a normal ultrafilter
witnessing x — (B [m, B5) for some B < fs.q, and satisfying [iv,(f)1(3) = m5. For
notational simplicity, we shall write i; and M; instead of iy, and My, respectively.

Define R(6+1) = is(Pxx,). Then, since i, fixes all sets of rank less than
# [RO+ 1)1, = [i5(P*ns)], = P.  Also, R(6+1) = i,(P*n)€is(V,) = Visgpy € Voaus»
where the last relationship follows by using straightforward cardinality arguments in the
ultrapower [] ¥/U, to show that i,(8,) < Bs.;. Hence, R(6+1)eV,,,,. Also, by our
choice of Uy, by the elementarity of i, and by the way P was defined from fin Vit
follows that the iteration R(§+1) properly extends the iteration R(5).
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Next, suppose (R(y): p < 6> has been defined, where § < B is a limit ordinal. Let
R(9) be the inverse limit of this sequence. By our assumption that A (and hence B)
contains none of its limit points, it follows that R(0)eV;,. Then R(f) is*an iterated
forcing construction that properly extends each R(y), for y < 6. If 6 = B, set R = R(9).

It is clear from our construction that each R(0) begins with Pxm,. Define P(5), for
every 6 < B, by P(9) = R(O)\(P*m,). Also, define P = R\(P*m,). Then P" is an iterated
forcing construction in V' [G*G']. Also, P" is |P'|*-directed closed. This follows from the
way the ¢,’s were used in the definition’of P, and the way the R(5)’s were defined from
P using elementary embeddings.

Next, we wish to define a set G” which is P"-generic over V[G+G'] and is such that
for any § < B, V[G+G'+G"]|= x — (8. We must define G” so as to respect the
masterconditions associated with each embedding i,. In other words, it must be the case
that, for any & < B, and any p, peG+G'+Gj if and only if i;(p)e GxG'*GY, ;.

Intuitively, what we wish to do is to define inductively a sequence {Gj: § < B}
such that each such G} is P(5)-generic over V[G*G] and is such that the appropriate
mastercondition is respected at each stage. The problem with this direct approach is
that it is not true, in general, that taking limits of generic sets results in a generic set.
Hence, this method will work only if B is finite. If B is infinite, we must be somewhat
more subtle, and iteratively obtain names for these masterconditions. Ultimately, we
shall obtain one mastercondition for P”.

Before beginning the construction, let us try to clear up a possible source of
confusion ahead. If y < § < B and peP(5), then we have p’e P(5)\P(y). Hence pis
a forcing condition associated with the iteration from stage y up to, but not including,
stage 6. We emphasize that this does not, in general, correspond with any forcing
occurring between the actual ordinals y and &, but relates, instead, to B, and B;.

We will inductively define an re P”. Hence, r will be a function with domain B. For
each 6 with 0 < 6 < B we shall have that r|§ €P(d), and r(d) is a P(§)-name for an
element of P(6+1)\P(3). In particular, we shall define r such that for any such
0, 7[6|F- r(5) has the required mastercondition property, More precisely (but perhaps
less clearly), we shall have that r [ ||~ #(3) extends every element of {@°e(P@E+I\P()*:
q = i5(p) for some pe GxG'xI';}, where I is the canonical name for a set which is
P(8)-generic over V[G*G').

We begin by letting r(0) be some element of P(1) which extends every element of
{ge P(1): q = iy(p) for some pe G+ G'}. That such an r(0) exists follows by precisely the
same method which we used in the last section. Note that we have rileP(1).

Now, suppose that we have defined r § € P(§) for some 6 < B. We wish to define
r(6). Let H be any set which is P(6)-generic over V[G+G] with r [ 6 € H. Our methods of
the last section enable us to obtain an s€ P(6+1)\P(J) such that V[G+G'«H]}=s
extends every element of {¢°c P(6+1\P(8): q = i;(p) for some peG*G «H}. Then,
since such an s exists for any such H, we can define r(J) to be a canonical name for such
an s. Then r [ 6 |- r(3) extends every element of {g° €(P@E+1\P@))*: g =1;(p) for some
peG+G'xIy).

In this manner, we obtain re P”. We note that it was not necessary to distinguish
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between the successor and limit cases in our construction. The fact that we always take
inverse limits in defining P” guarantees that if, for a limit ordinal e B, r ['ye P(y) for
every y < 6, then r[deP(d).

Let G be any set which is P”-generic over V[G*G'] with re G". Pick any 6 < B.
We must show that V[G«G'*G'"] k= x — (B,).

