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The least number of fixed points of bimaps
by

Helga Schirmer (Ottawa)

Abstract. A bimap ¢: X — X on a topological space X is a continuous multifunction for which
the image of each point consists of either one or two points. The Nielsen number of a bimap pisat
most one. Nevertheless we show that it is still the optimal lower bound for the number of fixed
points of bimaps on a compact triangulable manifold of dimension <3, ie. that there exists
a bimap in the bihomotopy class of ¢ which has exactly N(p) fixed points.

1. Introduction. It is the purpose of this paper to construct bimaps in a given
bihomotopy class which have minimal fixed point sets, where a bimap @: X =X on
a topological space X is a continuous (i.e. both upper and lower semicontinuous)
multifunction for which the image of each point consists of either one or two points.
Hence bimaps can be regarded as the simplest possible multifunctions, and include
single-valued maps as a special case. They are also the special case which {1, n}-valued
multifunctions and symmetric product maps have in common.

The construction of minimal fixed point sets for single-valued maps uses Nielsen
fixed point theory. For a single-valued map f: X —X the Nielsen number N(f) is
a lower bound for the number of fixed points for all maps g: X - X in the homotopy
class of f, and for most polyhedra it is an optimal lower bound, ie. there exists a map
g homotopic to f which has precisely N(f) fixed points. The construction of such a map
g uses essentially geometric methods from Nielsen fixed point theory, but also a suitable
fixed point index which is obtained in a more algebraic manner. (See e.g. [1] and [2])
To adapt this construction to bimaps, we mix the more geometric methods suited to
{1, n}-valued multifunctions with the more algebraic methods suited to symmetric product
maps, and use the fixed point index for bimaps from [9] as well a Nielsen number.

Fixed point sets of bimaps ¢: X -» X are equivalent to fixed point sets of symmetric
product maps f: X - X,. A /Nielsen number N(f) for a symmetric product map
S X — X, was defined by S. Masih [4], who proved that N(f) is a lower bound for the
number of fixed points for all symmetric product maps in the homotopy class of f.
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Recently D. Miklaszewski [5] has shown that this Nielsen number has, for n 2 2, quite
different values than in the case n = 1, i.. in the case of single-valued maps: it is zero if
the Lefschetz number L(f) = 0, and one if L(f) # 0. Hence N(f) is a rather trivial lower
bound for the number of fixed points of f: X — X ,, and (equivalently) for the number of
fixed points of bimaps.

Nevertheless we will show, in the Minimum Theorem 3.7 which is the main result
of this paper, that such a Nielsen number is still optimal for a bimap ¢: X — X as we
will construct a bimap y: X —X which is bihomotopic to ¢ and has precisely N(¢)
fixed points. But we have to modify the definition of the Nielsen number in [4] and [5]
and use the fixed point index from [9] as it is necessary to remove an isolated fixed
point of index zero, and it is not known whether this can be done with Masil’s index. It
is very likely (especially in view of [9], Corollary 5.2 and Example 4.10) that Masih’s
index and the index in [9] are the same, but details vould have to be checked.

To prove Theorem 3.7 we first define in §2 the fixed point classes of a bimap
@: X - X in a way which is equivalent to Masih’s, but stresses the geometric nature of
tHe definition which is needed in later proofs. The result by Miklaszewski [5] shows that
¢ has at most one fixed point class, and hence the Nielsen number N(p) is <1,
depending on the fixed point index (Corollaries 2.2 and 2.3). Thus it is clear that N(¢p) is
a lower bound for the number of fixed points of ¢ and is bihomotopy invariant
(Propositions 2.4 and 2.5). We have illustrated the value of N(¢) with two examples in
which results from [9] are used (Examples 2.6 and 2.7).

The main result, Theorem 3.7, is proved in § 3. The proof is modelled on the one of
the corresponding results for n-valued multifunctions [7], Theorem 5.2, and as in [7] we
restrict our attention to compact triangulable manifolds of dimension > 3 in order to
shorten the proof. It is not known whether Theorem 3.7 is still true for lower
dimensional manifolds, as it is only known that it is false for single-valued maps on
surfaces with respect to single-valued (rather than bi-valued) homotopies. An interesting
open problem is the possibility of the extension of Theorem 3.7 to {1, n}-valued
multifunctions and to symmetric product maps f: X=X, for n> 2.

