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On decomposition of 3-polyhedra
into a Cartesian product

by

Witold Rosicki (Gdansk)

Abstract. It is well known that the uniqueness of decomposition of 3-polyhedra into
a Cartesian product in general does not hold. In this paper we prove that if there is nonuniqueness
then one of the factors is an arc. We also answer the question when K x I~ Lx I, where K and
L are compact 2-polyhedra.

1. Introduction. In 1938 K. Borsuk [1] proved that decomposition of a compact
polyhedron into a Cartesian product of 1-dimensional factors is unique. However, if one
of the factors is a 2-polyhedron, or 2-manifold with boundary, the uniqueness of
decomposition does not hold. We give some examples.

ExaMpLE 1.1 (R. H. Fox (1947) [2]). The sets K and L are unions of an annulus and
two intervals as in Fig. 1.

o €

. Fig. 1
Then KxI~LxI. m
ExaMpLE 1.2. The sets K and L are unions of a disc and six intervals as in Fig. 2.

® @&

Fig. 2
Then KxI~LxI. m
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ExampLE 1.3 (J. H. C. Whitehead (1940) [5]). Let K be a disc with two holes and
L a torus with one hole. Then K xI~LxI m

Observe that in all these examples the 1-dimensional factor is homeomorphic to an
interval. In this paper, we will prove (Theorem 3.1) that if a 3-polyhedron has two
different decompositions into a Cartesian product then an arc is its topological factor,
In particular (Lemma 3.5), if K, L are 2-polyhedra and K x S'~Lx S! then K~L.

In the proof we investigate the structure of a 3-polyhedron. We compare the
non-Euclidean parts n,(K x X) and ny(Lx ¥) (see Definition 2.1) of two homeomorphic
3-polyhedra K x X and Lx Y.

In Section 4 we give some necessary conditions [or the formula K xI=~LxT to
be true (see Theorem 4.1). The non-Euclidean parts nK and nlL of K and L must be
homeomorphic. The “Buclidean parts” M(A) and M(4’) (see Definition 2.2) may not be
homeomorphic, but some conditions for them must hold. The third condition of
Theorem 4.1 describes the way in which the Euclidean parts of K and L have to be
connected for the formula K xI~LxI to be true.

2. Preliminaries. We first present some definitions and list some propertics of the
notions defined.

DeriniTioN 2.1. If P is a k-dimensional polyhedron then we define inductively the
sets ;P for i=0,1,..., k as follows:

(@) noP =P,

(i) m P denotes the subset of m;_; P consisting of the points which have no
neighborhood in m;_; P homeomorphic to RE=!*1 or Rk~111,

We set nP =n, P.

Remark. It is easy to see that every set n; P js a polyhedron and dim mP<k—i

The above definition was presented in [4].' The following lemma, analogous to
Lemma 3.1 of [4], is also true.

Lemma 2.1. If K is a 2-polyhedron and X is a 1-polyhedron then
n(KxX)={){n,KxnX: p+q=i}, where i=0,1,2,3. u

If K is a 2-polyhedron and 4 e[](K—nK) (the symbol [ denotes the set of
components) then we define a 2-manifold M(A) as in [4] (Definition 4.1);

DerFmNITION 2.2. (1) We denote by N(A) the set of all sequences {x,} in 4 which
converge in K and are such that for every neighborhood U of lim x, in K there exist
Uye O(U~nK) and a natural number ng such that for every n > n, we have x,& U,

(2) We define an equivalence relation “~" in N (A) by writing {x,} ~ {y,} iff

(i) limx, = limy, = x, in K,

(i) for every neighborhood U of X, in K there exist Uy e [J(U ~nK) and a natural
number n, such that for every n > ny we have x,eU, and y,e U,

(3) We denote by M(4) the set N (4)/ ~ .

