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On neighborhoods of the Kuratowski imbedding
beyond the first extremum of the diameter functional

by

Mikhail Katz (Bloomington, Ind.)

Abstract. We determine the homotopy type of e-neighborhoods of the Kuratowski imbedding
of the circle for 4, < 2& < A,, where 1, is the ith critical value of the diameter functional on the
power set of the circle. We do the same for the complex projective space.

Introduction. A compact connected metric space ¥ can be isometrically imbedded in
the space L* = L”(V) of bounded functions on V with the sup norm ||||. The first
explicit deflinition of this imbedding was given by Kuratowski in volume 25 of the
present journal ([15], p. 543), and it is referred to as Kuratowski’s imbedding in [107, p.
27. We study the g-neighborhoods U,V < L* in the case of the rank one symmetric
spaces, starting with the circle.

For small ¢ > 0, these neighborhoods have the homotopy type of ¥, provided V is
locally contractible. As ¢ increases, the homotopy type changes for the first time. It is the
new homotopy type (after the first change) that arises in the calculation of a Riemannian
invariant called the Filling Radius of V, if V has a fundamental homeology class (cf. [6],
[11], [14]). Xf V¥ is the circle S* of length 1, the homotopy type of U,S* first changes
when ¢ = . (Note that for neighborhoods of the equatorial imbedding S* < §* in the
sphere of curvature 4n?, the change occurs when ¢ = $.) The new homotopy type is that
of §3. To prove this, we decompose U,S* into the union of two pieces, analogous to the
decomposition of §* along a standard imbedded torus. We then construct a retraction
on polyhedral approximations to each of the pieces and their intersection, and appeal to
standard theorems from algebraic topology.

This retraction is akin to the flow on a manifold in the absence of critical points of
the (typically non-smooth) distance function (cf. [8], [5], [7]). The role of the critical
points is played by the extrema of the diameter functional § on 2 (cf. §4). To mediate
between 2V and L* (V), we use a predistance construction following an idea of [14],
Appendix A (cf. §3). Denote by 4, the orbit of the first extremum of 6 under the
isometry group of ¥, If V¥ is rank one symmetric, one expects the new homotopy type to
be that of the “partial join” of Vand A, (cf. §8). We verify this for the complex projective
space CP".
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If Ye2” and §(Y) = d, the d-neighborhood of Y = V'may be called the basin of Y. It
would be interesting to find suitable conditions on a homogeneous Vsuch that the new
homotopy type is that of the subset of the join of Vand A, which consists of intervals
joining pairs xe¥, YeA, such that x € basin (Y).

Theorem 1.1 of Section 1 is the main result for the circle, and its prool occupies
Sections 3, 5, and 6. In Section 2, we introduce the unit speed deformation used to
exhibit a space of the desired homotopy type inside U,. In Section 4 we define the
extrema of the diameter functional, classify them for the circle, and prove a Morse-type
lemma (4.8) used in the case of complex projective space, as well. In Section 7 we find the
first two extrema of the diameter functional on the power set of the 2-sphere $2, and
construct a suitable deformation of sets which docs not increase the diameter. In Section
8 we treat the case of CP" by making use of complex projective trigonometry. We note
the related recent articles [17], [2], [9], [16].

§ 1. The homological argument. Let $* be the Riemannian circle of length 1, and let
distg: be the Riemannian distance in §*. Consider the Kuratowski imbedding SteLm,
xi—d,, where d,(y)= dists: (x, y) for all yeSt. This imbedding is isometric, ic.
distg: (x, y) = [|d,~—d,]| for all x, yeS!. Note that as a metric space, S' cannot be
isometrically imbedded in Euclidean space. Let U, = U, S* < L” be the r-neighborhood
of §*. Let A, = k/(2k+1). This 4, is the Riemannian diameter ol the set of vertices of
a regular (2k+ 1)-gon inscribed in S* (cf. Lemma 4.3). The notation of A, is designed to
lay bare the analogy with the case of S* (cf. Section 7).

TruEOREM 1.1. Let r > 0, and assume A,/2 <r < A,/2. Then U,S* has the homotopy
type of S°.

Proof. Let §*/Z, be the set of equilateral triangles inscribed in S*. For pe §'/Z,, let
Ip] < S* be the set of vertices of p. Let X be the topological join of S* and §!/Z, so that
X ~ S5 We will imbed X in U, < U, in Lemma 2.6.

Define an open set C = U, to consist of f'e U, such that the set {xeS* ||| f~d| < r}
« S'is contained in some semicircle. Define an open set 4 = U, to consist of f& U, such
that the set {xeS*|||f—dJl <2,/2} = §! is not contained in any semicircle. Then
U,=AuC. Let B=AnC. We will show in Propositions 3.2, 5.1, and 6.1 that the
inclusion of X in U, is a homotopy equivalence on each of the three picces X n A,
X n B, X nC. Consider the Mayer-Vietoris homology exact sequences for X and U,:

H,(XNB) = H(XnA@H,(XNC) = Hy(X) > Hyo (XA B) = Hpoy (X AV D I, (X 1 C)
} i) i ! |
H,(B) ~ H, (4@ H,(C) - H,U)~ H.B) = Hy ()@ H, ()
The 5-lemma now yields an isomorphism in homology between X and U,, and the
relative Hurewicz theorem gives isomorphism in homotopy.
§ 2. Reduced functions.