We first claim that V[G*G'*Gj. ] k= % — (Bs).. Since r[de Gy, V[GxG'xGy]=
[r(6)1gy; extends every element of {g° e P(6+1)\P(0): q = i,(p) for some pe GG +Gj},
Then, since i, fixes all sets of rank less than or equal to %, and since r [d+ 1 &Gy, it
follows that, given any p, pe GxG'*Gj if and only if i;(p)e G*xG' *GY.,. ;.

Recall that, by our construction, the partial order in V over which G* GGy, , is
generic, is P75 1. Also, P+, is an initial part of i;(P#ns. ;). Hence, it makes sense
to consider the partial order i;(Pxms4 )\(P*7544) in M;[GxG xGjyq].

We need to obtain an appropriate mastercondition. That is, we need to find an
element of this partial order which extends every element of {g°** € i5(P %75 )\(P* 75+ )
q = is(p) for some peG*G'*«Gj+,}. That such a mastercondition exists follows by
precisely the same methods as we used in the last section.

Next, we note that, again precisely as in the last section, M;[G*G % G5 ] is closed
enough with respect to V[G*G'%«Gj.,] and, in M;[G*G' %G}, ], the partial order
is(P*ms1 )\(P*ms1y) is closed enough, so that we can, within V[G#G'*G{s ],
construct a set H(6+1) which is i;(P#7s.41)\(P* 754 )-generic over M;[G*G' %Gy, 1],
and contains our mastercondition.

It is then the case that, for any p, pe GxG'*Gy,, if and only if

is(0)eGxG' *GY xH(S+1).
Silver’s method now allows us to extend i;: V- M; to
51 VIG*G'*Gii1] » My[G*G Gy, x HGE+1)].

Next, we claim i3 [8,] € M;[G* G’ % G4.. 1]. Since P has the %-chain condition, and M,
is closed under fj-sequences with respect to ¥, the closure lemma implies that M s[G]is
closed under fs-sequences with respect to ¥ [G]. Note that G'* Gy, is R(5+ 1)-generic
over V[G] and also over M;[G]. The following calculation shows that R(§+ 1) has the
(B5)* -chain condition: [R(6+1)] = [is(P+m,)\P| = lis(Pxmy)| = lis(ms)| = islms| = f'. Hence,
applying the closure lemma. again, we conclude that M s[G*xG' %G5, 1] is closed under
Bs-sequences with respect to V[G*G'xGjyy,]. Then certainly, since f; < fi5, i¥ [f,]
T eM[GxG %GYaq].

- It follows that if [B,] € M;[G*G' %Gy % H(5+1)]. We define W; = {x = P=,(f,):
i [Bsleif(x)}. Then, since M;[G*G Gy, xH(S+ 1)] and if have been defined in
VIG*G'*Gj4], it follows that W& V[G* G G, 1). Itis straightforward to verify that,
in V[G*G'*G4.,], W witnesses that x = (Bs).

We must show that V' [GxG'xG"] k= % — (B,). We can view V[G*G'+*G"] as having
been obtained from V[G+G'+Gy, ] by forcing over V[G*G'« Gy (] with P'\P(5+1).
‘In V[G*G'+Gj.4], this partial order is B# -directed closed. Hence, no new subsets of

P-.(B;) are added by this forcing. Consequently, W, witnesses that %—(fi;) in
V[G+G'*G"]. m
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We note that for each § < B, each M;[G+G'+Gj,,] is closed under Sj-sequences
with respect to V[G#G'+ G5 ,]. Hence, we could have obtained a normal ultrafilter W
witnessing % — (f5; |msl, B5) instead of just x —(B,), in V[G*G =Gy, 1] Also, in
VIG*G'*Gj4 1], P'\P(6+1)is a (B5) *-directed closed partial order, and so W, witnesses
% —(Bs; %5, Bs) in V[G+G'«G"]. This is strictly stronger than what we needed to
show.

Before giving corollaries to the theorem, we comment briefly on the different types
of limits that we used in our forcing constructions. In defining P, we took direct limits at
inaccessible cardinals, and inverse limits at limit ordinals which are not inaccessible
cardinals. This is exactly the kind of limits that were needed to preserve the necessary
closure and chain conditions. In taking limits of the P(6)’s, we took inverse limits
everywhere. This was necessary, as we have already pointed out, in order to obtain our
mastercondition r& P”. The fact that this means that we cannot use the usual techniques
to conclude that P(6) for limit 6§ < B has the (sup,<s B,)-chain condition is not
a problem. The central fact here is that, by our assumption that 4, and hence B,
contains none of its limit points, sup,<sf, < 5. Thus P, for limit § < B, does not
involve forcing up to some element of B. Hence, chain conditions for P(5) are not
needed.

