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Abstract. We develop methods for reducing arbitrary bimodule matrix problems to the study
of representations of partially ordered sets and socle projective modules over right peak rings.

1. Introduction. An important role in the representation theory of finite-dimensional
algebras is played by bimodule matrix problems in the sense of Roiter [14] and Drozd
[3], ie. the classification of indecomposables in the category Mat (4%, ) of matrices over
a K-L-bimodule B: K° x L, — ob. If either K or L is the category of finite-dimensional
vector spaces over a division ring then the study of Mat (8B, ) is equivalent to the study
of the subspace category of a vector space category [12, 20] and to the study of the
category mod,,(R) of finitely generated right socle projective. R-modules over a right
peak ring R [17]. In this case there is a well-developed theory and there are criteria for
determining the representation type [6, 7, 9, 17].

The main aim of this paper is to study bimodule matrix problems reducible to the
study of mod,,(R), where R is a right peak ring. Qur reductions are given in terms of
modules over B-traced rmgs [20], ie. semiperfect rings (in general without identity) of
the form

4 LN
(1.1) R= (0 B”),

where 4= @4, B=@D Jeln€), B are semiperfect rings with complete sets of
orthogonal primitive idempotents ¢, iel,, e;, j,elp, JNp is an 4-B-bimodule and
e;Ny is finitely cogenerated for every iel, in the sense that soc(e;Ny) is a finitely
generated essential submodule of ¢;N . It is proved in [20] that if B is narrow then there
are a traced ring R and a commutative diagram

mod P (R)4

/ \\

(1.2) Mat(xB,) = mod (R4 odj;(m
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of full subcategories of Mod(R) connected by full dense functors having small kernels
and preserving the representation type (see also [11]).
Let us recall from [16, 19, 20] that a right R-module

Xp =X X5, 0)
is injectively finitely cogenerated (i.€. X g is in mod;(R)p) if X’ is in the category mod (4)

of finitely generated right A-modules, X3 is in the category inj(B) consisting of injectives
in the category fcg(B) of finitely cogenerated right B-modules and the map

@: X'y —~Homy(4Np, X5)
adjoint to ¢ is injective. The module Xp is adjusted (ie. Xp is in adjf(R)) if X/ is in
mod(A), X4 is in feg(B), ¢ is surjective and @ is injective. The module X is in mod [7(R}3
(resp. in mod™ (R)*) if X" e pr(4) and X" einj(B) (resp. X'epr(4) and ¢ is surjective). The
remaining definitions can be found in [20].

In Section 2 we consider the case when B is an Auslander sp-algebra of an
sp-representation-finite right multipeak ring and ¢;N is injective for iel,. We associate
to R a right multipeak ring Q in such a way that mod;(R)y = mod,, (2%). Applications
of this reduction are given in Section 3.

In Section 4 we associate to any traced ring R having a waist (Definition 4.1) a right
peak ring SR and a waist reflection functor

&: adj$(R) - mod,(5R)

which is an equivalence of categories (Theorem 4.12). Let us explain the main idea of it
by the following simple example.

ExampLE 1.3. Let I and J be finite posets with order <(*) and denote by I<1J the
poset disjoint union of I and J with additional relations i <j for iel and jeJ. Let
R = F(I<J) be the path algebra of I<tJ over a division ring F. Then R is traced of the
form (1.1) with A = FI, B = FJ and ,Nj defined by N, = F for all iel and jeJ. Itis
easy to see that Mat(,Ny) can be interpreted as the category of matrix representations
of the pair L, J [6, 16] and Mat(,Ny) = modf; (R)#. The categories Mat(,Np) and
adj#(R) have the same representation type and the functor ad vanishes only on finitely
many objects of the form (P, 0, 0), (0, @, 0) (see [16; Prop. B7.2, Lemma B7.16] and [20;
5.5, 5.14, 5.17] for details). ‘

Suppose that I has a unique maximal element u and J has a unique minimal
element v. Then I<aJ has the form of Fig. 1 and an adjusted R-module X, can be
identified with a system X =(X,, @) of finite-dimensional F-vector spaces X,,
tel<J, connected by F-linear maps (@ X,—X, for all t<s in I<J such that
05 s, =, for t<s=<r, @ is injective and o, is surjective for all iel and jel.

Let 8(1, J) be the poset disjoint union of I—{u} and J—{v}. Then the reflection
functor

5: adji(R)—8(I, J)-sp

() We suppose that i <j and j<i implies i =j.
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defined by 6(X p) = (M, M), where M = X,, M, = Im ¢, for ie | — {u} and M, = Ker 4
for jeJ—{v} is an equivalence of categories. In the case I has more than onje maxirfla!lJ
element the formula above defines a functor &: adj§(R)— (I U J —{v})-sp which is full,
faithful and Imé' consists of spaces (M, M,) such that M = Y, M,.

! Uy J

Fig, 1

Applications of the waist reflection functor & are discussed in Section 5. We show in
5.1 that the study of representations of a pair of posets with zero relations is reduced to
the study of I-spaces. In 5.3 a new explanation of the differentiation algorithm for posets
[10, 16] and for right peak rings [17, 19] is given in terms of the waist reflection functor.
Moreover, we describe in 5.2 a peak triangular reduction for right multipeak path
algebras A. This allows us to reduce (under some assumptions) the study of mod,, () to
the study of I-spaces (Proposition 5.2d). The reduction can be considered as
a counterpart of the differentiation procedure for right multipeak path algebras 4. It
allows us to determine the representation type [1] of mod,,(A4) for a large class of right
multipeak algebras 4 which appear mainly in the study of nonschurian vector space
categories Ky by applying the covering technique as follows. Given such a vector space
F-category K, we can construct a universal Galois covering

110, 9.9

of the bound quiver F(Q, Q) of the right peak F-algebra R = Ry of K, [17] and the
induced push-down functor

St mody, F (@, Q‘)amodsp(R)

preserves the representation type [18, 22, 23, 25]. The bound quiver algebra F(J, §) is
a multipeak one [18] and in order to determine the representation type of K it is
sufficient to determine the type of mod,,F (@, @). Our reduction in 5.2 allows us to do
this for a wide class of vector space categories studied in [21-25]. Let us illustrate the
procedure above by the following example.

ExamprLe 1.3, Consider a bipartite stratified poset I} = (I*, ), in the sense of [22, 23],
where I* is the poset of Fig. 2 and ¢ is a relation on pairs (i, j), i <j, defined by

Fig. 2
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G e, 1) i=3,4,8 (3 9e@3,4) @4 84, 8) and (3, 8)e(3, 8). We are going to
determine the representation type of mods,(R), where R is the right peak incidence
matrix F-algebra [22, 23]

FI¥ = {A= (L) eFI* 1, =1, il(p, qels, 1)}
of I}. Here FI* is the incidence algebra of the poset I* [7, 16, 22, 23] and F is an
algebraically . closed field. It follows from [22-25] that R = F(Q, Q), where Q is the

quiver of Fig. 3 and Q is the ideal in FQ generated by the marked commutativity and
zero relations, and by zero relations of the form cfc’, cyc with paths B, v (see [23; p. 7]).

Moreover, the bound quiver (J, @) with § as in Fig. 4 and & = Q is the universal
cover of (Q, ) with Galois group G = Z, the induced push down functor f, preserves
the representation type and by [24] the support of any indecomposable module in
mod,, F(J, Q) is a full peak subquiver of the two-peak poset of Fig. 5 with the marked
zero relation. By applying our waist reflection functor and the peak reduction in 5.2 we
show in Example 5.2d that mod,,(FI} ") is of tame type by reducing the problem to
I'-spaces and by applying the criterion of Nazarova [9]. It follows that mod,,(R) is of
tame type.