(4) We define a basis for a topology in M(A). Let [{x2)71e M(A) and lim x¢ = x°.
Let U be a neighborhood of x° in K and let U, denote the component of U—nK such
that for almost all n we have x°eU o We denote by V(U, [{xJ}]) the set of
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[{x,}]1e M(A) such that lim x, € U and for almost all n, x, € U,,. The collection of the sets
V(U, [{x3}]) is a basis for the topology of M(A).

DEFINITION 2.3. We define a map g,: M(A4)— 4 by the formula g ,([{x,}]) = lim x,.

Similarly to [4] we give some properties of M(4) and g,

Property 2.1. If limx, = xe 4 then [{x,}]=[{x}] (where {x} is a constant
sequence).

Property 2.2. The map h,: A~ M(A) given by h,(x) = [{x}] is a topological
embedding.

Property 2.3. The space M(4) is a compact 2-manifold with boundary.

Property 2.4. The set g5 ' (nK n A) is a subpolyhedron of M(A4) and there exists
a subtriangulation of g7 *(nK n A) such that for every I-simplex I of this subtrian-
gulation the map g,|, is a homeomorphism. All such I-simplexes are contained in
OM(A).

Property 25. If K, L are 2-polyhedra, X, Y are l-manifolds (S* or I),
F: KxX-LxYis a homeomorphism and F(AxX) = A’ x Y, where Ae[J(K—nK)
and A’e[J(L—nL), then there exists a homeomorphism F,: M(4)xX —>M(4)x Y
such that

(9.4 xidy)oF , = Flaxxo(g, x idy).

Remark. Let P;: Lx Y—L and P,: Lx Y- Y denote the canonical projections.
The homeomorphism F, is given by

Fy([{x,}1, 0 = ([{P; F(x,, )}1, P,(lim F (x,, ))).

3. 1-dimensional factor. In this section we prove that if a decomposition of
a 3-polyhedron into a Cartesian product is not unique then the 1-dimensional factor has
to be homeomorphic to an interval. We assume that all polyhedra are compact and
connected.

TreoreM 3.1. If K and L are 2-polyhedra, X and Y are 1-polyhedra and
KxX=~LxY then either

() K=L and X =Y, or

(i) there exists a 1-polyhedron P such that K~PxY and L~Px X, or

(i) X ~ Y=[0,1].

In the following lemmas K, L, X and Y satisfy the assumptions of Theorem 3.1.

LemmA 3.1. If K has local cut points then X =Y.

Proof. Let DK denote the set of local cut points of K, and DL the analogous set
for L. It is obvious that if F: KxX—LxY is a homeomorphism then
F(DK x X) = DL x Y. If DK has isolated points then the lemma is proved. Otherwise
F((K—nK nDK)x X) = (L—~nL A DL)x Y. Since K is connected, K—nK n DK is not
empty. This last set consists of a finite. number of points, so the lemma is proved. m

LemMMA 3.2. If K x S* = L x I then there exists a 1-polyhedron P such that K = P x I
and L~ P xS*.
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Proof If K dnd L are 2-manifolds the assertion is obvious and the polyhedron P is
an arc or a simple closed curve.

The polyhedra K and L have no local cut points by Lemma 3.1.

Since nK x §* = n(K x§)mn(Lx1)=nLxI, we have nK~Ix{l,..., k} and

nLas§'x {1, ..., k} by Borsuk’s theorem [1] on the uniqueness of decomposition into
k k

a Cartesian product of 1-dimensional factors. So nK = (J I, and nL = {J S, where
=1 1=1

{I}¥1 is a family of pairwise disjoint arcs and {8}, is a family of pairwise disjoint

simple closed curves. :

Let F: KxS§'—=LxI be a homeomorphism. ¥ Ae[J(K~nK) then F(Ax8h
= A'x I, where A'e [](L--nL). So M(4) x S* ~ M(4')x I by Property 2.5. Hence, there
exists N (homeomorphic to I or §*) such that M(4)~ N x I and M(4')~ N xS,

Observe that if I;n 4 # @ then I; = 4 and il §,n A’ # @ then S, = A", Indeed, if

S'~T because the sets ,nANK—A4 and §;nA NL—A' are finite.