DEeFINITION 2.1. A function fe L® (') is éalled reduced if f (x) = || f~d|| for all x&S*,
or equivalently, f (x)—f (y) < dists: (x, y) < f (x)-+1(y) for all x, peS*.
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Thus the values of S at fixed points x, yeS* lie in the diagonal half-strip.of Fig. 1.
The map L* - L, fi=|| f~d,|| is a distance non-increasing projection to the separable
convex set of reduced functions. This set is invariant under adding positive constants,
and is properly contained in the set of 1-Lipschitz functions.

Lomma 2.2, Let f, gl be reduced, and let xeS'. Then

J ) < g0) [/ ~gll.
Proof. This is the triangle inequality in L*,
Examere: 2.3, Let paS'/Z, with |pl = {p,, p,, ps}, and define the “mountain range”
function MR (p, v)eLi” depending on a vector parameter v = (v,, v,, v;)eR% (the
“valleys™) by the formula

(2.4) MR (p, v)(x) = min (dists: (x, p)+v).

151,23
Then MR (p, v) is reduced if and only if =, <A oo for 1<4,j<3,i 5] Let
v, € v, < vy Assume v, <1, so that MR (p, v)e U,. In such case, MR(p, v)e C if and,
only if vy > r, while MR (p, v)& 4 if and only if vy < A,/2. Note that these are both open
conditions.

Remark 2.5. If MR(p, v)e B then v, <r while » < v,. Thus we have a .strict
inequality v, < v,.

LuMMA 2.6, The imbedding S* - T3, can be extended to the join X of S* and SY/Z .

Proof Given f, ge L, we define a unit speed deformation, US, of f to g by the
formula

if f(x) = g(x),
if not,

max (f(x)—t, g (x))

US(/s g, 0(x) = {min (fx)+t, g(x)

for all xe$' and t 2 0 (see Figure 1).

Usttat)

dist (x,y) ' X

Fig. 1. The unit speed deformation of [ tog

2~ Fundamenta Mathematicas 137.3
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Define f, & L” (8Y) by f,(x) = dists: (x, [P+ 41/2- Thus f, = MR(p, v) when v, = 4,/2 for
all j. Then for all xe §*, we have US (dys S 30/ =1 It follows from [ll;l, p. 506, 1h?1t
the family {US(d,, S, £)}, where xeSt, peS'/Zs, and te[0, 34,/2], imbeds X in
UwpcU,.

Remark. The part of X corresponding to a fixed peS'/Z, is 2 cone on S' with
vertex f,, ie. a disk. The choice of p “polarizes” the disk, reducing th.c rotational
symmetry group to Z. This phenomenon has no Euclidean or spherical analog:
a round circle spans a disk with full rotational symmetry, and it is unclear how breaking
the symmetry could fill the circle in a smaller neighborhood.

Lemva 2.7. () 8t < C is a deformation retract of XnC;

(i) S'/Z5 = A is a deformation retract of XnA;

(i) (S%/Z5) x S* = B is a deformation retract of X nB.

Proof (i) We have f,(p) = A,/2<1,j= 1,2,3, so that |p| = {xeS8'[[,(x) <r}.
Since |p| is not contained in any semicircle, f,¢C, and X nCc X—(S'/Z;). But
X — (SY/Z,) is homotopic to §* < X.

() Let f=d,, where yeS*. Then {xe 8| f(x) < A2} = By, 22/2) = B(y, 3,
a semicircle. Hence d ¢4, and X nAd < X —-S'. But X~—S! is homotopic to SY/Z,.

(iti) Let xe S* and pe S%/Z,. Then B cuts out a nonempty connected open set in cach
interval {US(d,, f,, 0}, 0 <t <34,/2 This set can be retracted to its midpoint.

§ 3. Deformation using predistance.

DeFINITION 3.1, Let C « U, be the set consisting of reduced feU, such that the
sublevel set {xeS!|/(x) <r} = S* lies in a semicircle. ’

In this section we construct a deformation retraction of C = U, to § L It is tempting
to retract to the (suitably weighted) center of mass of the sublevel set /< r, which is
contained in a semicircle. However, to produce a deformation retraction, more work has
to be done.

PROPOSITION 3.2. Any polyhedron P < C can be retracted in C to st

Discussion. The idea of the proof can be illustrated as follows. Define a family {Y*},
0<t< 1, of subsets of R by setting Y* = {0, 2} if0< ¢t <4, and Y' = {0} if § <t < L.
Thus at time ¢ = %, ¥ loses its point x = 2. We may think of the family {¥*} as a closed
subset of the Cartesian product [0, 1] x R. Let f:(x) = dist(x, Y*)-+1. The family
{fv} = L™ is discontinuous in ¢, since, for example, at X = 3, we have fy(3) = 1 for ¢ = 3
but f(3) = 3 > 1 for t > 4. Whenever t, > %, the point x = 3 is far [rom Y! along the
vertical line t = t,, in the (¢, x)-plane. On the other hand, if (t, x) is allowed first to shift
horizontally to (4, x), then {¥*} is again nearby. Thus we can turn {fw} into
a continuous family by allowing some mobility in the ¢ dircction, The precise
construction using a predistance is described in step 4 below.