Fig. 4

The waist reflection functors and peak triangular reductions are frequently used in
[21-26]. )

Throughout this paper we suppose that R is a basic semiperfect ring of the form
(1.1) and we fix complete sets of primitive orthogonal idempotents e;, iel,, and
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Fig. 5

e, Ju€ly, of 4 and B. It follows that R has the following I x I p-matrix form:

g e Ay o B e N
sl Ay e Ny N,
(1.4) R= T .
0 ...B:!’.. S*.Bt“
B B

where Ip=1,0Uly, A =ede; and B, =e¢ Be, are local rings and A= J(A),
A;=edefori#jinly, ,*F,* =J(B,), By, = e, Be, fors, #1t, in Iy and N, =eNe,
for iel,, t,ely. We shall also write Ny =Ny, ,N, = ;Ne,.
The matrices in (1.4) are assumed to have only finitely many entries different from
zero and the multiplication in R is induced by bimodule maps
Cipet 1A ® A= A Coppt 5B, @By, — 5B

Ty

Cijr,: 1A1®1Nr,_'iNr,; Cit,s,* .'N:‘®r,Bs‘_’iNx,

satisfying obvious associativity conditions. Here we use the terminology and notations
introduced in [20, 17]. In particular, we call R faithfully right B-traced if R is B-traced
and N is faithful. R is left A-traced if R°? is right A-traced. We denote by (Ig, d) the
value scheme of R (see [20; p. 10]).

R is a right peak (resp. multipeak) ring with peak idempotent(s) e, , ¢, elg, if B is
a division ring (resp. a product of division rings) and R is faithfully right B-traced
[20, 17, 18]. In this case mod,,(R)j is the category mod,,(R) of finitely generated socle
projective right R-modules. If R is a left multipeak ring (ie. R°" is right multipeak) then
mod™(R)* is the category mod,;(R) of finitely generated top injective right R-modules
which are finitely cogenerated [20, 18].

By an R-module we mean a right R-module X such that XR = X. We denote by
J(R) the Jacobson radical of R and we put J(X) = XJ(R). We denote by pr(R) the
category of finitely generated projective right R-modules. By a PI-ring we mean a ring
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satisfying a polynomial identity. We recall that an artinian basic ring Ris a Pl-ring if and
only if any division factor ring of R/J(R) is finite-dimensional over its center. It follows
from [15] that if T is an artinian PI-ring with identity then there is a Morita duality

s D: mod (T°)—mod (T,

where 7= End(&;)* and &, is a minimal injective cogenerator in mod (T°P), It derives
the Nakayama equivalence

(1.6) n: pr(T)—inj(T)
defined by the formula n(P) = DHomy(P, T) [20; Sec. 1].

2. Simply sp-reducible traced rings. Following [7; Section 6] we associate to any
sp-representation-finite artinian right multipeak ring S its Auslander sp-ring

@n A5p(S) = End(Y,®...@ 1)

where ¥,,..., Y, is a complete set of pairwise nonisomorphic indecomposable modules
in mod,,(S). We know from [7] that if, in addition, S is a right peak ring then A, (S) is
an artinian, both left and right peak ring and gl.dim 4, (S) < 2. A ring B will be called
an Auslander sp-ring if B = A,,(S) for some sp-representation-finite right multipeak
artinian ring S.

DEeFINITION 2.2. A faithfully right B-traced ring R (1.1) is simply sp-reducible if e,N,
is in inj(B) for all ie I, and B is an artinian PI-ring which is Morita dual to A,,(S)°® for
some sp-representation-finite right multipeak ring § in the sense that there is a duality

(2.3) D: mod (A4,,(S)°?) ~(mod (B))°.
In this case we have a composed equivalence’
(24) mOdsp(S) “ pr (ASP (S)) & 11'1_] (B)n
where n is the Nakayama equivalence (1.6) and o is the Yoneda equivalence given by
the formula w(X) = Homy(Y,®...® Y, X).
It is easy to see that if S is a right peak ring with a peak P, then B is a right peak
ring and
(2.5) no(P,) = Ex(Py), no(E(P,) = P,
where Eyz(Py) is the B-injective envelope of the right peak P, of B.

If R is a simply sp-reducible faithfully B-traced ring then under the notation above
we associate to R the ring

2.6) Q= (‘g 41;45)

where ;Mg = @ier,(n®) ' (e;N;) and the left A-action-on My is induced by the left
multiplication of elements ¢;ae; on eNj. Since S is a right multipeak ring, it has
a faithfully right F-traced form
T  N¥
s={ T
)
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where F is a product of division rings. If ,Ms= ;M@ ;M7 is the corresponding
decomposition of M then

A My My A Ky
2.7 Qp = T ,.]I:JF = (0 e )

where A’ = (13 AI/"I)’ aKp= []J:’/IH:I If 4=A'/{acA’; aK = 0}, then the ring

4 K
28) Qi = <0 g F)

is called an sp-reduced form of R.

THEoREM 2.9, Let R be faithfully right B-traced ring of the form (1.1) which is simply
sp-reducible. Then

(a) The sp-reduced form Q% of R is a right multipeak ring and there exists an .
sp-reduction functor

(2.10) 11,1 mod;e(R)y— mod,,(2%)

which is an equivalence of categories. .

(b) If B is a right peak ring then Qi is aright peak ring. If, in addition, Ny = E B(.P*)“
then Mg =P jor iel,, where Py and P, are peaks of B and S. If this holds for all iel,
then My =0 and QF = Q.

Prool Since 3K is faithful and Qp is obviously right S-traced, Qf is a right
multipeak ring. Furthermore, we know from [20; Lemma 4.15]' thgt an Qg-module
Y=(YYy, Y¥, ¥) is in mod;e(Qg)y if and only if Y3 is socle projective and the map
¥: Y, —Homg(,Mg, Y¥) adjoint to y is injective. Let us define a functor

W,y modi(R)p—mod; (Qr)p

by the formula W.(X%, X5, ¢)={(X4 (new) " X5, zp’). _(see (2.4)), where ¢
X' ® Mg (nw)” ' X} is the map adjoint to the composition

X'y & Homy(4N 5, X75) £ Homs(,Ms, (ne)™* X5)

and 6 1 (fi)ar, = (MO (/))iur- The functor W, is defined on maps in a na}tura{l way. S}ﬂ@
(24) is an equivalence, by the remark above Xz is in m'odic(l‘{),, 1ff “T(X R) 18 m-
mod;,(2,)r and therefore 1, is an equivalence of categories. Slr‘lce in view of [20;
Lemma 2.8] we have mod,o(Q2g)y = m0d,, (2K ), W'y defines the rcqul.rt.:d functor n, and
(a) follows. Since the statement (b) is an easy consequenee of definitions and (2.5), the
theorem is proved. .

COROLLARY 2.11. If the ring B in (1.1) has the form T=T,x ... xT,, where

FF.F
F-F

(2.12) T = o "
F
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with division ring F and ;N is injective for any il , then R is simply sp-reducible with
S = T, mods(T) = pr(T), new: pr(T)—inj(T) carries over the Tr-module (Q,...,0, F,...,F)
X1

(A
into (F,...,F,0,...,0) and
A M,
oy =4 407

If in addition Ng=E; (P ®...QE (P, for all iel, then Qf =Qp and
MT;=(0,...,0, Ff¥ for all iel, and j=1,...,t.

Proof. It is well known that any indecomposable in mod,,(T) is projective and
therefore A.,(T) = T. Hence R is simply sp-reducible and applying (2.5), Theorem 2.9
and the definition of nw we get the required results.

As a consequence we have the following reduction of Kleiner [6]

COROLLARY 2.13. Let I and J be finite posets and let

R=F(I<1J)=(I;IFNJ>

be as in Example 1.3. If J is linearly ordered and m is the maximal element in J then R is
simply sp-reducible, Qg ~ FL where L is the poset disjoint union of I and J with additional
relations i <m for i€l and n, induces an equivalence of categories

mod;e(R)ps = (L—{m})}-sp, adj(R) = (L—{m})-sp/[(J — {m})-sp].