If nL # @ then g7'(S;) = @M (4') by Property 2.4. Hence, M (A)#D. So N=1I
and M(A)~IxI and M(A)~1xS

It is easy to see that 4 and A’ are 2-manifolds. The set dM(4’) has only two
components so g *(nK) consists of no more than two arcs lying in dM(A) (by Property
24). We obtain the set 4 from the manifold M (4)~ I x I by identilying thesc arcs with
one or two components of nK by homeomorphisms.

Now, let us assign to every I;e[JnK a point g, and to every Ae[J(K —nK) an
arc (or a simple closed curve) I, If g7 (1)) % @ then g, is an end-point of I .. If g71(I))
consists of two components then the end-points of I 4 coincide and I, is a simple closed
curve. The sets I, without end-points are pairwise disjoint. We define a 1-polyhedron
Pby P=(J){I,: Ael(X —nK)}. (The sets I, are not subsets of K. The construction
of P is abstract) It is easy to see that K~ PxJ and LxaPxSt m

Lemma 3.3. Let P, R be 1-polyhedra, L a 2-polyhedron and § a 1-manifold. If
PXxRxS~LxS then PxRa L.

Proof We can assume nP % @ and nR # @. In the opposite case P (or R) is
homeomorphic to $* or I and the proof is simple and we omit it.

If F: PXRxS§S—LxS is a homeomorphism then F(n(P X R x S)) = n(L x §).
Hence, F(n(Px R)x S)=nLx$§ by Lemma 2.1. We know that n(PxR)~nL by
Borsuk’s theorem [1] mentioned above.

Moreover, for every Ae[J(Px R—n(P x R)) we have n(PxR)AA~nLn X,
where F(4 x S) = A4’ x S, We can construct a homeomorphism f: n(P x R)-»nL such
that f(n(PxR)nA) = nLn A’ for every Ae[1(K—nK).

Observe that F(4x S) = A’ x §. Every A is homeomorphic either to 12, to I x S! or
to S_1 xS So A~ A 1t is easy to see that we can extend J to a homeomorphism
Jat Aun(PxR)~ 4 UnL. We define the required homeomorphism /i P x R— L by
Fx) =£,(%) for xed. m

Recall that we have assumed that K xX~LxY, K, L are 2-polyhedra and X,
Y are 1-polyhedra.
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LEmMA 34. If nX # O then either

(i) K~L and X~ Y, or

(i) there exists a 1-polyhedron P such that K~PxY and L~P x X.

Proof. Let F: Kx X —Lx Y be a homeomorphism. Then F(n(K x X)—n,(K x X))
=n(LxY)—n,(LxY). Since nKxX)=KxnXunKxX and n,(KxX)
=nKxnXun,KxX (by Lemma 2.1) we obtain n(K x X)—n,(K x X) = (K—nK)
xnX u(nK—n,K)x (X —nX), and analogously for Lx Y.

Therefore, if Ae[1(K—nK) and xenX, two cases are possible:

1° F(A x {x}) = A'x {x'}, where 4'e[J(L—nL) and x'enY¥, or

2° F(Ax{x})=V'x V", where V'e[Q(nL—n,L) and V"e[J(Y—nY).

Let us consider case 1° first.

We prove that

(@) if Be[J(K—nK)
B'eJ(L—nL).