Proof of Proposition 3.2. We deform the inclusion map P-C to a map
m: P—>S! < C, defined by skeletons. This will be done in a way compatible (up to
homotopy) with the deformation of Lemma 2.7(i). By compactness, there is an ry <7
such that P = U,, = U,. Let ¢ = (r—7)/6, and r, = (r-+7y)/2. Assume P is triangulated
into simplices of diameter < e Note that if feC, the set of minima of f lies in
a semicircle.
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Step 1. For feC, let"M(f)eS' be the rightmost point at which f achieves its
minimum. Then /(M (f)) < ry. Note that M is not continuous as a function of feP. Let
P? < P be the O-skeleton. We define the map m on P° by setting m(f) = M (f). Now let
feP, and let fi, ..., f; be the vertices of the simplex containing f. Let m; = m(f;). By
Lemma 2.2, f(m,) <f;(m)-+e¢ Therefore

distgs (M (1), m) <f(M () +f(m) < 21y +e.

We have /< r on the set {M(f), m,, ..., m}. By definition of C, this set lies in
a semicircle.

Step 2. We extend m by linearity to the simplex. This defines m inductively on all of
P, in such a way that dists: (M (f), m(f)) < 2ro-+e Note that if f¢ P%, we may have
fm(f)=>r.

Step 3. We join M (f) linearly with m (/) by the family M*(f), where M (f) = M (f),
M (f) = m(f). :

Let geP with ||f—y| <¢ and let Q < P be the union of the two simplices
containing f and g, so that diam(Q) < 3e. Hence by Lemma 2.2, we have [ (M (q)
<ro+3e=r, for all geQ. It follows that the set m(Q) = S* has diameter < 2r;, and
similarly for the convex hull of m(Q) in S*. Thus for all s, te[0, 1],

(*) if || /=gl < & then dists: (M*(f), M'(g)) < 2r,.

We now use the M'(f) to define a continuous deformation in L®.

Step 4. Let V= (P x [0, 1]) u,,(S*) be the mapping cylinder of m: P—5'. We will
construct a distance function dist on Vsuch that dist{(f, 0), x) = f(x) and dist|g: = dists:,
where xeS!' < V, (f, 0)eP x {0} = ¥, and dist|s: is the restriction of dist to §*. The
desired deformation of fe P is then f*(x) = dist((f, 1), x).

3.3, Distances and predistances. Recall [4] that a distance function dist on a space V is
a symmetric map ¥ x V—R" satisfying the triangle inequality. Given a subset
We Vx ¥, any symmetric function d: W—R* is called a predistance. There is a dist
canonically associated with d, namely

dist (x, y) = inf(d (xq, %) +d(xy, Xo)+ oo +d (a1, X)),

where the infimum is taken over arbitrarily long sequences X,
X, =y, and (x;, Xp4.1) & W.

Continuing with the proof of Proposition 3.2, we choose a large number N > 0. We
define d on the mapping cylinder as follows. For all x, yeSt, f,geP, and s, te[0, 1],
set

en X, With xg =X,

1), d((f, 0), x) =1 (x);

(2 d(x, y) = distg: (x, y);

(3) d((f: £), x) = dists. (x, M* () 4743

@ d((f, 9, (g D) =N (11 f—gllp -+ dists: (m(f), m{g))+ |t—s]).

Let dist be the corresponding distance.
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LEMMA 34. The restriction of dist to S coincides with the original distance distg:.
Proof. We need to verify that for all x, yeSt we have

(3.5) distgs (x, 7) < d(x (fs )+ (£ 9, (g, D) +d((g: 1), ),

ie. one cannot take a shortcut from x to y by going through two points in the mapping
cylinder. ¢ N
Let ¢ be as in inequality (*), and choose N > (diam $1)/e in part (4) of the definition
of d. If |[f—gll = ¢ then d((f, 5), (g, 1)) > diam S and inequality (3.5) 15 satisfied. If
Ilf—gl| <&, then we have inequality (#). By the triangle inequality for dists:, we have

distg: (x, y) < distgs (x, M*(f))+dists: (Me(f), M* (9)+ dists: (M* (9), ¥)-
Now part (3) of the definition of 4 together with the inequality (%) give

distg: (x, ) < d(x, (f, s))—r +27, +d(y, (g, )=y
<dx, (f, 9)+d(v. @, 1),

proving (3.5) in this case.

LEMMA 3.6. For all feP and xeS', dist((f, 0), x) = f(x).

Proof To show that dist = d for pairs of points of type (1), we need to verify that
for all (g, t) eV, the predistance measured along the sequence of points (f, 0)—(g, t) = x
is at Jeast f(x). By part (4) of the definition of d, we have d (£ 0), (g, ) = WLS/—gll -+ Nt
If N is greater than the maximum length of a path from M ( f) to m(f), it follows from
the definition of M*(f) in step 3 that dist(M°(g), M" (9)) < Nt. Therefore by the triangle
inequality in L (S), we have

F0) < f—gll+9(M° (g)) + dists: (M° (9), M*(g))+dists: (M'(g), x)
< \If=gll+ 7, + N+ dists: (M* (g), x)
<d((f,0), (g, D) +a((g, 1)s x).

Lemmas 3.4 and 3.6 show that f° = fand f* = dy(py. A §imilar calculation (cf. also [4],
page 37) shows that all functions lie in C < U,. This proves Proposition 3.2.