‘We have not repeated definitions, explanations of terminology and results from [9],
and in §3 we have also used terminology and results from [7]. The paper can therefore
not be understood without at least a superficial knowledge of these papers. We also
assume that the reader is familiar with the basic results of Nielsen fixed point theory for
single-valued maps.

2. The Nielsen number of a bimap. In order to construct bimaps with a minimal
fixed point set we need the concepts of a fixed point class and its index for a bimap
@: X=X on a compact polyhedron X. The restriction to compact polyhedra is
necessary as we shall use the properties of the fixed point index from [9] which were
proved in this setting.

We call a bimap o: I—X, with I =[0,1], a bipath in X, and say that two bipaths
0g, 0, I~ X are bihomotopic (written aq~o,) if there exists a bihomotopy {a,}: I»X
which leaves end points fixed, ie. we require that «,(0)= 0(0)=o,(0) and
0,(1) = o (1) = ay (1) for all tel. Two fixed points x, x" of a bimap ¢: X — X are called

icm

The least number of fixed points of bimaps 3

@-equivalent if there exists a (single-valued) path p: I-X from p0) =xtop(l)=x"so
that the bipath gop: I—X is bihomotopic to a bipath a: I—X which has p as
a selection. In other words, o = {a,, a,} must split into two maps a,: I —X which can
be indexed so that a; = p. Clearly p-equivalence is an equivalence relation on Fix ©,
and we call the equivalence classes the fixed point classes of Q.

As a bimap ¢: X — X induces a symmetric product map f: X —X 2, an equivalen-
ce relation on Fix ¢ = Fix f was defined by S. Masih [4], § 4, as follows: a point
z€ X x X is called admissible with respect to xe Fix f if 4(z) = £ (x) and p, (z) = x, where
g: X x X — X, is the quotient map and p;: X x X — X is the projection onto the first
factor. Two points x, x'e Fix f are called f-equivalent if there exist points z, Ze X x X
which are admissible with respect to x, x’ and a path ¢: I - X x X from z to 2’ so that
goc is homotopic to fop, oc with end points fixed. We show that for bimaps Masih’s
definition coincides with ours.

TueOREM 2.1. Let ¢: X — X be a bimap which induces the symmetric product map
J: X—>X,. Then x, X' eFix¢ are g-equivalent if and only if they are f-equivalent.

Proof. (i) If x, x’ are p-equivalent, then there exists a path p: I— X from x to x' so
that pop is bihomotopic to a bipath & = {p, a,}. Let z = (p(0), a,0)eX x X, 2’ = (p(1),
a,(1))eXx X and ¢: I—+X x X be the path given by c(s) = (p(s), ay(s)). Then z, 2 are
admissible with respect to x, x, and the bihomotopy from @op to « induces a homotopy
from fop = fop,oc to goc. So x'and x' are fequivalent.

(i) If x, x' are fequivalent, then there exist z, z'€ X x X which are admissible with
respect to x, x' and a path ¢: I-XxX from z to 2 so that goc is homotopic to
fopioc. If w =p 04" 'ogoc and p = p,oc, then gop~a, and o has p as a selection.

Recently D. Miklaszewski [5] has shown, using Masih’s definition of fixed point
classes, that any two fixed points of a symmetric product map f: X— X, (or, more
generally, f: X ~ X, for all n > 2) on a path-connected space X are Jf-equivalent. From
this rather surprising result we obtain

COROLLARY 2.2. If : X — X is a bimap on a path-connected space X, then either
Fixp =@ or ¢ has one fixed point class.

If o: X —X is a bimap on a compact polyhedron X with Fix ¢ # @, then we take
any open set U of X with Fixo < U and define the index of the fixed point class
F = Fix ¢ of ¢ by Ind(F) = Ind(p, U), where Ind is the fixed point index of a bimap
from [97. It follows from the additivity of the index [9], Theorem 4.6, that the definition
is independent of U, and so we have, in particular, Ind(F) = Ind (Fix ¢) = Ind (@, X). As
usual we call F an essential fixed point class of ¢ if Ind (F) # 0, and define the Nielsen
number N (@) as the number of essential fixed point classes of ¢. We also define, as in [97,
that Ind(p, X) =0 if Fixp = @. Thus Corollary 2.2 implies

CorOLLARY 2.3. If ¢: X — X is a bimap on a compact connected polyhedron, then

{0 i Id(p, X)=0,
»N(q’)'{1 if Ind(p, X) #0.
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It is clear from the definition of N(¢) and from the homotopy invariance of
Ind(e, X) [9], Theorem 4.7, that N(¢) has the following two basic properties which are
typical for Nielsen-type numbers.