Two cases are possible: either F(Bx {x}) = B'x {x'} or F(B x {x}) = U’ x U", where
U'ed(mnL—n, L) and U”e J(Y—nY). Suppo'se that the second condition holds. Then
F(Ax {x}) " F(B x {x}) # @ because 4 B s @. So there exist ' € '~ U"and x' e U".
Choose a'eA’” and u’eU". There exist arcs a'u' <= AU {w} and x'u’ < U" U {x}.
Therefore, there exists an arc (a', x')(t/, u”) whose interior lies in A'x U"” and
therefore is disjoint from n(LxY). Then F~*(d, x)edx{x} and F~'(u,u")
eBx{x}—Ax{x} because (¢, x)ed' x{x'}, (,u")eU' xU" and (', w)¢A x {x'}.
Therefore, the interior of any arc which joins F~!(a', x') to F~(/, v") in K x X meets
n(K x X). However, the interior of the arc F~*((', x')(u', u")) lies in F~*(4’' x U") and
so is disjoint from n(K x X). Hence, F(Bx {x}) = B' x {x'}.

Observe that

(b) if ZeInK and Zn A # @ then F(Zx {x})= Z'x {x'}, where Z'e[InL.

Indeed, we know that Zx X ~Z'x Yand Z, X, Z', Yare 1-polyhedra. So as in [1],
either F(Z x {x}) = Z'x{x'} or F(Zx{x})={z}x ¥ It is enough to show that if
Ce[(nK ~n, K) and Cn A4 # @ then F(C x {x}) = C' x {x'}, where C'e O(nL—n,L).

Observe that we have either F(Cx {x}) = C'x {x'} or F(Cx{x})={z}xC". If
Cn A consists of more than one point then so does F(Cx{x})n F(4x {x}). But
F(Ax{x})=A'x{x} so F(Cx{x})=C"x{x'}. Suppose C A4 = {v} and F(Cx {=h
= {z}xC". Then 4'x{x'} n{z'} x C' = {(z, x)}. We have {z'} x C' = A'x C' because
Zed. But Cx{x} < AxV for any Ve (X —nX).

Also, observe that

(c) if K has local cut points then F(Bx {x}) = U’ xU” for no Be(]1(K~nK).

To see this, let as before DK, DL denote the sets of local cut points of K and L,
respectively, Then F(DK xX)=DLxY, Suppose BADK#@ and F(Bx{x})
= U'xU". Then either dim(T'xT)A(DLxY)=1 or (U'xT)n(DLxY)=@,
which is impossible. The polyhedron K is connected and the condition (a) holds, so ()
holds too.

The conditions (a), (b), (c) yield

(d) if F(Ax{x})= A" x{x'} for some Ae[1(K—nK) then F(Kx {x}) = ;x {x'}.

and AnB#0 then FBx{x})=B x{x}, where
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So K= L.

We need to prove that in case 1° we have X = Y.

The sets nX and nY have the same number of points because F(K x nX) = Lxny,
Let F(K x {x;}) = Lx{y;}. The components of X —nX and Y--nY arc open arcs, If
IeJ(X —nX) then F(K xI) = LxI', where I' e [J(Y—nY). Observe that x,-efiffy,e["’,
So X~ Y.

Hence, in case 1° condition (i) holds.

Now we consider case 2”: F(A x {x}) = V' x V. Then for every Be [7)(K —nK) we
have F(Bx{x})= U'xU", where U'e[}(nL—n, L), U"€[J(Y~nY). We know that
K has no local cut points by (c).

For components of nL—n,L we define a relation: W'~ U’ il there cxists
a sequence W' = W5, Wi, ..., W/ = U’ of components of nl.-ny L such that for all
i=0,1,..., k=1, W n Wi # @ and il W' % W/, then no component ¢ of L—nL
satisfies W/ nC' # @ and W, nC # @.

We define a 1-polyhedron P by P = U{ W' Wellnl—n L) A W~ V' We
will prove that F(K x{x}) = Px Y.

First we note that F(K x{x}) = Px Y. Indeed, it is enough to obscrve that i
dimAnB =1 then F(Bx{x})= U xU" c Px Y because K is connected and has no
local cut points.

If U=V then UxU" < PxY because V'x V' Px Y.