We next give, as corollaries to the theorem, two examples to show how the
premises of the theorem might be satisfied.

COROLLARY 1. Suppose C is some collection of targets for the huge cardinal % such
that:

1. C is a regular cardinal bigger than 2*.

2. If {75: 6 < C} is an enumeration of the elements of C in increasing order, then,
for each & < C, there exists a A; with y, < 25 < 7541 and % — (y;, Ag)-

Then there is an A < C which is cofinal in C, and is such that x —(y), for all ye 4,
can be made simultaneously resurrectable after x-directed closed forcing of smaller
cardinality. In other words, the conclusion of the theorem holds for this A.

Proof By our second assumption, the lemma of the previous section implies that
for each 8 < C, there exists a function f;: % — ¥, such that L(f;, %, y;, 4,) holds. Then
certainly L(f;, %, 75, 75+1) holds. Since there are 2* many functions from x to V,, the
regularity of C implies that for some function f: % — V,, and some D < C with D = C,
we have f=f; for every 6 such that y,eD. Now let A < D be such that 4 =D and
A contains none of its limit points. This 4 satisfies the premises of the theorem, and
hence its conclusion. m

COROLLARY 2. Suppose % —(Ag, A;). Then, for some set A which is cofinal below
Aos %= (o) for every acA, and every such x-»(®) can be made simultaneously
resurrectable after x-directed closed forcing of smaller cardinality. In other words, the
conclusion of the theorem holds for this A.

Proof Assume x —(lg, 4,). By the lemma of the previous section, for some
fi =V, L(f, %, Ay, A;) holds. Let i: ¥— M witness that x — (4o, 4,). By elemen-
tarity, M=, - (4,,i(1,)). By closure considerations, Ao — (1,) holds in ¥, Let
U witness 4, - (4,). By closure considerations again, fe M and My L(f, %, 4, 4,).
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But then {8 < 4! L(f, %, B, Ao)} is cofinal below A,. By closure considerations yet
again, {f <JAo: Myl= L(f, %, B, Ao)} is cofinal below 1o. Then {f < i, {y <y
L(f, %, B, )} is cofinal below 1,} is cofinal below 4,. It is then easy to find a set 4 such
that 4 is cofinal below 4,, 4 contains none of its limit points, and, if {og: 6 < Ao} is an
increasing enumeration of the elements of A, then, for any & < Ay, L(J, x, Uy Oggy)
holds. This A satisfies the premises of the theorem, and hence its conclusion. m
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On the l-equivalence of metric spaces
by

Jan Baars and Joost de Groot (Amsterdam)

Abstract. In this paper we present topological properties of metric spaces which are preserved
by l-equivalence. Furthermore, we present an isomorphic classification of the function spaces C,(X)
where X is any countable metric space with scattered height less than or equal to c,

0. Introduction. By a space we mean a Tikhonov space. For a space X we define
C(X) (C*(X)) to be the set of all continuous (bounded continuous) real valued functions
on X. We can topologize these function spaces in several natural ways. Whenever we
endow C(X) (C*(X)) with the compact-open topology we denote it by Co(X) (CH(X)),
and if we endow C(X) (C*(X)) with the topology of pointwise convergence we denote it
by C,(X) (C}(X)).

In [10] van Mill proved that for a countable metric space X which is not locally
compact we have C}(X)~ o, where o, = (1= and [ = {xel x; =0 for all but
finitely many i} (I* denotes separable Hilbert space). Furthermore in [5] it was proved
that under the same conditions ‘C,(X)=o0,. It is easily seen that for an infinite
countable discrete space X, C,(X) =~ R®. The gap between “discrete” and “not locally
compact” was filled in by Dobrowolski, Gul’ko and Mogilski in [7]. They proved that
for every countable metric nondiscrete space X, C}(X) = C(X)~ 0,. After these
results it is interesting to study linear homeomorphism between the function spaces
C,(X) (C}(X)), for countable metric spaces X.

In [12] Pelant gives an example of two countable metric spaces X and Y, which are
both not Jocally compact, such that C¥(X) and C}(Y) are not linearly homeomorphic.
In [5], Baars, de Groot, van Mill and Pelant gave an example of two countable metric
spaces X and ¥, which are both not locally compact, such that C,(X) and C,(Y) are not
linearly homeomorphic. In [3] Baars and de Groot presented an isomorphic clas-
sification of the function spaces C,(X), for zero-dimensional locally compact separable
metric spaces X. These classification results depend strongly on results in [1] of
Arkhangel’skii and on the isomorphic classification of the function spaces Co(X), where
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