§ 4. Extrema of the diameter functional. The power set 2" of a Riemannian manifold
(V, dist) may be viewed as a metric space, with respect to the Hausdorff distance dist,,
among (closed) sets Y V. The diameter functional § on 2" associates to cach ¥ Vits
diameter §(Y) = max,,,ey dist{x, y).

DEFINITION 4.1, We call Yan extremum of § il every perturbation of Y decreases d(Y)
at most quadratically in the size of the perturbation.

Thus we cannot decrease & () linearly. To explain what this means, we consider the
notion of extremality at a point.

Given a, be V with a minimizing geodesic y joining them, denote by u,,e T, V the
tangent vector to y at a. Let ae Yand let d = §(Y). We say that Y is d-extremal at a if
the following two equivalent conditions are satisfied:

(i) for every ve T,V there is a point be Y such that dist(a, b) = d and (v, 4, > 0;
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(ii) a perturbation of Y which displaces a by a distance ¢ > 0 and keeps all other
points fixed, decreases the quantity maxy.y(dist(a, b)) at most quadratically in &.

4.2. Now suppose Y has k points: Y= {y,, ..., y,}. We view Yas a point of the
parameter space V*= Vx ... x V (the product metric is commensurate with distg).
Each pair of points a = y;, b = y; at distance d defines a function dist (m;, ;) on the
parameter space, taking the value d at Ye V¥, where =, is the projection to the jth factor.
The gradient of this function has the form (., w)e T,V x T,V < T, (V). We use these
gradients instead of the vectors ug in (i), and allow all points to vary instead of just @ in
(i), to define d-extremality of Y.

An extremum of § typically looks like the Cartesian product of an ordinary smooth
extremum, with a piecewise linear function greater than a positive constant multiple of
the absolute value function. A critical value of § is the value at an extremum. We say
that Y is the first extremum of § if §(Y) is the smallest nonzero critical value. It is
possible to do a kind of Morse theory in 2¥ (and in L® (V)) with this notion of extremum
replacing the ordinary smooth one (cf. Lemma 4.8).

Lemma 4.3. Every extremum of & on the power set of S* is the set of vertices of
a regular odd polygon inscribed in S*.

Proof If Y = §' is an extremum with 8(Y) = 4, every point ae Y can be included in
an isosceles triangle with two points b, ce Y so that dist(a, b) = dist(a, ¢) = A. The
lemma follows by induction.

DermTION 4.4, Given a finite set ¥ < §* containing no pair of antipodal points, we
define a relation ~ among points of Yas follows: x ~ y if and only if for all ze ¥, the set
{x, y, z} is contained in some semicircle (cf. [13], page 126).

Lemma 4.5. The relation ~ is an equivalence relation. If 6 (Y) < 1,, then the number of
equivalence classes is either 1 or 3.

Proof The set D of finite subsets of §' containing no antipodal points has
countably many connected components. Each component of D contains a unique odd
polygon (up to congruence). Two points of Y are in the same equivalence class of ~ if
and only if they flow to the same vertex of the polygon under the (downward) gradient
flow of &. The only regular polygon with diameter < 1, is the triangle. Hence a set YeD
with 3(Y) < 4, is in the connected component of either a point (if ¥ lies in some
semicircle) or an equilateral triangle.

DerivTION 4.6, The equivalence classes of Y will be called clusters.
We may view a cluster as a smeared vertex of a regular odd polygon (Figure 2).

LeMMA 4.7. Suppose Y < S contains no pair of antipodal points. Let y, ze Y with
y~z Let.y < 8! be the shortest arc joining y and z. Then diam(Yu y) = diam(Y).

Fig, 2. A S-point set on S' may have cither 1, 3, or 5 clusters
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Proof Taking the convex hull in S* of each cluster does not increase the diameter
(cf. Lemma 7.2).

Returning to the general situation, let ‘4, < 67'(1,) = 2” be the set of the lirst
extrema. Assume that the isometry group of V¥ is transitive on 4, (this is true for all
two-point homogeneous spaces). Let k = card (Y) for Ye 4, be the number of points in
the first extremum. Let A <1, and let W< V¥ be the connected component of the
sublevel set 6~1([0, 4)) of §: ¥*— R™ which contains 4.

LemMa 4.8. A, is a deformation retract of W.

Proof. Choose the tangent vector to W at Ye W which forms the minimax angle
with the gradients (i, Up) (cf. 4.2). This angle is acute unless Ye4;. The resulting
vector field may be regularized to a continuous vector field on W vanishing along A4,
but we will not need this. It is clear that the flow generated by this vector field is
continuous, proving the lemma.

§ 5. Deformation of the component of the first extremum. Let r > 0 be as in Theorem
1.1. Let A < U, be the set consisting of reduced feU, such that the sublevel set
{xeS"|f(x) < 4,/2} = §" lies in no semicircle.

The first extremum of the diameter functional on 2% is the set of vertices of an
equilateral triangle inscribed in S*. The set of the first extrema is 4, = $'/Z, < 2%". We
identify S*/Z, with its image in 4 by the map p—f,, where f, (x) = dists: (x, |pf)+4,/2.

ProrosiTioN 5.1. Any polyhedron P < A can be retracted in A to SYZ,.

Proof. The argument is similarto. that for Proposition 3.2. There are two main
differences: the range of m will now be a larger space; the retraction in step 4 will now be
in two movements. The retraction will be compatible (up to homotopy) with the
deformation of Lemma 2.7(ii).