Remark 2.14. One can generalize Corollary 2.13 as follows. Replace J by
a disjoint union H of linearly ordered sets J,...,J, with maximal elements m,,...,m,
and let U be the disjoint union of the posets I, J,,...,J, with additional relations
i<my,...,i<mforiel Then Qf = FU and n, induces an equivalence of categories
mod;, (F(I< H))FH = mod,,(FU) and. the right hand category consists of F-linear
representations of U with the socle concentrated over the unique maximal elements
my,...,m, of U.

ExAmpLE 2.15. Let R be the path F-algebra of the commutative quiver of Fig. 6, i..

FFFF FFOFF
— FOF FFFFF
qii:>§éi+ FF FFFFF
RN } F FFFFF
e, R= "~ FFF00
FFO00

AN FOO

. FF
Fig.
ig. 6 L 7

Then R is simply sp-reducible and QF is given by the poset of Fig. 7, ie.
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OFFOF
00FO0F
00FOF
00FOF

FFF00
FF0O
FOO

L FF
F

[FFFF
FOF

~.. FF

: F

*
o]

m
[

Tig. 7

Let us show also a typical indirect application of Theorem 2.9.

ExAMPLE 2.16. Let I<aJ be the poset of Fig. 8 where J consists of +-points and
consider the FJ-traced ring F(I<aJ). We claim that mod;.(R)g; is of tame type [1].

Fig. 8
To see this, we note first that one can apply Theorem 2.9 to the B-traced algebra
AN
L -
w-(03)
with 4 = FJ* and B = FI°" because ;N & E(P)) for all jeJ and B = A (S) where

§ = FH and H is the poset :}.‘o—-»o It follows from Theorem 2.9 that Qg is the path
algebra of the poset of Fig. 9. Thus mod;;(R°)s = mod,,(Q2%r) & U-sp, where U is the

Fig. 9

poset ' &, which according to [9] is of tame. type. Since in view of (1.2) and

a duality D we have a diagram

modie (R)N mo.dic(Rop)B
e e
adjR) 2  adj(R™)

and the funétors 0 preserve the representation type, our claim follows.
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Together with sp-reduction an important role in applications is played by
a ti-reduction defined below.
AN
RT—.‘
(65)

DerFNiTION 2.17. Let
be a faithfully right B-traced Artin algebra. We call R simply ti-reducible if N is injective
and A4 = 4,,(S) where S is an sp-representation-finite right multipeak algebra.
If R is simply ti-reducible we have a commutative diagram
mod(S%) - mod,, ()2 pr(4)
(2.18) o P P

mod,,($7°%) F— mod,; (S°P) 2> inj(4°P),

where D is the standard duality and o, o’ are the Yoneda equivalences and V., F_ are
the reflection functors defined in [20; Definition 2.13], [17; Proposition 2.6]. We put
O=0V,, & =a0'V._.

We associate to R a B-traced algebra

S' M
Q= ,
@=(s 3)
where s»Mp =& "'(,N) with the natural B-module structure. Since § is a right
multipeak algebra, § and S” have the forms

T ¢N§ F Ny
S=(_T Y
(0 F)’ § (0 T )

where F is a product of division rings, N' = D(xN%) and soc(S) is a direct sum of
summands of (0, F). Consider F-traced algebras

(2.19)

F Ny pMj T My 1Ny B K
220) RR= T My |, = B M| =( "CF),
B 7 0 F

. 1 " ¢ ™M™ N ~
where srMp = pM3@ tMj, B' = ( . wKe=|" " | and M” = D(M). The algebra
0B sMj

(%)
0 F
with B=B'/{beB’; bK = 0} will be called the ti-reduced form of R.

THEOREM 2.22. Let R be a simply ti-reducible Artin algebra. Under the notation above
we have:

(2.21)

(2) Qx is a right multipeak Artin algebra and @ induces a ti-reduction functor

(2.23) ®,: mod™(R)* —»mod,,(Q5)
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which is an equivalence of categories. If A is a right peak algebra then Qf is also a right
peak algebra.
(b) The functor

Ls: mody,(S) - mod,,(25)

given by (Y, Yi, : Y ® ¢ Np > YR (Yr @ Y' @ Mp, Y5, o), where i is the com-
posed map

‘ Y®;Ne® Y Q@ M ®@,M 2 Y ® Npb Vi
is a fully faithful embedding and induces an equivalence

mod,,(@x)/[Imys] = adj§(R).

Here ¢; +M'®zMp— Ny is a T-F-bimodule map defining the multiplication in zQ*.
Proof. (a) It is not difficult to check that the diagram (2.18) induces a natural
isomorphism

»: PONp— ' (P)®@sv My

for any P in pr(4). As in the proof of Theorem 2.9 we show that the functor
3, mod?H(R)A —mod™(zQ)" given by the formula &,(X), X5, ¢) = (@' (X, X5, ¢ ™")
with X* in pr(4) is an equivalence of categories. Since by [20; Lemmas 2.8, 2.14] there
are equivalences

10007 Q)" £+ mod;o(u24)y = M0d;(Q5) = m0dy,(Qx),

by composing them with @, we get the required equivalence.

(b) It is easy to check that an Qz-module Y is in Im g if and only if @, *(Y)is of the
form (P, 0, 0), where P is in pr(4). Since the functor ,©: modPE(R): — adj #(R) is full
dense and Ker,0 =T[(P,0,0); Pepr(4)] [20; Corollary 210], it follows that
Ker,06™* = [Imyg] and (b) follows.

COROLLARY 2.24. If R is an Artin algebra (1.1), A= Ty x...x T,, where Tj is of the

AM
form (2.12) and 4N is injective then R is simply ti-reducible and xQ has the form ( 0 B >

() If R is as in Corollary 2.13 with I and J interchanged then &, induces an
equivalence of categories mod™(F(J< 1)) = (J—{m} G I)-sp.

3. A chain reduction for socle projective poset representations. Throughout this
Section I will be a finite poset with the set max(l) = {*;,....%} of all maximal elements.
We put = I—max(l) and ¢” = {iel; i<c} for cel. . ‘

Given a division ring F the path F-algebra FI is a right multipeal.c ring [18] (with
peaks corresponding to %,...,%,) Of equivalently, FI is faithfully right trflced. over
B=F(x;,....,%) = Fx...xF. The category mod;.(FI)z = mod,,(FI) o-f ﬁ.mte-dn:nen-
sional socle projective right FI-modules is the category of focle projective F-linear
representations of I, i.e. systems X = (X;, j¢i<; of finite-dimensjonal F-Yector spaces X;
connected by F-linear maps @ X;= X, i<, satisfying the following conditions:
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@) ;0= .0, for i<j<t, 5

(i) Nj=1Ker, ;=0 for all iel
If t = 1 then mod,,(FI) = I-sp. We are going to show a class of posets I for which the
study of mod,,(FI) is reducible to the study of £I-spaces for some poset &I associated
to L.

DEFINITION 3.1. A point cel is called an upper chain point if

(C1) ¢" is a chain C = {c,—c;—...—¢, =c}.

(C2) maxcf = maxc? for all i#].

(C3) The F-vector space category Hy = Homypy, (J(P,), mod,(FI,)) with I, = I—c*
is of finite poset type, ie. H°(j, y) = F and dimg|j| = dim|j|. = 1 for every nonzero
indecomposable object

¥ = Homp (J(P), y)

of H®. Here P, is the projective right FI-module having the space F over all points j > ¢
and zero otherwise.