PROPOSITION 2.4 (lower bound). If ¢: X —» X is a bimap on a compact connected
polyhedron with N(p) # 0, then ¢ has at least one fixed point.

PROPOSITION 2.5 (homotopy invariance). If ¢4, ¢;: X — X are bimaps on a compact
connected polyhedron which are bihomotopic, then N(@) = N(¢,).

Here are two examples where it is easy to compute N(p).

ExaMpLE 2.6. Let ¢ ={f;, fo}: X—X be a bimap on a compact connected
polyhedron which splits into two (not necessarily distinct) maps. If L(f) denotes the
Lefschetz number of the map f: X — X, then [9], Example 4.10 implies

Ind(p, X) = ind(f, X)+ind(f3, X) = L(f)+L(/3),
and so Corollary 2.3 shows that

0 if L(f}) = —L(f2),
N = {1 otherwise.

ExampLE 2.7. Let ¢: $"—S" be a bimap of the n-sphere S" of degree d, which
means that the induced symmetric product map f: X — X, is of degree d. (See the
definition in [9], §4) If ¢ = {id, g}: S"—S" is a bimap which splits into the identity map
and a map g of degree d—1, then [9], Lemmas 2.1 and 2.3 show that ¢ and ¥ are
bihomotopic. Hence it follows from Proposition 2.5 and Example 2.6 that

N(o) = 0 ifd=2and n odd, ord = —2 neven,
)= 1 otherwise.

3. Bimaps with minimal fixed points sets. We now want to show, in Theorem 3.7,
that although N(g) is at most one, it still can be realized by a bimap ¥ in the
bihomotopy class of ¢ if ¢ is a bimap on a compact connected triangulable manifold
(with or without boundary) of dimension > 3. The proof will proceed along the lines of
the proof of the corresponding theorem for 2-valued multifunctions [7], Theorem 5.2,
and make use of the fact that we can homotope ¢ to a bimap which is 2-valued at all of
its fixed points [9], Theorem 5.2. As in the n-valued case [7], Remark 5.3, it is very likely
that the minimum theorem can be extended to bimaps of polyhedra which satisfy the
assumptions of [2], Theorem 5.3, but the proof would likely be quite a bit longer.

The proof of [7], Theorem 5.2, uses as a tool the Coincidence Lemma 2.2 of [7]
which was obtained with the help of [7], Lemma 2.1. We establish the equivalent
lemmas for bimaps. As in [7] we write B™(r) for the m-ball {xeR™| |x| < r}, choose
a metric d of the manifold M, and let d(f, g) denote the distance in the sup metric
between two maps f, g: M — M.

Lemma 3.1. Let O <k <m, —1<I<kandr>0.If ¢ is a face of o*, then every
bimap

2 (6%, ¢*—&, &)—(B(), B"(N—0, 0)
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has an extension to a bimap
1: (6, 8 =3, )~ (B"(r), B"(—0, 0).

Proof If I= —1, then y is of the form y: 6*— B™(r)—0, and hence induces
a symmetric product map v: 6*—Y,, where Y= B"(r)—0. Thus it follows from [31,
(1.4), that m—;(Y) = m—1 (S5 1) =0 for k<m, and so v extends to a symmetric
product map #: 6~ Y, which induces the desired bimap 7: G — B™(r)—0.

If I > 0, then the proof is analogous to the proof of [7], Lemma 2.1, for [ > 0 with
v and w=voq~* replaced by the bimaps y and yoq™ ™.

We need only a special case of [7], Lemma 2.2, for bimaps.

Lemma 3.2 (Coincidence Lemma). Let M be a compact manifold of dimension > 3,
let 1=T01], P=1IxI,P; =Bd(IxI) and P,=(BdI)xI. Given a bimap ¢: P~
IntM and a map g: P—IntM so that

gx)ep(x) for all xePy, g(x)¢o(x) for all xeP,—P,,

there exists a bimap ¢': P—IntM so that
¢'(x) = @(x) for all xeP, and g(x)¢¢'(x) for all xeP—P,.