DEFINITION 5.2. Let T be the subset of the third symmetric power of S* consisting of
triples p = {p;, p,. p3} such that p does not lie in any closed semicircle.

Let v = (v, v,, v3)eR3., and define a function MR (p, v)eL* by formula (2.4).

DEerINITION 5.3. Let MR < L (S") be the collection of reduced functions MR (p, v)
such that pe T, min;—; 5 3v; <r and max;.; ;30; < 4,/2.

Clearly, MR < A. Let h: MR — T be the projection to the first factor: h(MR (p, v)) = p.

Let Pc A< U,. By compactness, there is an r, < A,/2 such that the set
{xeS'|f(x) <r,} is still not contained in any semicircle, for all feP. Let
ry = (r;+4,/2)/2. Assume P is triangulated into simplices of diameter < &= min(r, ~rg,
F3—ry).

We modify Step 1 as follows. Let fe P. The set {x&S'|f(x) < r,} has 3 clusters by
Lemma 4.5. Choose the point p; in each cluster to be the rightmost point at which
f achieves its minimum in the cluster, and let vy = max(f (p)-+e, ,/2). This de-
fines the triples p and v, and we let M: P~MR < A be the discontinuous map
M(f)=MR(p, v).

We let m(f) = M(f) on P°, and extend, by linearity within cach cluster, to all of P.

We define the family of functions M’ (f) by joining the underlying 3-point sets of M (f)
and m(f), again linearly within each cluster.
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We modify step 4 by setting V= C, L S*, where C,, = (P x [0, 1])u,,(MR) is the
mapping cylinder of m: P—+MR, and U stands for disjoint union. We define d as
follows. Equations (1) and (2) remain the same. In equation (4), dists: (m(f), m{g)) must
be replaced by the Hausdorff distance between sets h(m(f)) and h(m(g)) in S*. Equation
(3) is replaced by

&) d((f: 1, ) = M () ).
The inequality (x) is replaced by
(%) diam ((M°(f)) U (M (g)) < 274

if fand ¢ are sufliciently close. This inequality is immediate from Lemma 2.2.

Let dist be the corresponding distance. One checks that dist((f, 0), x) = f(x) and
dist (2 1), x) = m(f)(x).

Here a slight refinement of (x+) is necessary, namely an upper bound of v;+ v; for the
distance between a point in the ith and a point in the jth cluster of h(M* (1)) u h(M*(g)),
for all 1 <i,j< 3. One also checks that the resulting deformation of P into MR lies
entirely in 4 = U,. Proposition 5.1 now follows from Lemma 4.8 with 4, = SYZ,
where the flow must be modified by including all except the shortest distance among
those involved in the definition of the minimax angle. In our situation, this flow consists
of only two parts: (i) move the endpoints of the shortest side of the triangle away from
each other until the two shortest sides come to have the same length; (i) move the
endpoints of the longest side of the triangle toward each other, keeping the third vertex
fixed, until the Jongest two sides come to have the same length.

By step 1, v; = A,/2, and v;-+v; 2 4;, Vi, j. Since the shortest side is always < 4,
part (i) does not take us out of the class of reduced functions. A similar remark applies
to'part (ii). ‘

Once all triangles have been deformed to equilateral ones, we take care of the v; by
deforming all three to 1,/2. This completes the retraction of MR to SYZ,.

§ 6. Deformation of the overlap. Let B < U,S* consist of reduced fe U, such that the
sublevel set < r lies in a semicircle, but the set f<4,/2 does not.

PROPOSITION 6.1. Any polyhedron P < B can be retracted in B to (SYZ,) x S*.

Proof The argument is the same as for the set A = U, except for the last
paragraph of Scetion 5. Let peS'/Z,, and assume that MR(p, v)€ B, Let ¢ = minw;,
b =maxuv, Then ¢ <b by Remark 2.3 We use the linear map

Ay bt

Ayt—a
2 b~a+

2 b—a

to deform a, b 1o 1,/2, Ay/2. Let us assume that a = 242, b= 2,/2.
DEFINITION 6.2, The skew-hexagon H = R? is the set

H = {(v,, 92, v3)eR3|m}in b= d; m?xvj = b},

consisting of the six edges of the cube {(v;, v, v3)€R?|a < v; < b} whose midpoints lie
in the plane vy +v,+vy = (a+3b)/2.
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Given peS?, we identify the skew-hexagon with St as follows. We map (¢, b, b) to
p1» (b, a, a) to the point opposite p;, and similarly for p, and p,; and then extend
linearly over the 6 edges. This gives a map

{MR (p, v)|peS'/Zs, ve HY —(SY/Z4) x S*.

We must show that this is homotopic to the map X N B—(5*/Z;) x §* of Lemma 2.7
(iii), where the domains of the two maps are identified by retracting X n B as in Section 5.

Let peSY/Z, be fixed, and let dt = US(d,, f,, f). Given xeS*, let £, >0 be the
largest ¢ such that d.¢B, or equivalently, the smallest ¢ such that the sublevel set
{yeS!|d.(y) < b} has three clusters. Let #; be the minimum value of d? on the cluster
near p;, and v, = max (§;, a). Our choice of t, implies that max;; = b. Let B(pj, b—a) = 8*
be the open ball of radius (b—a) centered at p;,j=1, 2, 3.