If ¢ is an upper chain point we denote by I(H) the finite poset consisting of
indecomposable objects j in H‘, where y runs through a fixed set of pairwise
nonisomorphic representatives of isoclasses of indecomposables in mod,,(FI,) and we
put

(3.2) X<y <« HY(y, %) #0.
We associate to I the poset disjoint union
(3.3) ¢l =C—{c}UIHY)

with additional relations i < j<>Hompgy,(r(P), y) = 0 for ieC = C—{c} and yel(H"),
where r(P) is the restriction of P; to I, =1I—¢".

THEOREM 3.4. If F is a division ring and 1 is a finite poset with an upper chain point
¢ then under the notation above there exists an equivalence of categories
(3.5 modyy(FI)/[mody,(FI,)] = & I-sp/[C-sp]

which is induced by the functors in (3.11) below. The categories mody,(FI) and £ I-sp have
the same representation type and

(3.6 #mody, (FI) = #¢& I-sp+ # mod,, (FI)—|c*|,
‘where # means the number of isoclasses of indecomposable objects and I, = I—c".
Proof. Since ¢ is an upper chain point, FI has an induced triangular form

FC L
3.7 =
(37) FI (0 nc)’

where L is the FC-FI-bimodule defined by ,L; = F for i <j, ieC, jel, and [L; =0
otherwise. Note that ,Lg;, = r(P) for all ieC and Ly, = J(P,).
Consider the FC-moduled category Hpc = Hompy, (pcLyr,, mod,,(FI,)) [20]. Note
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that ¢; < ¢; induces an FI-embedding .Lg;, @ . Lp;, and therefore the left FC-module
rel is the system of F-FI-bimodule embeddings

(3.8) alr ® oLler, @ ... @ Ly,

In view of (C2) the FI-modules . Ly, have equal socles and therefore given an
indecomposable module y in mod;,(FI) we have

J =:Hompy,(rcLpr,, y) # 0 if and only if y#0,

or equivalently if yeJ:= I(H'). Moreover, given j in J the right FC-module |J|sc is the
system induced by (3.8)

(3.9 Homypy, (L, ¥) & Hompr, (L, y) & ... 5 Hompy, (L, y) = 7

of at most one-dimensional subspaces of j. It follows that |J|sc is FC-projective and the
left FC-module ycH = D(|¥|rc) is injective, where D(—) = Homg(~, F) and ¥= DBses-
The left action of the F-algebra E =H(¥, ¥) on |¥|sc induces a right E-module
structure on ycH ;. By our assumption and remarks above E is isomorphic to the path
F-algebra B = FJ. Then H is an FC-B-bimodule and the right B-traced F-algebra
associated to Hpe [20; 3.14] has the form '

R=Ty= (Fc FCﬁ").

(3.10 0 B

R is simply ti-reducible because we know that cH is injective and mod,,(FC) = pr(FC)
implies FC = A,,(FC). Therefore in Definition 2.17 we can take FC for the rings 4 and
S and we have 0 = o' =id.

We claim that in our situation the F-algebra Q4 (2.20) is isomorphic to the path
F-algebra F(C A J) of the poset C A J obtained from ¢ by adding the unique maximal
element ¢. Since B = FJ and A = FC, it remains to show that

(%) dimp(;Mp) <1, dimp(Mj) <1
(xx) My#0 e i<yin &I

For this purpose we fix jeJ and consider the left module rMj, where T is the path
F-algebra of ¢,—»¢,=...~r¢,—y in (220). Since (FC)” is the path algebra of
¢=¢; ...~ Cpy and |J|rc is indecomposable projective given by the sequence (3.9)
with dim]ﬂF =1 (by (C3)), it follows that (pc)VMy = (I)I-lpcﬁy =C!—)I_ID(|;’|FC) is
indecomposable in mod,,(FC) = pr(FC) and therefore (+) follows. Moreover it follows
from the definition of @ that if |Jlre = Qy...,0) F, ..., F) then worMy=(F.....F, 0,...,0.

. y POH+1
Since |J|pc is given by the sequence (3.9) and ;Lp;, = r(P) for ieC, we have

i<y e iSp(f) < M;#0 = M;#0

and (xx) follows, Consequently Qz = Q= F(C A J) is a right peak algebra.
By [20; Theorem 4.20, Corollary 2.10] and Theorem 2.22 there are full dense
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functors
FC
mod,,(FI) 25 adi§®(R)
(.11 Trc@

modPE(R)TC &> mod,,(27) &> £.1-sp

preserving the representation type and Keradff = [mods,,(FIc?], Ker‘m@(}.a‘),‘i)‘1
= [A(lmzr)] = [C-sp]. Then the functors adf’ and rc®(A@)" induce the required
equivalence and the proof is complete.

VAVAN
|

€

Fig. 10

ExAMPLE 3.12. Let I be the poset of Fig. 10 and let I' = I —#%. Then the AR-quiver

of mod,,(FI') has the form
P*3
i
Py, PP —E(P,) =X
i)

E(Pys)-
] P,—P ,
1t follows that H is of poset type and I(H") = { )f4—+Pl*:> Fl—vp,,,}’ and the ring

R = Ty (3.10) is the path algebra of the quiver of Fig. 11 with two zero relations marked
by the dotted arrows. Then &I is the poset of Fig. 12.

]
<0l

I
Y
)
3
F
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Since {1 is of finite type by [6], it follows from (3.5) that mod,,(FI) is of finite type.
COROLLARY 3.13. Let I be a finite poset with max(l) = {*,,...,+,} and let ¢ be

a maximal element in I' = I —max (I) such that ¢ is a chain contained in + ...+ and

I—c is a disjoint union of pairwise unrelated posets I,...,1, of width < 2 and * €1 for

j=1,...,t. Then ¢ is an upper chain point and

(3.14) Sl (" —{chul,u...0f,
where [; = U {(xho{F}u{svt; s, t incomparable in I}}. The order in I, extends to
the order in I; by adding the Jollowing relations:

¥,<u  for all uel),
U<SVLt < u<s or u<t,
Svi<u < s<u and t<u,
svt<s'vt < each of s,t is less than or equal to one of s’, t.

The set &1 is equipped with the disjoint union order completed by relations i <s,
whenever ie c” —{c},sel; u...UT, and i < s in I. Then we have the equivalence (3.5) and
the formula (3.6) holds.

Proof Since w(l)) < 2, mod,,(FI )= I 7Sp is of finite type and every indecom-
posable in I -sp has a simple socle [0, 10]. It follows that the FI modules 0¥, Q¥ ~ ¥,
u,s, tefj U {%;}, s, t incomparable, furnish all indecomposable I -spaces, where Q™ has
zero spaces over all points j <{ u and the space F over points iel;—u" [16; Section 6].
They form a poset isomorphic to I; under the correspondence 0%, 09 AW

tvs. Since J(P,) is the direct sum of simple projective modules Pyy..., Py,

Hf = Hompy, (Py,, I -sp) x... x Homyy, (P,., I-sp).

By our observation above Hf is of finite poset type and there is a poset isomorphism
IH) = F 0. O, It follows that ¢ is an upper chain point and it remains to show
that given s in (I;—{x})u {#} and iec”—{c} we have i <5 in I, if and only if i < 0®
(in the notation of (3.2)). If i < s then Homyy, (Py|;,, 0¥) = 0 because P, has the space
F and Q" has zero space over the point i. Hence i < J® by (3.2). Conversely, if i <s
does not hold then i<t for all tel;~s” and by the definition of O we have
Py, < Q. Then in view of (3.2), i < 0 does not hold. The remaining part follows
from Theorem 3.4. .

Remark 3.15. (a) Theorem 3.4 remains valid when we replace the condition (C1)
by the following weaker property of c:

(C1) ¢¥ is dual to the poset C' of all indecomposable J-spaces of some poset J of
width < 2 and |J|pe is projective for all j in I(HO).

In this case we consider the subposet C, = J of C consisting of points correspon-
ding to indecomposable projectives in J-sp and we take for £ the poset (3.3) with
¢ and C, interchanged. Then there is the equivalence (3.5) with € and €, interchanged,
whereas the formuja (3.6) remains unchanged.