Suppose U # V. Then V"' = U" because dim (7' x ")~ (U’ x U") = 1. Suppose
that there exists a component C' of L—nL such that V' €' # @ and U’ ~ " % @, Let
deV'nC,belU' nC and x"eU" = V", There exists an arc «' b whose interior lies in
C'. (The interior of an arc ab will be denoted by (ah).)

Observe that (o' b)x {x"} = C'x U" = Lx Y—n(Lx Y). Hence, F Y@ byx {x"})
< Kx X—n(K x X). The ends of the arc F™*(«'b' x {x"}) lie in 4 x{x} and Bx{x},
respectively. This is impossible because the interior of any arc in K x X with end-points
F~Ya', x"), F7Y(b', x") meets K x X). So U'~ V', Therefore, F(Bx {x}) = Px Yand
F(Kx{x})cPxY.

Now, we prove that Px Yo F(K x {x}).

- We know. ‘[hi‘lt F7Y(V'xV")=Ax{x}. Let us investigate wherc the set
FU'XU") lies if V'nlU #@, V'~U and V"= U". Suppose F~'(U'xU")
=U,xU,, where Uie[J(nK—n,K), Uye[J(X~nX). The sel U,nA is not
empty and xeU, because dim ((4 x{xP (U x U,)) = 1. Therefore, there exist
(a, x)e Ax {x}, (uy, u)e U x U, and an arc (cty X){uyy uy) such that (fa, x)(uy, uy)
c AxU, = K xX—n(K xX). The points F(a, x) and Flug, uy) lie in ¥ x V" and
U'x U", respectively. The interior of any arc in Lx Y with end-points F(a, x) and
Fluy, u;) meets n(L x Y) because V' ~ U and the projection of this arc on the first factor
meets nL. But F({(a, x)(x,, up))) & Lx Y—n(L x Y). Therefore, F'~* (U’ x U"y = Bx{x}.

Similarly we prove F~4{({U'x U") = B x {x} in the case U’ = V' and V" ~ U # @.

By a finite number of steps as above we can show that F™ (W' x W") = B x {x} for
any WelJ(nL—n,L) such that W'~V and any W7"e[J(Y-nY). Hence,
F™YPxY)c K x{x} because P = U w~ v,

We have proved F(Kx{x})=PxY, so KxPx¥
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If nY=@ then L~ Px X by Lemma 3.3.

Now, we assume nY# & and consider the homeomorphism F™!: Lx Y- K x X.
Let A'e[J(L—nL) and x'enY. Then two cases are possible. The first:
F~YA % {x'}) = Ax{x} for some Ae[J(K—nK)and xenX. Hence, K = L by 1°. The
second: F™1(4' x{x'}) =V, xV,, where V,e[](nK—n, K), V,e[1(X—nX). Hence,
LxP xX. We have (PxY)xX~KxX~LxY~(P;xX)xY. The l-polyhedra
P and P, are homeomorphic because decomposition into Cartesian product of
1-polybedra is unique.

So, in case 2° condition (ii) holds. m

COROLLARY. If nX =& then either

(i) K~L and X=Y, or

(ii) there exists a l-polyhedron P such that K~PxY and LxPx X, or

(i) X~ Y.

Proof. If nY# @, we consider the homeomorphism F~': Lx Y~ K x X and (ii)
holds by Lemma 3.4. If nY= then e¢ither X ~ Y or (ii) holds by Lemma 32 =

Now we prove

LemMA 3.5. If K, L are 2-polyhedra and K xS'~LxS' then K=~ L.

Proof. We have assumed K, L to be compact and connected. The lemma is an
insignificant generalization of Proposition 4.2 from [4]. Notice that the assumptions (x)
and (+*) of that proposition are not essential.