LEMMA 6.3. The map g: S*—H, x> (v, v, v3) has degree 1. It s injective on
;B (@) b—a), and collapses the complement St—J;B(p;, b—a) to the three vertices
(a, a, b), {(a, b, a), (b, a,a) of H.

Proof We identify S* with the interval [0, 1] so that p; =0 =1, p, =4, p; =3.
The graphs of d,, and f, meet at points p,— 173 and p;+ 7z. We have d,, > f, on the
interval (p, — 1, ps+73). For 0 <t <3, we have d,, > f, on the interval (p,— 5 +14,
p3+12—%). For small x,d, >/, on (p,—t5+% ps+1r+3%). Similarly, di>f, on
L= (Pz‘—'i‘i‘l' i+4% pat f—%+ 3).

We have f, (p3+75) = %. As ¢ increases, the interval I, , shrinks and the common
value of &, and f, at both endpoints of I, , decreases. The function d'; enters B (and A)

_when the value at the right endpoint reaches : £, (ps+ 53— §+ %) =1, or equivalently
#5—%+%+% =1 Solving this for t = t,, we obtain t, = {5+ x. When t = t,, the value
at the left endpoint of I, is v, =, (p,— T2 +%+% = % —%—5+% = §—x. The cluster
of the set {yeS!|d®(y) <3} near p, is a single point f; = p;+35. We have v, =4,
v, =4=x, vy = d?(p;) =, (f;) = $. Therefore g maps the arc [0, 35] = S* to the edge
from (a, b, b) to (a, a, b). i

1/2-

Fig. 3. Graph of d
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To summarize, g (p,) = (@, b, b), g(p;) = (b, a, b), g (ps) = (b, b, a); the ball B(p,, b—4)
is mapped injectively onto the union of the two edges joining (a, b, b) with (a, a, b) and
with (¢, b, a); and the balls B(p,, b—a) and B(ps, b—a) similarly cover the other
4 edges.

Figure 3 shows the graph of d¥ for x = ¢5 by a solid line, and d, and f, by broken
lines. Also shown is the vertical interval of values of df at py++5 for 0 <t < tp.

§7. The case of the two-sphere. Let §% be the sphere of constant curvature +1 and
Riemannian diameter . Let oy = arccos(— 1/3) and «, = arc cos(——l/\/g). The num-
ber @, is the spherical diameter of an equilateral 4-tuple, i.e. the set of vertices of
a regular tetrahedron inseribed in §2. The number o, is the spherical diameter of the set
of vertices ol an inscribed pyramid on a pentagon, such that all pairwise distances
among the vertices are equal except for pairs of adjacent vertices of the pentagon. We
have /2 < &, < o, < 21/3. Recall that the binary tetrahedral group E¢ naturally acts
on the sphere $*. The quotient S%/E, parametrizes equilateral 4-tuples in S* (cf. [14],
Section 2).

TugoriM 7.1, Let r > 0, and assume that /2 < r < ay/2. Then U,S? € L™ has the
homotopy type of the topological join of S% and S3/Eq.

Proof The proof is modeled on that of Theorem 1.1 in Sections 3, 5, and 6. Since
taking the geodesic convex hull of sets on S? increases their diameter, we replace
Lemma 4.7 by Lemma 7.2 below. In Lemmas 7.4 and 7.5 we show that a, and a, are the
first two critical values of the diameter functional. The analog of the skew-hexagon of § 6
is the 2Z-sphere homeomorphic to the subset of the boundary of the hypercube
0<y <1, 1<j<4, which consists of the 2-faces satisfying min;v; = 0, max;v; = 1.
The flow of Lemma 4.8 must be modified as follows. The collection G of gradients
(t4ap» Upe) must include not only the pairs a, b at maximal distance, but all distances
other than the smallest distance. The flow is then generated by the tangent vector to the
parameter space which forms the minimax angle with the vectors in G. Since the
smallest distance among 4 points on $? is always < «, by a packing argument, this flow
will never increase distances that are greater than a,.

We iterate this procedure, increasing the multiplicity of the least distance until the
4-tuple becomes equilateral,

LEMMA 7.2, Lei Ye 8% with diam Y < 2n/3. Let y, ze Y and assume that Jor dll
p.ga Y. the set {y, z, p, q} lies in some hemisphere. Then there is a curve y < S joining
y and z such that diam (Ywy) = diam Y,

Prool Let D e S2 be the disc built on yz as a diameter. We will show that y and
2 lie in the same conneeted component of D— (e By) where B, denotes the ball of
radius m - diam Y centered al the point p' opposite p. If y and z are in different
components, then there must be overlapping balls Bj, and B, where p and g are
separated by the great circle through y and z (Figure 4).

Let ¢ be the arc of the great circle from p' to ¢ passing through the overlap. Then

length () < rad By +rad By = 2(n —d)<m.
Hence ¢ is minimizing. 1t is clear that ¢ meets the shortest arc yz. We reach

¥
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Fig. 4. Points y and z arc scparated by removing B, B,

a contradiction by concluding that the set {y, z, p, q} lies in no hemisphere, which
follows from the following lemma.

LEMMA 7.3. 4 set {a, b, ¢, d} = 52 lies in no hemisphere if and only if the shortest arcs
ab and c'd meet.

Proof If ab meets ¢'d’, then the arcs ab and cd contain a pair of antipodal points.