In the case J is a chain we are in our original position of Definition 3.1.

5 — Fundamenta Mathematicae 137.2
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(b) It would be interesting to know how the AR-quiver of mod,,(R) depends on the
AR-quiver of mod,(27).

ExaMpLE 3.16.
(Q) % *
\c /
I el
(b) %
] e 2 s ——p) —k T | 2 a e s —3e)
[: Cy——3Cy—> -——»c/—(—>c/ £l c1~/—-'>::2{:>- . ———»c/

e 2 e a0 8 e —p )

Exampie 3.17. If

2/*1\5/ *\3 2
I: 1(/_(_,5/ \C3 then &.1: r
NS N\

] ¥ C; 63 Ky

and the Remark above applies because ¢” is dual to the poset of indecomposable
J-spaces, where J = {c;, ¢;}.

Remark 3.18. Theorem 3.4 can be extended to an arbitrary multipeak algebra
A [18; (1.3)] having a smooth upper chain point s in (I d) in the following sense:

(S1) d, = d&, < 1 for all temax(lz) = {L,,....n}.

(S2) cjom is surjective for all memax(I;) and j in s )

(S3) " = {je z; djs # O} is 2 homogeneous chain C = {s; =8>8, =35}, le
d]j = dlll =1 for l#] in C.

(S4) The vector space category Hy = Homy(J(P,), mod,,(T)) has finitely many
indecomposable objects, where T= Ay,_¢ [18; 1.13].

S sLr

In this case 4 = (0 T ), S = A, and the corresponding triangular reduction [20;

S A
Theorem 4.20] with Ty = < 0 § EE
R = T yields the diagram (3.11) with FI and A interchanged and 4 omitted. Hence we
get an equivalence of categories

(3.19) mods, (A)/[mody,(T)] = mod,, (Q7,)/[mod,y (S)].

), E = E(H), together with Theorem 2.22 applied to
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COROLLARY 3.20. Let I be a two-peak poset with max ()= {*, +} and suppose that
the algebra FI is sp-representation-finite. Then C = +* A +"isa cimin c= méx(C) isan
upper chain point, there is an equivalence (3.5) and the study of mod EFI) reduces to th
R o es 1o the

Prool. First we note that FL is sp-representation-infinite if L is one of the
two-peak posets of Fig. 13. It follows that I does not contain L as a full two-peak
subposet and C is a chain. We shall show that the vector space category H* in (3.1) is of
poset type. For this purpose we note that the posets +”, +7 are sp-representatio;l—ﬁnitc
and therefore indecomposable objects in %"-sp and in +7-sp have endomorphism rings
isomorphic to F [6, 7]. Hence H'(}, )= F for all Jeind (H). This implies that
dim|j] = 1 because otherwise the category adj(R) in (3.11) contains all representations
of o330 without simple summands and therefore mod,(FI) is of infinite type;
a contradiction. Consequently, ¢ is an upper chain point and by Theorem 34 thej
corollary follows. B

e D SNAY

+ *

Remark 3.21. It is shown in [25; Theorem 4.32] that given a two-peak poset
I with max(l) = {%, +} the algebra FI is sp-representation-finite if and only if the
posets #”, +¥ do not contain as full subposets the posets (1, 1, 1, 1), (2, 2, 2), (1, 3, 3)
(N, 4), (~ 1, 2,~5) of Kleiner [6, 7] and I does not contain as a full two-peak subposet thei
forms A}, D} above and the ones of Fig. 14. This also results from 3.20.

SPIRPI ) /iy ?,i
Wl B W AP W

M WD Al
i g 4 iﬁ i/i N

)
Fig. 14.
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4. Waist reflection functors.
DEerINITION 4.1. Let R = (:)1 I;) be a faithfully right B-traced ring. We say that
R has a right multipeak waist if

(W1) B is a left multipeak ring with peak idempotents e, ...,€y,.

(W2) N, is a top injective B-module.

We say that R has a right multiarrow waist if R has a right multipeak waist and

(W3) 4 is a right multipeak ring with peak idempotents ¢y, ..., ey,

(W4) 4N,:= 4Ne, is a top injective A-module, where e, = €, + ...+ €y,.

(W5) The division rings A, B., in (1.4) are isomorphic and the A,-B,,-bimodules
are either zero or one-dimensional on each side for all j, . In the case a = b =1 we say
that R has a right arrow waist u—v. Finally, we say that R has a left peak waist
(multiarrow waist) if R°® has a right peak waist (multiarrow waist).

LEMMA 4.2. R has a right multiarrow waist if and only if R has the matrix form
like (1.4)

-

@4.3)

where A, = e, Ae, = Ay, X...X Ay,, €= &yt .+ ey B, = e,Be, = By, x... X By, 4y,
and B, are division rings, A, = e;Ae,, \B, = e,Be,, Ny = e.Nep, and ,A; = By =0 for
all i, j. ;
() The maps Cy: iA;—Hom(du, id)s Cogs, ,*BS*AHom(,,B,*, oBs) adjoint to
Ciju AN Cors, aTe€ injective for all i, J, t,, S,

(ii) The lengths 1(A4)a, and 1, (,B:) are finite, N, is either zero or is one-dimen-
sional on each side and A, = B,, for all i and t.

(i) The maps Ciy,: iNu®,B;, —iNe,» Ciu’? A,®,N,— N, are surjective.

Proof, It follows from [17; Proposition 2.2] that (W1) together with (W3) and
(W5) is equivalent to (i)~(ii), whereas by [17; Proposition 2.4], (W2) together with (W4)
is equivalent to (jii).

It follows from Lemma 4.2 that if R has a right arrow waist then the value scheme
(I, d) of R has the form

( (I, d) g A, lfa.d)i

The central arrow corresponds to the one-dimensional A,-A,-bimodule N, which
according to Lemma 4.2 (iii) generates the 4-B-bimodule ,Np. This is our motivation

4.4)
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A . .
for the ndn?e arrow waist”. In the multiarrow case u— v is replaced by arrows u; —v
corresponding to nonzero bimodules , N Y

Now suppose that R has a right multiarrow waist u—v, I is finite and B is an
artinian PI-ring with identi (5L
g identity. Let B—(O" B where L= J(e,B) and B =

(13—e,)B(1—e,) is the ring obtained from the matrix form of B i S
in (4.3) b,
vth row and vth column. Set (4.3) by omitting its
BA = B E’EBU
0o B )

where L = Homyg, (s,Lp, B,) and let

e

V,: mod,(B)— mod,,(B*)
be the reflection functor in [17; Prop. 2.6], [20; Def. 2.13]. Since ;N is in mod,;(B) then
NBa= @V, (Ng)

lelg

has a natural left A-module structure. We form two rings

A 4Nis A NF
5 R = AE =
Y 0 B) ok 0 B

called the right waist reflection forms of R, where A'=(1,—e)A(l,—e,) and

@.5)

obtained from (4.4) by omitting the point u and by reflecting (I, d) at v as shown in

Fig. 15.
=
//
-

Fig. 15

It follows from the definition of P, that 4N” has the form [,N%, «N,] and

A 4Ny N,
SR = B L)
B,

Then a right §,R-module is a system
(47) Z= (Z:h Z”‘y Z:,’, 'V’ !//lr v‘//):

whére ¥ ZQ Ny-Z4, W' Z'QL~>2Z), §: Z'®,N,~Z; satisfy obvious as-
sociativity conditions. We call Z A-complete (vesp. A,-complete) if \ (resp. .) is

(4.6)
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surjective. Let mod;‘i,(ae,,R) be the full subcategory of modgp(ng) consisting of
A-complete modules.