Proof. The proof is similar to the proof of [7], Lemma 2.2, but some modifications
have to be made as ¢ can be either 1- or 2-valued.

As ¢(P)wg(P)is compact, we can choose finite collections {¥}}, {U}} of open sets in
M so that (P)ug(P) < UI/;., each ¥, U; « CIU; <= Int M, and so that for each index
j there exists a homomorphism h;: (CIU;, C1V))—(B"(1), B"(1/2)). Let A> O be the
Lebesgue number of the cover {V}} and determine 8,, ¢,, 8,, &, with 0 < §, < 1/2 and
0 < &y < &, < A/3 as in the proof of [7], Lemma 2.2. Using subdivisions we can assume
that for each simplex ¢ of P the diameter diam g(6) < £,/4 and, if ¢|é is not 2-valued,
then diam ¢ (6) < £o/4. If ¢|& is 2-valued, then ¢ |G = {f,, f,} splits into two maps, and
we can assume that diamf;(6) < gy/4 for i = 1, 2. Finally, we can assume that P, is full
in P. Let C = {xeP| g(x)e ¢(x)} be the coincidence set of ¢ and g. We shall define ¢’
inductively on the 0-, 1- and 2-simplexes of P.

Let first ¢° = x be a 0-simplex of (P—P,)C. If ¢(x) = g(x) is 1-valued, then we
select ¢'(x) & | ) ¥} arbitrarily as a point with 0 < d(¢'(x), g(x)) < &o. If () = {g(x), y,}
is 2-valued, then we select y, & | )V, arbitrarily with 0 <d(y;, g(x)) <&, and put
@' (x) = {y, yo}. If ¢° = x is a O-simplex not contained in (P—P,)nC, then we put
¢'(x) = @(x). Thus ¢’ is defined on the O-skeleton of P.

Now let ¢! be a I-simplex of P—P; with 6'nC # . If ¢|¢* is 2-valued, then
@|6' = {f,,£,} splits into two maps. If g(x) = f,(x) for some x &, where i = 1, 2, then

diam [f;(FYVg(d ) o' (1] < eo/d +eo/4+264 < 4,

80 fi(d")ug(F)u¢'(6*) = V; for some index j. We change f: &'~V to a map
Siz ¢ = Vywith d(f, ) < &1, fi(x) = f(x) for xe P; and fi(x) # g(x) for xe P— P, as in
the proof of [7], Lemma 2.2. If g(x) # fi(x) for all xe &', we put f; = f,. Then we define
olé* = {f1, fa}.
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If ¢|é' is not 2-valued, then
diam[p(")ug(E) v o' (6] < 4,

s0 p(EYLg() U ¢'(6*) = V; for some index j. We now proceed as in the proof of [7],
Lemma 2.2, with ¢ instead of f and Lemma 3.1 instead of [7], Lemma 2.1, to change
¢l to a bimap ¢'|6': & —IntM with Hausdorff distance g(¢(x), ¢'(x)) < g, for all
xed, so that ¢'(x) = (x) for xed NP, and g(x)¢ ¢'(x) for xe G N (P—P,).

If #n(P—-P)nC =, we define ¢'|¢* = ¢|d", and *have thus constructed
a bimap ¢’ on the 1-skeleton of P with d(¢, ¢') < &, which satisfies Lemma 3.2. Then we
construct ¢’ on all 2-simplexes of P in the same way to obtain the desired bimap
¢t P—>IntM.

As in [7] we use the concept of a special homotopy, introduced by Boju Jiang [2].
If ¢y, @;: A—X are two bimaps from a subspace A of X into X and &: AxI-X is

" a bihomotopy from ¢, to ¢,, we call @ a special bihomotopy if Fix ¢, = Fix ¢, for all

tel, and @,(x) = @y(x) for all xeFix ¢, and tel. Two bimaps ¢4, ¢@;: A—X which
have the same fixed point set are called specially bihomotopic if there exists a special
bihomotopy from ¢, to ¢,.

The next lemma reduces to [2], Lemma 2.1, if ¢ is 1-valued, and is a special case of
[7], Lemma 3.2, if ¢ is 2-valued. Its proof is analogous to the proof of [2], Lemma 2.1,
and is omitted.