LemMA 74. The first critical value of the diameter functional on the power set
of 8% is ;. '

Proof This is equivalent to the classical theorem of Jung and Molnér (cf. [3], page
92 and [12], page 452).

LeMMA 7.5. The second critical value of the diameter functional on the power set
of 8% is ay.

Proof. If Y §? is an extremum with diam ¥ < 27/3; then each point of Y is at
maximal distance (equal to diam Y) from at least three points4of Y. If card (Y) = 4, then
Y is equilateral and diam Y = a, . If card (¥) = 5 and the graph of maximal distances has
valence 3 at every vertex, then e = 3v/2 = 15/2, a contradiction. Hence one of the points
must be at maximal distance from all four other points, which therefore lie on a circle.
Clearly, they must form an extremum of the diameter functional on the power set of the
circle. But the circle has no extrema with an even number of points by Lemma 4.3.

Suppose Y« §% is an extremum of the diameter functional with diam Y < o, and
card Y= 6. Then for all y, ze ¥, dist (y, z') > n—a,. Furthermore, dist(y, z) 2 T—o, by
[13], Lemma 6.3. Thus YUY is a (n—o,)-separated 12-point set. It follows by
a packing argument that YU Y is the set of vertices of a regular inscribed icosahedron,
The only such extremum Y is the pyramid on a pentagon such that the distance from
the top of the pyramid to each of the vertices of the base equals the distance between
two non-adjacent vertices of the base.

The possibility card ¥ > 7, diam ¥ < a, is ruled out by the packing argument above.

§8. The case of the complex projective space. Let CP" be the complex projective

space with curvature 1/4 <K < 1. Then a complex projective line CP* <= CP" is
a 2-sphere of curvature +1. Denote by 4, the space of equilateral 4-tuples in complex

icm
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projective lines in CP". Denote by X the “partial join” of 4, and CP", where
ae A, and xeCP" are joined by an interval if and only if x lies in the projective line
containing a. Let 4, <4, be'thc first two nonzero critical values of the diameter
functional on the power set of CP". We have 4, = «, = arc cos (—1/3) (cf. Section 7) but
the value of A, is unknown. i

TunoroM 8.1, Let v > 0, and assume that 2,/2 < r < J,/2. Then U, CP" < L® has the
homotopy type of X.

Proofl We use Lemma 4.8 as before. To state an analog of Lemma 7.2, we need to
introduce an cquivalence relation on a set Y < CP" with diameter less than 2m/3.

A triangle abe in CP" with perimeter < = can be spanned by a surface, by joining the
point ¢ by minimizing geodesics with each point on the minimizing geodesic bc.

Let pjeCP", 1<j<4, with dist(p, p) <2n/3. Let j; = CP" be the triangle
spanned by the threc points other than p;. Let [p;p,psp,JeH,(CP", Z,) = Z, be the
class of the 2-cycle 3 f« 1 p;. One verifies that this class is independent of the ordering of
the four points.

. DerNITioN 8.2. Given pe CP" with dist(p, CP*) < x, denote by poe CP* the point
nearest p. Given meCP!, let m e CP! denote the point opposite m.

Lomma 83. Let a, b, ¢, de CP" with pairwise distances < 27r/3.'Let CP! be the

projective line through a and b. Then the following three conditions are equivalent:
(i) [abed] = 0;

(i) the set {a, b, ¢, d} < CP" flows to a point under the (downward) diameter flow on

the power set of CP",

(iii) the set {a, b, ¢y, dy} = CP* is contained in some hemisphere.

Prool. An cxtremum with < 4 points of the diameter functional on the power set of
CP" is cither a point or an equilateral 4-tuple in CP' < CP", whose class in
H,(CP", Z,) is 1. The class is congtant under the flow. We must verify that property (iii)
is also preserved by the flow. Suppose a transition occurs toward not being contained in
any hemisphere. When this happens, three of the four points, say b, ¢q, and do, must lie.
on a greal circle y = CP! in such a way that no semicircle of y contains all three.

Congider the totally geodesic submanifold RP* = CP" (with curvature +3) con-
taining y and the point ¢&CP", Then the perimeter of the triangle beod, represents the
generator of 7, (RP3). Let CP* 2 CP" be the complex projective plane containing RPZ,
We replace d by its projection to CP; this does not increase its distance to b or ¢, and
does not change its nearcst point d,eCP'. Let peCP* be the point opposite CP'.

Let deCP? be the point with the following properties: (i) do = dy; (ii) ddg = ddy;
(iii) the distance ¢d is minimal among all points d satisfying (i) and (id). _

Then deRP? (of. [12], Lemma 4.12); note that from the theorem of cosines
of P. A. Shirokov [17], we have ‘ ‘

N Y LY L
cos ed = cos pe cos pd - sin pe sin pd cos o —2sin — sin® =-sin 0

c pd .
G e S nef)—29im? PE in? P sin2 0
< o8 p cos pd +-sin pe sin pd cos 6 —2sin 5 st

= oS ed
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where « and 6 are the two angles defined in [12], Section 4 at the vertex p of the triangle
cpd. The angles « and 6 correspond to A and ¢ of [2]. See also [1], [9].

Finally the perimeter of the triangle bed represents the generator of m; (RP?) and hence
has length > 2x, contradicting the assumption that all pairwise distances are < 2m/3.