LEMMA 4.8. If R has a right multiarrow waist then Z is A-complete if and only if Z is
A,-complete. If, in addition, R has a right arrow waist then the restriction functor

(4.9) r5: mod (8,R) - mods, (5,R)

defined by the formula v4(Z) = (Zig, Z', Z0, ', ¥, ), where Z' = @ 2, Z'e; and ',

: y

) are the corresponding restrictions of W' and W, is an equivalence of categories.
Proof. In order to prove the first statement we consider the commutative diagram

Zi®,4,8,N, 25 Z,®,N,

l 1®ciuy l W
Z®,N, *  zZI
where 1 ® ¢;,, is surjective by Lemma 4.2 (iii). It follows that Im 4/; € Im 4}, and hence
if Z is A-complete then Zj = Im i = Im ,,\I/u+zi¢ulm M= Im 3, and therefore Z is
A,-complete. Since the converse implication is trivial, the first statement is proved.
Hence, if Z is socle projective and R has a right arrow waist then Z is 4-complete if and
only if .\, is bijective because it is surjective, 4, is injective and ,N, is one-dimensional
on each side. It follows that Z is uniquely determined by r;(Z) and therefore r; is an
equivalence of categories.

Following an idea explained in Example 1.3 we define a right waist reflection
functor

(4.10) 8.: adjfi(R)—~mod4 (5,.R)

by the formula &,(X z) = (X%, P (X%), @), where @ is the map adjoint to the composed
monomorphism

X, Homg (4N, X%) &=+ Homye (N7, 7, (X3).

Since Ny is top injective, X'® «Np is top injective and therefore X3 is in mod(B)
because it is the image of X'® (N under ¢. Moreover, since ¢ is surjective, .¢p:
“®,N,»X,:=X"e, is surjective and therefore the module Z = §,(X,) is
A-complete because ,§ is just the map W in Z (4.7).
If, in addition, R has a right arrow waist then we have a reduced right waist
reflection functor

(4.11) d, = rs8,: adjf(R)—mod,,(5,R)

AN
THEOREM 4.12. Let R = ( 0 B) be a faithfully right B-traced ring such that B is an

artinian PI-ring with identity. If R has a right multipeak waist then the waist reﬂeciion
forms §,R and 5,R of R are right multipeak rings and the functor 8, (4.10) is an equivalence
of categories. If, in addition, R has a right arrow. waist then 8, (4.11) is an equivalence too.
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Proof. It is clear that §, is full and faithful because V. is an equivalence of
categories. In order to prove that §, is dense take Z in mod4,(§,R) of the form (4.7).
Then U = (Zj, Zy, W) is in mod,,(B) and we put X, = Z,, X3 =V(U) and ¢ is the
composed map

&z W) ’
Zy== Hompa(4N3® 4N,, U) = Homp(,Np, X73).

Since Z is socle projective, (', ) is injective and therefore @ is injective. In order to
prove that X, is adjusted it remains to show that ¢ is surjective. To see this, first note
that since Z is A-complete, W is surjective. Next, for any tyely we consider the
commutative diagram

X4® 4N, @B, *®5 X,y ® 4N,
lum@’j_ Lwe
Xy ®,B, " Xy,
Since Be, is a left peak of B and X} is top injective, it follows from [17; Prop. 2.4] that
@ Is surjective. Moreover, ,¢ = . is surjective. Hence , ¢ is sutjective for any ¢, and
therefore ¢ is surjective. Consequently 8, is dense and it is an equivalence of categories.
The remaining statement follows from Lemma 4.8. and [20; Lemma 4.15].

Now suppose that R has a left multipeak waist u, I, is finite and A is an Artin
algebra, Then A has the form
A K
A =
6 5)

with K = J(d4e,) and by [20; Lemma 2.14] there is a commutative diagram

mod,,(4) 25 mod,;(47)
(4.13) IR D
mod(4°7) 5 mod,,(4"°")

where D is the standard duality and

4, R
v
4 (0 A')’

K =DK. Since 4N, is in mody(4°") for all t, then

(4.14) ANy= @ V. (N, N5 =

(X

® V(N &)

(& E TR

have natural structures of right modules over B and B, respectively. We form two left
waist reflection forms of R

5" AV VN Au fr uNH” #R= AV VN—
_RzOB= A'Bn, =y B /)

A module Y= (Y, ¥, ¥4, i, 1, /) in mody (8L R) is called B-complete if the map f,:

4.15)
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Y, —Hom,(, N5, ¥%) adjoint to f, is injective. We denote by modZ (6 R) the full
subcategory of mody(6“ R) consisting of B-complete modules. As in Lemma 4.8 one can
prove that if R has a left arrow waist then the restriction functor

(4.16) vy : mod?(5R)—~ mody(5“R)

is an equivalence of categories.
We define two left waist reflection functors

@17 81 adif(R»>modi(§«R), &% = ry §“: adjf(R)~mod, (5~ R)

by the formula & (X z) = (V- (X, X%, @g), where g: V(X)) ® LNy~ X' ® 4Ny is the
patural B-isomorphism induced by the diagram (4.13). Note that since ¢ is injective and
4N is top injective, X is in modg,(4).

Similarly to Theorem 4.12 one can prove the following.

THEOREM 4.18. Suppose that R = (2)4 1;) has a left multipeak waist u and A is an

Artin algebra. Then 8 R and 8“.R are left multipeak rings and the waist reflection functor
8% (4.17) is an equivalence of categories. If, in addition, R has a left arrow waist then &R
and 5. R are left peak rings and the reflection functor 8. is an equivalence of categories. If
R is a finite-dimensional algebra over a field and R has a right as well as o’ left arrow waist
then (5,R)” = 6“R and there is a commutative diagram

adj 4R ——-'jl—-:—modsptdy.‘?)
u
4.19) &

mody(82R)

5. Applications.

S5.1. Representations of a pair of posets with zero relations. Let I and J be finite
posets and let F be a division ring. We fix two sequences a,,...,q, and by,...,b, of
nonmaximal elements in I and J respectively. Consider I-<a J (1.3) as a commutative
quiver and consider the set X' of zero relations in <1 J generated by y oag=byforj <
Then the bound quiver algebra R = F(I< J)/(Z) has a B-traced form

AN
"=(03)

where 4 =FI, B=FJ and ;N;= F if i <j has no factorization through some y, and
iN;=0 otherwise. It we put K = pr(FI), L = pr(FJ°") and «%: K®xL— &b is
a bimodule defined by (ed, ¢'B%) = D(eNe') for idempotents e and ¢’ then objects of
Mat (4 9%y) = modBf (R)# [20; Prop. 5.14] can be interpreted as matrix representations of
the pair I, J with zero relations y,, ..., 7, (see [16; Part B, Lemma 7.16]). By (1.2) the
matrix problem is reduced to the study of adjg(R).
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Suppose that J has a unique minimal element » and construct the disjoint union
poset

Sl 1) = 1O T—{v}

with additional relations generated by a;< b, forj =1,...,r. Then R has a right peak
waist, 8,R & F(8,(I, J) and by Theorem 4.12 the right waist reflection functor induces
an equivalence

85 adifl(R)— 8,01, J)-sp;,

where 8,(I, J)-sp; consists of I-complete spaces (M, M) in the sense that M = YierM;. In
the notation of Example 1.3, §, is given by 8,(X, ,p,) = (M, M), where M = X,,
M, = Im,¢, for ie I and M, = Ker o, for j > v. If, in addition, I has a unique maximal
element u then R has a right as well as a left arrow waist corresponding to u—v and
(4.11) induces an equivalence of categories & adjE4(R)—84(I, J)-sp, where
sul, )y = IoJ—{u, v}

5.2. A peak triangular reduction. Suppose that F is a division ring, Q is a finite
quiver without oriented cycles and b is an ideal of FQ generated by some F-linear
combinations of paths in @ of length > 2. We put

i<jin Q < there is a nonzero path i—j in Q
and we denote by

max(Q) = {*1: -~~s*r}

the set of all maximal elements in Q. Moreover, we suppose that the bound quiver
algebra

A=F(Q,b):=FQ/b

is a right multipeak algebra, i.e. for every combination w = Y r,w,¢b of paths w;: p—g¢
in Q with r;eF there is »emax(Q) and a path u: g—x such that uw¢b.