If F: KxS'-LxS'is a homeomorphism then F(nK xS')=nLxS*. Hence,
nK ~nL. Moreover, F(n, K x §') = n, LxS*. If D, K and D L are the sets of local cut
points of K and L, respectively, then F(D; Kx§')=D, LxS* Let D,K and D,L
denote the sets of those points of nK and nL, respectively, whose regular neighborhoods
are not homeomorphic to (cone{l,...,n})xI, for any neN. Then also
F(D,K x §Y) = D, Lx S*. Observe that if D, K is the set of points of 7K which have an
open neighborhood in nK homeomorphic to [0, 1) then F(D;K xS')=D,Lx S,
where D, L is the analogous subset of nL.

We can construct a homeomorphism f: nK —nL such that f(n,K) =n, L and
f(D;K)=D;L for i=1,2,3. Moreover, if for a component U of n, K or of
DK (i=1,2,3) we have F(U x §*) = U’ x §!, where U’ is component of n, L or of
D,L, then f(U)=U",

This means that we can divide nK into arcs ab, simple closed curves § and isolated
points ¢ and divide nL into arcs a' b’, simple closed curves S’ and isolated points ¢’ such
that f'(ab) = a'b', f(S) =& and f(¢) = ¢ iff FlabxSY) =a'b'x §*, F(Sx §') =5 x§
and F({c}x§Y) = {¢}xS*. Moreover, if F(abxS)=a'b'xS" and F({a} xS
= {a'}xS! then f(a)=d'.

We want to extend the homeomorphism f to a homeomorphism f* K— L.

By Property 2.5, if F(A x 8*) = A" x §*, where Ae (K —nK), 4"e J(L—nL), then
there exists a homeomorphism F,: M(4)x S*—M(4')x §* such that the diagram

M(A)x S'—E4 M(A) x S!
g,,xidl Al lgmxid
Ax S —r T xSt
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commutes. (M (A), M(A4') are given by Definition 2.2 and g4, g, are given by Definition
23)
" Of course M (A)~ M(4).

We can subdivide the polyhedron g7'(nK n A) so that for every 1-simplex I the
map g4, is a homeomorphism (Property 2.4). The components of g7 ' (ab), where ab is
an arc as above, are such 1-simplexes. So, we can assume F,(IxS') = I'x St,

We define a homeomorphism f,: g5 (nK nA)—~git(nLn ') by

Ja(¥) = (g.41r) " ofog,(x) for xel and

Jax) =x" iff F({x}x8)={x'}xS* and x is an isolated point.

As in the proof of Proposition 4.1 of [4], we first extend f, to M (A) and nexi to
M(4) to obtain a homeomorphism fy: M(4)— M (d4').

The required homeomorphism f* K — L is defined by

_ e forxenk,
fea= {QA'Of;i(yjl(X)) forxed. m

Lemmas 3.2, 34, 3.5 immediately imply Theorem 3.1.

CoroLLARY. If X, Y, Z are 1-polyhedra, K is a 2-polyhedron and X x YX Z ~ K x VA
then X x Y~ K.

Remark. By Kosifiski’s theorem [3], every 2-dimensional topological divisor of
a polyhedron is a polyhedron. So, we have considered all possible decompositions of
a 3-polyhedron and Theorem 3.1 can be formulated a bit more generally: A 3-polyhed-
ron can be represented as a Cartesian product in two different ways only if the interval is
its topological divisor.

4. Conditions for K x I~ LxI.

TreoREM 4.1. If K and L are compact 2-polyhedra then K x I rs L x [ iff the following
conditions hold:

(1) There exists a homeomorphism h: nK —nlL.

(2) There exists a one-to-one correspondence A+»A' between components of K —nK
and of L—nL such that: the manifolds M(4) and M (A') are either both orientable or both

nonorientable, their first Betti numbers (B(M(A)) = rank H (M) are equal; if

94(OM(A)) = nK then M(A)~ M(A); and
(3) There exist homeomorphisms hy: g3'(nK A H)~ gt (nL A A1), Jor  every
AeO(K—nK), such that:
(a) The diagrams
91 (0K A A4 g 20 (0L A AY)
art]a;“wxnk)l l Oy, fotnity

(4)
nK : »nl

commute for every A. ‘
(b) If we choose suitable orientations of the orientable manifolds M(A) and M(A") and

orientations of the boundaries of the nonorientable ones then all h 4 Dreserve the induced
orientations.
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(©) hulgz*(nK N A) nint M(A4)) = g3t (L ~ A') M int M(4).