LemMA 3.3 (Special bihomotopy extension). Let A be a subspace of X and let A and
X be ANR’s. If ¢o: X — X is a bimap and ® 2 AxI—X a special bihomotopy of o] A,
then @, can be extended to a special bihomotopy @: X xI—=X of ¢,.

We call a bipath a: I+ M special with respect to the arc Q = g(I) in M if

g0 ea(0), gq(l)ex(l) and g(s)¢a(s) for 0<s<1.

Two special bipaths o, o,: I—-M are called specially bihomotopic if there exists
a bihomotopy {e,}: I—M so that every bipath «,: I - M is special with respect to g.
The relation between special bihomotopies of bimaps and bipaths is given in

Lemma 34. Let Q =q(I) be an arc in M from x, to x,, let p: M — M be a bimap
with Fix pnQ = {x,, x,} and let o: I —~M be a bipath from x, to x,. Then the bimap
©|Q: Q- M is specially bihomotopic to the bimap woq™*: Q— M if and only if the bipath
a: I—-M is specially bihomotopic to the bipath gogq: I—M.

" The very easy proof is omitted. (See the corresponding Lemma 4.2 in [7].)

The next lemma is crucial for the proof of Theorem 3.7. Its proof is similar to the
proof of [7], Lemma 3.3, but easier.

LemMMA 3.5. Let M be a compact manifold of dimension 2 3. If two bipaths oy,
ay: I—Int M are special with respect to an arc q: I-»M and are bihomotopic, then they
are specially bihomotopic with respect to q.

Proof. Let {a}: I—M be the given bihomotopy. Using a collaring argument we
can assume that if BAM # ¢, then o (s)elntM for all (s, f)eIxI. The special
bihomotopy {w:(s)} = {¢'(s, )} can then be obtained from the Coincidence Lemma 3.2
with ¢(s, £) = o,(s) and g(s, £) = g(s) for all (s, eI xI.
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In the single-valued case the uniting of two fixed points in the same fixed point
class can be carried out by reducing the general case to that of a small deformation. The
next lemma, which corresponds to [7], Lemma 3.3, contains the situation to which the
uniting of two fixed points of a bimap can be reduced. Due to [9], Theorem 5.2, we will
only have to deal with fixed points at which the bimap is 2-valued.

LeMMA 3.6. Let M be a compact manifold of dimension = 2, let x4, x, €Int M be two
isolated fixed points of the bimap @: M—M, and let Q = q(l) be an arc from xq to x,
with lewﬁQ = {x, X,}. Assume that ¢|Q is specially |bihomotopic to a bimap
aog™t: Q— M, where o= {py, p,} is a bipath which splits so that p,(0) = x,, p,(1) = x,
and p, () # pa(s) for 0 < s < 1. Then there exists an ¢ > 0 so that d(p, , q) < ¢ implies that
@ is bihomotopic to a bimap ¢': M — M relative M—N, where N is a closed tubular
neighbourhood of Q with Fix o \N = {x,, x,}, and

(i) Fix ¢’ = Fixp—{x,},

(i) ¢’ is 2-valued at x,.

Proof. Lemma 3.3 shows that ¢ is specially bihomotopic to a bimap y: M—M
with |Q = wog~*. As W|Q is 2-valued, there exists a closed tubular neighbourhood
N of Q so that ¥|N is 2-valued, and hence ¥|N = {f;, f;} splits into two distinct maps
fii NoM [6], Lemma 2.1, with y=4d(f;, f,)>0. We index the f; so that
fi(x) = piog~*(x) for i =1, 2 and xe Q. Then [7], Lemma 3.2, shows that there exists an
&> 0 so that d(p,, g) < e implies that f; is y-homotopic relative BAN to a map
gy: N> M with Fixg, = Fix f; —{x,}. If we define the bimap ¢': M—>M by

oy Jai), ()} if xeN,
90y = {(p(x) if xeM—N,

then ¢’ satisfies Lemma 36.

We are now ready for the proof of the Minimum Theorem, which is done as usual
in three steps. First the bimap is approximated by a fix-finite one, and by using [9],
Theorem 5.2, we can also ensure that the bimap is 2-valued at each of its fixed points.
Secondly, two fixed points in the same fixed point class are united, and this will be done
in the proof of Theorem 3.7 with the help of Lemma 3.6. Thirdly, isolated fixed points of
index zero are removed, and [9], Theorem 5.3, shows that this can be done.