We say that seQ, is an upper triangle point in (Q, b) if for any i <s in Q, and
a path f: i—#, xemax(Q), which does not belong to b there are paths f: i—s,
P’ s— % such that p”f'— f &b, Given such a point s we associate to it a triangular form

A ALT
1-(37)
of A, where 4 = Fs" /6 n Fs¥, T= F(Q~s")/6 nF(Q—5"), L, = 14; = e, de, and ¢, is the

idempotent corresponding to the trivial path at i. Next we associate to 4 the 4-moduled
category

(5.2a)

HA = HOmT(ALT, modw(T))
in the sense of [20] and the vector space category

H§ = Homy (J(P,), mod,, T))
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where P, = eA. Note that J(P,) & Ly = @ eg,-s¢,4e,. Given y in mody,(T) we put
j=Homz(J(P),y), J=Homg(sLr, ).

We suppose for simplicity of the presentation that ind (H%) = {y, ..., ,} is finite and we

put
A LAy
ts(A) - (0 E )

where E = HY, ¥) =H(7, ¥) (scc 2 below), Y=y, ®...@y,, +H; = DHom (L., Y)
= D(,7],), D(—) = Homg(—, F) and 1Y, denotes Hom.(,Ly, Y) considered as a right
A-module in a natural way. The shape of (Q, b) and of the bound quiver of t,(A) is
illustrated in Figure 16.

Q'=(s7-{s})*®

Q= Qg™ (Eqprn &)

Fig. 16

THEOREM. Let (Q, b) be a bound quiver as above, let s€Q, be an upper triangle point
in (Q, b) and let *,...,*, be all points in max(Q) which are connected with s by nonzero
paths in (Q, b). Then A = F(Q, b) has the triangular form (5.2a) and in the notation above
we have:

(a) The algebra t,(A) has a right as well as a left multipeak waist, A is a right peak
algebra with the peak idempotent e,, and E is a left multipeak algebra with left peak
idempotents &, ..., corresponding to the modules E, = Eq(e,,T), j=1,....,r, in
{yli "‘!ym}'

(b) 8,4:= St.(A) (4.5) is a right multipeak algebra with peak idempotents g, ...,&,,
87 A= 6_t,(A)° (4.15) is a right peak algebra with the peak idempotent ¢, (see Fig. 16)
and the triangular reduction functor (5.2b) below together with the waist reflection functors
(4.10) and (4.17) induce equivalences of categories

mod,,(A)/[mod,,(T)] = adj#(t,(4)) 2> mod, (6,4)
B2, (modZ" (45 A))*
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where the right hand categories consist of complete socle projective modules defined below
(4.15).

Proof. We proceed in several steps.

1° A is a right peak algebra and ,H is in mody;(A°). The first statement easily
follows from _the definition of an upper triangle point. For the second one it is enough to
s_}_mw that |Y|4 = Homy(4Ly, Y) is socle projective. For this purpose we note that
[¥la= (Yl j@dijs Where Y|, = Homy(Ly, Y) and jp;: |¥|,®,4;-|Y]; is the map
induced by the multiplication ;4;® Ly~ ,L; and Ay = e de; is generated over F by
cosets modulo b of paths i—j in Q. By [17; Proposition 2.2] it is sufficient to show that
given a nonzero T-homomorphism f: Ly — ¥ there is a path y: i—s, p¢b, such that
i@ = [, #0, where y,: [L— L is the left F -homomorphism induced by . Since f
is ponzero and Y is socle projective, the restriction f,: Ly, — Y, of /' to some peak
space Ly, = eidey, of Ly is nonzero. Since ;L is generated over F by cosets § of paths §:
i, f¢D, there is some f3 such that f, (B) # 0. If we choose B i—~sand f”: s—+;as
in the definition of an upper triangle point and we put y = §' then f7, + O because
(7 )FY = F'B)=1(B) 0 by our choice of f. Then 1° follows.

2° There is an equivalence of categories ind(H) = ind(H¥) and the ring homomorphism
H(Y, Y)- E, J— B, is bijective. For, note that by 1° given any indecomposable module
y in mod,,(T) the right A-module |j|, is socle projective and ||, = Hom¢(Ly, y)} = ||
is the socle space of |J|4. Hence § 5 0 if and only if § # 0, and given fe Homy(y, y) we
have f'# 0 if and only if 7 0.

3° It follows from 2° that the algebra t(A) is isomorphic to the ring

Ty = A AHE(H)
Tl Em)

of the A-moduled category H, [20; 3.14] and by [20; Theorem 4.20] there is a full and
dense adjustment functor [20; 4.23]

(5.2b) adfy: mod,,(4)— adjf(t,(4))
such that Keradfy = [mod,,(T)]. Moreover, ad, induces an equivalence of categories
(5.2¢) Mod,(A)/[mody,(T)] & adji(t,(4).

4° I is a left multipeak algebra with peak idempotents &y, ..., &, as in the Theorem.
Moreover, H',; is top injective. In order to prove the first statement suppose that
B §,-+J, is u nonzero map. Then there is ki (Ly— y; such that h 5 0. Since y is socle
projective, there exist %, and a nonzero T-homomorphism g: y; = E,, such that gfh # 0.
Since e,,T is simple projective, it can be embedded into ,Lr and therefore E,, is
a summand of E,(,Ly). Finally, by the choice of g we have gB # 0. 1t follows from [18;
p. 22] that E is a lelt multipeak algebra.

We prove the second statement by showing that gH, = Homy(;Lr, Y) is socle
projective for all j={s. By [18; p. 24] it is sufficient to show that for any nonzero
he,H; = Homy( Ly, y) there exist g and feH*(7, E,,) = ¢,E, such that fh # 0. To see
this, let g be such that therc is a nonzero Tmap g: Imh—E,, and take for f an
extension of g. This finishes the proof of the Theorem.
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One can also prove the following interesting fact.

PROPOSITION. Let A, s and t(A) be as above and suppose that for every *; there is at
most one path P: s—x; not in b and dimHe; <1 for all j=1,....r. Then Hy=

'y + ...+ P, for some P;= g;E. In particular, Hg is projective if r = 1. If, in addition, for

every a: i—»s there is f: s—», such that Bo¢b then ,He = Aeg for all j=1,...,r.

The rings 3,4, J; A and the equivalences in Theorem (b) have a nature of the
differentiation procedure [107, [17; Section 5]. We call them peak triangular reductions.

5.2d, Suppose that we are in the situation as in the Theorem above. Moreover, we
suppose that b~ Fs” is generated by all commutativity relations w—w': i—j, i, j <s,
and that the vector space category Hi is of finite poset type (see 3.1).

It follows that s” is a poset with a unique maximal element s and the relation (3.2) is
a partial order in I(H) = {j,,...,7,} = ind(H°) and E,,,...,E,, are all minimal
elements in I(H®), where E,; = Ex(e,,T). Let us construct the posst

£,(Q, b) = 5" < I(H)
(see 1.3) and let Q, be the set of zero relations in t,(Q, b) defined by the formula
i-j,eQ; <« Homy(eder, yj) =0, ixsy,
where e; =Y jp,-s¢; and T=eydey is as in the definition of ,(4).