Proof. First we show that if KxI~ Lx1I then the above conditions hold.

The first condition is obvious: From Lemma 2.1, n(KxI)=nKxI and
n(LxI)=nLx1I So, if F: K xI—LxIisahomeomorphism then F(nK xI) = nL x I.
Hence, nK ~nL by Borsuk’s theorem [1].

Before we prove the second condition, we observe that for every 4 [J(K —nK)
there exists exactly one 4'e [J(L—nL) such that F(4 x I) = A’ x I. We recall that there
exists a homeomorphism F: M(A)xI—M(A)xI. So, either both M(4) and M (4
are orientable or both are nonorientable. The first Betti numbers of M(4) and M (4') are
equal because H,(M(4)~ H,(M(A) x )~ H, (M(4)x 1) = H,(M(4)).

If g4(0M(A)) = nK then F,(AM(A)x 1) = dM(A')xI because the diagram

MA)x I-Ea M(4) < I
() ,,Axidl . lgd»xid
Ax T, 3

commutes. Indeed, 0M(A)xI is the wunion of those components of
(g4xid)"*((nK nA)xI) which are not intervals, and similarly for AM(4')x I.
Hence,  H,(M(A), OM(A)) ~ H, (M(4) x I, OM(4) x ) ~ H, (M(4) x I, M (4" x I)
~H(M(4), 0M(A). Also, since H,(M(A))~H,;(M(4)) and both manifolds are
orientable or both nonorientable we have M(4)~ M(4).

Now, we prove the third condition. Since F((nKn A)xI)= (L A)xI and
nKnA4, nLnA are l-polyhedra, it follows that nKnA~nLAA. Set
A; = g71'(nK n A) and 4} = gz*(nL ~ A'). Since the diagram (x) commutes, so does the
diagram

F
Ay x I—Tda g g
(**) Galay xid l Gl xid
(K ~ Ay s I-emota (], ~ Ty

Therefore 4, ~ A].

By Property 2.4 we can assume that g, and g, are homeomorphisms on every
1-simplex of A4, and A}. So, we can choose homeomorphisms A: nK —nlL and
hy: A;— A} in such a way that the diagram (4) commutes.

Part (b) of condition (3) is also easy to see: If a homeomorphism h, preserves
orientation on some l-simplex and reverses it on another one then identifying these
simplexes we obtain 2-manifolds whose Cartesian products with an interval are not
homeomorphic, . :

The last part of condition (3) follows from the facts that F,(int(M(4)x I))
=int(M(4)xI) and the diagrams () and (4) commute.

Of course, conditions (1)~(3) do not imply K = L. However, we will prove that they
immply KxI~LxI. ’ :

We have to extend the homeomorphism hxid: nK xI—»nLxI to a homeomor-
phism F: KxI—-LxI.
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By (2), M(A) x I ~ M(A4') x I. Indeed, if B(M(4)) = B(M(A")) = n then the manifolds
M(A) and M(A') are constructed from a disc D by identifying n pairs of disjoint arcs
lying in 0D, If M(A), M(A) are orientable we identify all arcs with the inverse
orientation, otherwise with the same orientation. The manifolds M(A4) x I and M (A)x1
are obtained from the ball D x I by identifying » disjoint pairs of discs lying in o(D x 1.
The result of the first identification depends on the order of the arcs on the simple closed
curve 8D. On the contrary, the result of the second identification does not depend on the
position of the discs on (D x I).