TreoreM 3.7 (Minimum Theorem). Let M be a compact connected triangulable
manifold of dimension > 3. Then every bimap ¢: M~M is bihomotopic to a bimap
W M—M which is fixed point free if N(¢) = 0 and has one fixed point if N(¢p) #0.

Prool According to [9], Theorem 5.2, we can assume that ¢ is fix-finite, that all its
fixed points lie in maximal simplexes and that ¢ is 2-valued on Fix p. I{ Bd M # @, then
a collaring argument allows us to assume that (M) = Int M. In view of Corollary 2.3
and [9], Theorem 5.3 it is sufficient to show that if x, and x, are two fixed points
of ¢, then ¢ is bihomotopic to a bimap ¢: M—M which is 2-valued on
Fix ¢’ = Fixp—{x,}.

So let x, and x, be two isolated fixed points of p: M ~Int M. As they are in the
same fixed point class, there exists a path p: X—M from x; to x, so that poP~u,
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where o = {p, p,} is a bipath Which has p as a selection. We homotope p with end points
fixed to a path g so that g(I) = Q is an arc in Int M with Fix¢ = {x, x,}. Then

{g, p,}~{p, p}~9pop~@og. For any ¢> 0 let

p.(s) = g(s—dsinms) for 0<s<1,

where 0 < & = 8(g) < 1 is selected so that d(p,, g) < &. It follows from an easy general
position argument that the path p, is homotopic to a path p3: M —Int M with p5(s)¢ Q
for 0 < 5 < 1. Then ¢y = pogq and «, = {p,, p>} are two bipaths which are special with
respect to ¢, and as

ay~{q, pa}~{p,, P2} =y,

they are bihomotopic. According to Lemma 3.5 they are specially bihomotopic, and
hence the bimaps ¢|Q and a;0q7': Q—M are specilly bihomotopic. Therefore
Lemma 3.6 states that we can choose ¢ > 0 so that ¢ is bihomotopic to a bimap ¢’ with
the necessary properties.
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Making the hugeness of x resurrectable
after x-directed closed forcing

by
Julius B. Barbanel (Schenectady, N.Y.)

Abstract. We consider generalizations, to the context of huge cardinals, of Laver’s result (L7
on the indestructibility of supercompactness.

§0. Introduction. Questions of which large cardinals are preserved by which
forcing notions often arise. Most large cardinal properties are preserved by small forcing
notions. In particular, the inaccessibility, weak compactness, measurability, supercom-
pactness, or hugeness, of a cardinal x is preserved by any forcing notion of cardinality
less than » (see [8]).

In one sense, large forcing notions trivially preserve large cardinals, where, by large,
we do not mean large in cardinality, but large in closure. In particular, the
inaccessibility (respectively weak compactness, measurability, 1-supercompactness, hu-
geness with target ) of a cardinal x is preserved by any forcing notion which is »-closed
(respectively x"-closed, »*-closed, (A%)*-closed, 4" -closed). This is so since a forcing

notion adds no new subsets of the ground model of cardinality less than its degree of
closure.

It is easy to see that all of the large cardinal properties we have mentioned can be
destroyed by a forcing notion which is y-closed, for any y < » we choose, and has
cardinality %. Simply consider the standard forcing notion for adding a function from
y to %. In the extension, % is not even a cardinal.

More interesting questions arise when we consider preservation of large cardinal
properties of x, by forcing notions which are x-closed. These are the types of forcing
notions that allow us to manipulate the value of 2%

Clearly, it is consistent that x-closed forcing can destroy the measurability of .
Consider a model in which » is measurable, and the GCH holds (the standard model
for this is L[U], the collection of all sets constructible from U, where U is
any normal ultrafilter on x). The standard forcing notion that makes 2% =™ ™
is w-closed. Hence, the GCH below » is not affected. It follows that, in the

This paper was written while the author was visiting The Hebrew University, Jerusalem,
Israel. We thank the Department of Mathematics at The Hebrew University for their wonderful
hospitality. We thank the referce for a number of perceptive comments that enabled us to simplify
and clarify in several places.
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