PROPOSITION. Under the assumption and notation above there exists an F-algebra
isomorphism

t,(A) = Fr(Q, D)/Q)
and a duality of categories
mOdsp(A)/[mOdsp(T)] = SS(IOPv SVW)"SPI""

where I = I(H®) and §,(I°%, s7°7) is the disjoint union of the posets I°® and (s" —{s}°") with
additional relations y;<i iff i—3F; is in Q, (see 5.1).
Proof. It follows from our assumptions that the rings 4 and E appearing in t(4)

are isomorphic to Fs” and FI respectively, and (OF ng) = F({s}< I). Given i < s in 5"

we fix a unique nonzero path ,;: i—s modulo b. Since L, = e,4e; is generated by all
paths w: i—t modulo b, where ¢ runs through all vertices in Q,—s", from the
assumption that s is an upper triangle point it follows that the induced T-homomor-
p}lism it sLr Ly, (B: s=1) B, is surjective and therefore the induced map
i = Homr(sfi, y)): Homy(Ly, y)—Homg Ly, y) is injective, whereas its dual
D(§): JH;,—Hs, is sutjective for j=1,...,m. Since dimH;, =1forj=1,...,m, we
have dimH; < 1 for all i<s and j,el, and therefore

D(J) is bijective < 14,® H;, — H;, is bijective
<« dimH;, =1

= ([(=7)¢Q,
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It follows that the natural F-algebra homomorphism Ft(Q, b) >t ,(4) induces the
required isomorphism. The remaining part follows from 5.1.

Remark. It is easy to see that H' is of finite poset type in case A is
sp-representation-finite.

Exampre. Consider the algebra 4 = F(Q, b), where (Q, b) is the poset I¥™* with one
zero relation defined in Example 1.3, If we set s =8 then T= F(IF* —~{1,2,3,48}),
J(P) = e, A@e. 4, IH)® is isomorphic to the Auslander-Reiten quiver of mod,,(T)
and the poset L = §,(I(H)°", s7°%) has the form of Fig. 17. It follows from [9] that L is of
tame type and according to the Proposition above modg,(4) is also of tame type.

e+/5+\*57+\’~4
9+/ \57/ / \3
TN

I (s e 0 - ]
;

.

TIH)®P (s7-{sh®

Fig. 17

Remark. Let I be a two-peak poset with max(I) = {*,+}. We consider I as
a bound quiver (Q, b) with Q, = I and b generated by all commutativity relations in 1.
Suppose that mod,(4) is of tame type, where A is the path algebra FI of I and F is
algebraically closed.

We are going to show that in this case the study of mod,,(4) can be reduced to the
study of L-spaces for some L provided I—»" n +¥ is of finite type. For this purpose we
note that by our assumption I does not contain as a full two-peak subposet the
two-peak posets of Fig. 18. It follows that I, = " n +7 is a full subposet of a garland
(see Fig. 19). If I, is linearly ordered we can reduce the study of mod,(A4) to the study of
¢ J-spaces by applying Theorem 3.4. If w(I) = 2 and I, has a unique maximal element
s we easily show that s < for all je(¥” U +7)—1I, and s is an upper triangle point in 1.

TR SR =2

Fig. 18

XRLTXX

Fig. 19
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Moreover, the assumption that mod,,(4) is of tame type implies that the vector space
category H is of poset type and therefore the Proposition above applies. The case
jmax(I,)| = 2 is more difficult but it can be reduced to the above one.

By applying [9] together with the method above we can get a critical list for
two-peak posets I to be sp-representation-tame (compare with Remark 3.21). We shall
discuss this problem in a subsequent paper.

5.3. Differentiations. We are going to show that the differentiation procedures for
posets I [10] and for right peak rings [19] can be obtained in two steps: the triangular
adjustment applied to mod,, () and then by applying the arrow waist reflection functor,
This procedure admits also a suitable generalization [17; § 6], [117, [20; Remark 4.28].

Let us explain this in the case where A is a right peak Artin algebra having
a maximal element s in (I, d), ie. 5 is maximal in I-max (/) and the conditions ($1),
(S2) in Remark 3.18 are satisfied. Then A has the form

S sLr
-(24)

where S =ede, L =ceA(l—e), T=(l—e)A(1—e¢) and e= ZJWGJ. Here e, is the
primitive idempotent corresponding to j and ¥ = {jel,; dj #0}. Consider the
S-moduled category Hy = Homy(sLy, mod,,(T). Since (Ly = P,, the ring E = E(H) of
the category H [20] is isomorphic to 4,,(T) (2.1) (in general it has no identity). By [20;
Theorem 4.207 there is a full dense functor

ad$,: mod,,(4) - adj(R)

g ég"), H = @,D{jl; and y runs
through all representatives of isoclasses of indecomposables in mod,,(T) (we use the
notation in 5.2). It is easy to check that S is a right peak algebra with the peak
idempotent e,, E is a left peak algebra with the peak idempotent corresponding to
E(P,) and similarly to 5.2 one can show that the E-traced algebra R has a right arrow
waist s— v which is also a left arrow waist. Then according to Theorem 4.12 the waist
reflection functor (4.11) 8,: adj§(R) »mod,,(5,R) is an equivalence of categories. The
ting d4:=J,R is a right peak algebra and the functor

such that Ker ad$, = [mod,,(T)], where R = T, = <

0, = 8,ad,: mody,(A) - mod,,(2,4)

is full dense and Kerd, = [mod,,(T)]. It is easy to check that a4 is isomorphic to the
differential algebra A; of A and , is the differential functor @, in [17; Section 5]. The
poset differentiation [10] we get by applying the above to the ring A = FI* where F is
a division ring, I is a finite poset and I* is an enlargement of I by a unique maximal
element. Then any maximal element s& 1 is smooth for A and if I—s" is of width <2
then a straightforward analysis shows that a4 = F(I)* where I, is the differential of
I in the sense of Nazarova-Roiter [10]. Moreover, the functor d, induces a full and
dense functor &, I-sp—+Ii-sp such that Ker ;= [(I—s")-sp] (see [16]).

The procedure extends naturally to the case where s is smooth nonmaximal (see
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[20; Example 4.30]). Using this idea we define in [19] a differentiation of a right peak
ring with respect to a suitable pair of elements.

0 B
right B-traced Artin algebra. We know from [20] that there are almost split sequences
in adj$(R). Since one can easily show that adj#(R) has enough projectives, as in [5, 8]
one can introduce the notions of a complete preprojective component and a preinjective
component in adjf(R). It is clear that i adj4(R) has a preprojective component then R is
schurian, ie. 4,, B,, are division rings (4.3).

5.4. A preprojective component in adj§(R). Suppose that R = (A N) is a faithfully

0 B
and let (I, d) be the value scheme of R [7, 17, 200, If R has a right arrow waist u— 1,
(I, d) has no subschemes of the form of Fig. 20 and ddi < 3, o, dyy, <3 for all
iely~{u}, tyely—{v} then there exist a preprojective component and a preinjective
component in adjf(R).

AN
PROPOSITION. Let R = ( ) be a faithfully right B-traced schurian Artin algebra

22,

NS A
1,3) (3,1 (3,1 1,3)
\V/ N,/

Fig. 20

Proof. We know from Theorem 4.12 that (4.11) is an equivalence of categories. It
follows from our assumption that the valued poset (I, d) of 6,R has d;, di, <3 for all
ieT and does not contain peak subposets of the form 0 — — -0 4 eg¢" = 3. Then
by [8], mod,,(d,R) has a preprojective component as well as a preinjective component

and the proposition follows.

AN
COROLLARY. Suppose that R = (0 B) is a faithfully right B-traced Artin algebra

having a right arrow waist and such that adj§(R) is of finite type. Then the Auslan-
der-Reiten valued translation quiver of adjf(R) is simply connected if and only if R is
schurian.

Proof. Since R is schurian if and only if §,R is schurian, in view of the equivalence
(4.11) the corollary is a consequence of [8].
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ERRATA
Page, line For Read
111, Fix+m Tix+a
123, 0 (2]
1241 D =dV,,d =w'V. D=0V, =o'V
135, vp®1 @1
first Loy WP
diagram
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