The set 4, = g7 ' (1K n A) consists of disjoint points, arcs and simple closed curves
lying in dM(A) and isolated points lying in int M(4), and similarly for A4}, Since
hy(4, nint M(A4)) = 4} nint M(4) and the interior of a manifold is homogeneous, we
do not have to consider the interior points.

If g,(0M(A4) = nK and g, (0M(A") < nL then we can extend h: nK —nlL to
a homeomorphism ITA: nKuAd->nLuA because M(A) =~ M(A') and the diagram (A4)
commutes. So, we can extend hxid to a homeomorphism /I, xid: (nK u Ayx I
—-nLuA)xI.

Now, we can assume that not all components of M (d) are contained in 4,. The
sets A; and A’ ‘are homeomorphic. However, we cannot extend /it to A because the
manifolds M(4) and M(A4’) need not be homeomorphic and the components of A, and
Al can have different positions on dM(A4) and dM(A').

Let Sy, ..., S be all components of dM(4) contained in A,. We can represent
M(4) as follows: Take a disc D with k holes. Let T, ..., Tio Teay denote the
components of the boundary. If #(M(A4)) = n we choose n—k disjoint pairs of arcs I oy
on Tiy; and n—k homeomorphisms ¢;: I,—J,. If M(A) is orientable the homeomor-
phisms ¢; are assumed to reverse orientation, otherwise they should preserve orien-
tation. Then the quotient space D/~, where

x~yiff x=y or gi(x) =y or x = ¢;(y) for some i=1,..., n—k,
is homeomorphic to M(A).

Let py: D—M(A) be the quotient map. Then pa(T) =8, for i=1,..., k The
intersection of Ty, with A, = p3*(4,) = p; g3 (K o A) consists of disjoint arcs and
points. We can assume that A, is disjoint from the union of the arcs I; and J,,
i=1,..., n—k

Analogously we represent the manifold M (A') as a disc D' with k holes where we
identify n—k pairs of disjoint arcs lying all in one component of the boundary. Let
Pt D'~ M(A') denote the quotient map.

n—k
Since 4, n (J(I;uJ) =@ the map Pala, 18 2 homeomorphism.
i=1

Similarly p .| 4, 18 a homeomorphism, where A} = pat(A}). Since the diagram (A)
commutes, so does the diagram
hlx"(l’rh’,] 'ohgop,,

2
40Pl l

nK

> Ay
l Flr|'°l’,|'|,|3
>nl

h
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We have hy(T})= T/, where the T are components of D', i=1,..., k, and
Hy(Ayn Tvy) = A2 0 Tay
The homeomorphism k) need not extend to Ty to a homeomorphism A, such

that Ay(I) =1 and Fy(J) =Ji because (4, Tpy1) u'Dk(I,. uJ) and (A2 T4 y)

v nok(l tulJ) can have different positions on 7;: 11 and 7T/+;. However,

(’J(iD=>l< h=aD'xI) is a closed 2-manifold, so [A4,u Dk(l,. uJ)lxI  and

[45u "Oklé w Ji)] x I are in the same position on it. The homcomo!r:;hism hy xid can be
i=1

extended to a homeomorphism Fy; DxI—D'x 1. We can, additionally, require that
FylixI)=IixIand Fy(J,xI)=JixIfori=1,..., n—k. Moreover, we can require:
@i(x) =y iff (pixid)oF,(x, t) = Fy(y, t) for xel, and
94PaX) = g424() ill (g4 pa xid)(F'(x, 1)) = (g0 P x 1) (F'(y, 1)) for x, ye 4,.
Now we can define a homeomorphism F,: M(4)xI->M(A)xI by
Fyx, ) =(ps Xid)( Wit (), f))
The desired homeomorphism F: KxI—Lx1I is defined by

(h(x), £) for xenk,
F(x, t)= < (g0 x1d)(F4(92'(x), 1) for xed, when g,(0M(A4) & nK,
(Fa(x), t) for xe 4, when g,(6M(4)) = nK.

This completes the proof. m
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