Let Y= CP" with diam Y < 2n/3. Let y, ze Y. We write y ~ z if for all p, ge Y, one
has [ yzpq] = 0. Then we have the following analog of Lemmas 4.7 and 7.2.

LemMa 84. Let Yo CP" with diam Y < 2n/3, let y, ze Y, and assume y ~ z. Let
CP! = CP" be the projective line through y and z. Then there is a curve y < CP! joining
y and z such that diam(Yuy) = diam Y.

Proof. Let D = CP! be the disc built on yz as a diameter. Given a point me CP", let
B,, = B(m, d)n CP!, where d = diam Y. Then rad(B,) < d. Let pe Y. Then y, zeB,.
Let B}, = CP* be the complement of B,. Note that unlike the > case, we do not know
that rad B, < m/2. On the other hand,

rad (B;) = n—rad (B)) > n—d > d/2 > }dist(y, z) = rad (D).

Meanwhile, diam B, > dist(y, z) = diam D, hence rad (B,) 2 rad (D). It follows that the
circle 8D is shorter than 9B, so 0B, cannot be contained in D.

We view the great circle through y and z as the equator. Suppose that after removing
the balls B), from D, as p ranges over ¥, the points y and z turn out to be in different
connected components. Then y and z are actually disconnected by removing a pair of
overlapping balls B, and B;, with centers pp north of the equator and ¢ south of it.
Hence the shortest arcpoqy meets the equator.

We will show that pyq5 actually meets the shortest arc yz. Then Lemmas 8.3 and 7.3
imply [yzpq] # 0, contradicting the assumption y ~ z. ) ‘

Let ¢ be the great circle through pp and ¢p. It is clear that the overlap
is contained in D, ie. B, By = D. Of the two points of the intersection ¢ n 8B}, let
e=@NdB,N B, =D, and let a be the other point. Since length 8B), > length 4D, only
one of the two points can be in D. Thus a¢ D. Hence the arc ae = ¢ N B), must meet aD.
Let b= ae n dD € By, Since 8D N B, is a connected arc of the northern semicircle of 4D,
the point b lies north of the equator. We similarly define points ¢, y&€q@n dBy, and
fedD n B, south of the equator (see Figure 3).
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(Note that the position of py relative to b and ¢ is not known,) We conclude that the
“chords” bf and yz of D must meet.

Let x = hf' n yz. The shortest arc joining the centers of overlapping balls must pass
through the overlap. Therefore the shortest arc pyqp is a subarc of the geodesic segment
ag = abeefg. We orient ag from a to g by the unit tangent vector . Then u(x) points
southward.

Suppose pyqo meets the equator in x’ instead of x, (Note that the union B}, U B, and
thus the arcag, may well contain both x and x'.) Since phqp is a subarc of ag, it follows
that u(x') points northward. But pf comes before ¢, along ag. This forces pj into the
southern hemisphere. The contradiction shows that ppqo meets the equator at xe yz.
Lemma 8.4 is proved,

References

[11 H. Aslaksen, Laws of trigonometry on SU(3), Trans. Amer. Math. Soc. 317 (1990), 127-142.

[2] U. Brehm, The shape invariant of triangles and trigonometry in two-point homogeneous
spaces, Geom, Dedicata 33 (1990), 59-76.

[3] Yu D. Burago and V. A. Zalgaller, Geometric Inequalities, Springer-Verlag, 1988.

[4] M. Gromov, Structures métriques pour les variétés Riemanniennes, Cedic, Paris 1981.

[5] - Curvature, diameter and Betti numbers, Comment. Math. Helv. 56 (1981), 179-195.

[6] = Filling Riemannian manifolds, 1, Dillerential Geom. 18 (1983), 1-147.

[7] K.Grove and P, Petersen, Bounding homotopy types by geometry, Ann. of Math. 128
(1988), 195-206.

[8] K. Grove and K. Shiohama, A generalized sphere theorem, ibid. 106 (1977), 201-211.

[91 W.Y.Hsiang, On the laws of trigonometries of two-point homogeneous spaces, Ann. Global
Anal. Geom. 7 (1989), 29-45.

[10] S. T. Hu, Homotopy Theory, Academic Press, New York 1959.

[11] M. Katz, The filling radius of two-point homogeneous spaces, J. Differential Geom. 18 (1983),
505-511.

[12] ~— Jung's theorem in complex projective geometry, Quart. J. Math. Oxford (2) 36
(1985), 451--466.

[13] = Diameter-extremal subsets of spheres, Discrete Comput. Geom. 4 (1989), 117-137.

[14] = The rational filling radius of complex projective space, Topology Appl (1991), to appear.

[15] €. Kuratowski, Quelques problémes concernant les espaces métriques non-séparables,
Fund. Muth. 25 (1935), 534-545.

[16] E. Leuzinger, On the trigonometry of symmetric spaces, Ziirich, preprint, 1990.

[17] P. A. Shirokov, On a certaln type of symmetric spaces (in Russian), Mat. Sb. 41 (1957),

361372,
DEPARTMENT OF MATHUMATICS Current address: 3 ) ) )
Swain Uall lnst ! INSTITUT DES HAUTES ETUDES SCIENTIFIQUES
Bloomington, Indinnn 47405 35, route de Chartres
US.A. 91440 Bures-sur-Yveite

France

Received 24 August 1989;
in revised form 12 March and 5 June 1990


Artur




