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Poland
Intuitively, a subset X of a metric space is said to be paradoxical if it admits

a partition X = AU B such that each of the sets 4, B can be subdivided into finitely
many pieces which can be reassembled via isometries to produce X; if 4 is subdivided
into m pieces and B is subdivided into n pieces, the set X is said to be (m, n)-paradoxical.

The Sierpinski-Mazurkiewicz paradox is that there is a (1,1)-paradoxical subset of
the plane [MS]. Hadwiger, Debrunner and Klee [HDK, p. 80] have shown that
a bounded (m, n)-paradoxical subset of the plane must satisfy m-+n> 2. A bounded
(1, 3)-paradoxical subset of the plane has recently been constructed by Just [J].

Our main purpose here is to show that there is no bounded (1,2)-paradoxical subset
of the plane. This improves the result of Hadwiger, Debrunner and Klee, and renders
optimal the recent construction of Just. We also construct here a bounded (2,2)-parado-
xical subset of the plane.

DErINITION 1. X is an (m, n)-paradoxical subset of the plane if X is nonempty, and
there are subsets C,,...,C,, D{,...,D, of X and planar isometries G, ..., G,,
Hy,..., H,, such that P, ={C}, P,={Dj} and P,={G/(C)}u{H(D)} are each
partitions of X.

DeriNITION 2. Let X be an (m, n)-paradoxical subset of the plane whose para-
doxical decomposition is witnessed by subsets Cy, ..., C,, Dy,..., D, and planar
isometrics Gy, ..., G,, Hy,...,H, Write #={C,,...,C,}, 2={Dy,...,D,},
9 = {G, ..., G,}, and o = {H, ..., H,}. We define the associated directed graph
I = I'(%, %, %, #) of the decomposition. I' is an infinite directed graph with vertex set
V(I') = X. The set of darts (Le. directed edges) of I' consists of all pairs (x, G,(x)} and
{x, Hy(x)), where xeC;nD,.

It is helpful, when drawing diagrams, to label each dart of I' with the planar
isometry that determined its second coordinate.

Observe that every x in V(I') has invalency 1 and outvalency 2.

LeMMA 1. Let I' be an infinite directed graph with invalency 1 at each vertex, and
suppose furthermore that I' is connected. Then I' contains at most one cycle.
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Proof. Easy.
THEOREM 1. There is no bounded (1,2)-paradoxical subset of the plane.

Our proof is based on the method of Hadwiger, Debrunner and Klee [HDK,
p. 80].

Proof Suppose X is a (1,2)-paradoxical subset of the plane. Then there are subsets
Dy, D, of X, and planar isometries R, F and G, such that P, = {X}, P, ={D,,D,} and
Py ={R(X), F(D,), G(D,)} are partitions of X. We show that X is not bounded,

Let I' be the associated directed graph of this decomposition. If every component of
T contains a cycle, let ¢ be a vertex in some cycle, and choose z, such that (¢, zy) is a dart
of I' not in the cycle. Otherwise, let Zg be any vertex of an acyclic component. Let 4 be
the smallest subgraph of I" which contains the vertex zo and every directed path which

has initial vertex z,. Then 4 is acyclic by Lemma 1. The labelled subgraph 4 is shown in
the figure below, where each X,e{F, G},

|

i
1
'

' Since R(zy), R?(z,), R3(zy), ... are the final vertices of distinct paths of 4 (having
initial vertex z,), they are all different. Therefore, R is not a reflection or a rotation of
finite order. '

Now suppose X is bounded, then so is the set {R(zo), R*(zo), R(z,), ...}. There-
fore, R is not a translation or a glide reflection, :
Let O be the fixed point of R, and let D be th
contains all the vertices of 4.

Note that the entire boundary of D is contained in ¢
vertex set of 4. (Since R has infinite order, each R-
s0 cl(V (4)) is a union of circles centered at 0, B
coincides with 4D so 8D = c(V(4)).)

The proof now breaks into six essentially different cases.

Case 1. F(0) # O and G(0) +# 0. Clearly,
be covered by two discs also. of radius 7, u
coincides with the covered disc. Thus F~

$0 R must be a rotation of infinite order,
e smallest closed disc with center O that

he topological closure of the
orbit is dense in a circle centered at 0,
y the minimality of D, one such circle

the boundary of a disc of radius r cannot
nless at ledst one of the covering discs
Y(D)UG~(D) does not cover 4D, Since
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oD = cl(V(4)), there is a-vertex v of 4 not in F~*(D)u G~ (D), but this contradicts the
fact that one of the points F(v), G(v) is a vertex of 4.

Case 2. F(0) 5 O and G is a rotation fixing O. Since F ~*(D) does not cover D and
8D < cl(V(4)), there is a vertex v of 4 not in F~*(D). Since the point F(v) is not a vertex
of 4, the point G(v) is a vertex of 4. Let k > 1. Exactly one of the points FR*(v), GR¥(v) is
a vertex of 4. If GR*(v)e V' (4), then GR¥(v) and R*G(v) are the final vertices of different
paths having initial vertex v, so they should be different. But GR* and R*G are equal as
planar isometries. Hence GR*(v) is not a vertex of 4. Therefore FR*(v)e V(). This is
true for all kz 1. Bul now we have

vec({RK0)} ) = (P (V(4) < cl(F~*(D)) = F~1(D)

contradicting our choice of ». )

Cuse 3. F(0) # O and G is a reflection fixing 0. Since. F~*(D) does not cover oD
and 8D < cl(V(4)), there is a vertex v of 4 not in F~1(D), and G(v) is a vertex of 4 as in
case 2. Let k > 1. Exactly one of the points FR*G(v), GR*G(v) is a vertex of 4. If
GR*G(v) is a vertex of 4, then so is R*GR*G(v); R*GR*G(v) is the final vertex of a path
having initial vertex v and so should be different from v, but R*GR*G is equal to the
identity as a planar isometry. Hence GR¥G(v) is not a vertex of 4 so FR*G(v) is. This is
true for all k > 1, but now we have’ !

vec({R¥ GO} 1) < dl(F1(V(4) < cl(F~1(D)) = F~*(D)

(since v and G(v) are equidistant from O), and this 4 contradicts the choice of v.

Case 4. F and G are rotations fixing 0. For some X, ¥, Ze{F, G}, the points
R?X(zo), RYR(z,) and ZR?(z,) are vertices of 4. These are the final vertices of three
different paths having initial vertex z,, so they should be all different, but at least two of
the maps R2X, RYR, ZR?® are equal as planar isometries.

Case 5. F and G are reflections fixing O. For some U, V, W, X, Y, Ze{F, G}, the
points R2UV (z,), RWXR(z,), YZR?(z,), and R?(z,) are vertices of 4, and should be all
different. If U = ¥, then R2UV = R?% so we must have U # V and similarly W # X,
Y # Z. Thus the three rotations UV, WX, YZ must lie in the set {FG, GF}. So at least
two of the maps R?UY, RWXR, YZR* are equal.

Case 6. F is a rotation fixing O and G is a reflection fixing O. For some U, V, W, X,
Y, Ze{F, G}, the points R*VU{z,), RWRU (z,), RU (z,), XR(z,). RYXR(z,), ZRXR(z,),
and R*(zy) are vertices of 4. These points and z, should be all different. If U = G, then
V= F (otherwise R*VU = R?) and W = F (otherwise RWRU is the identity), but then
R*VU = RWRU. If U= F then X = G (otherwise RU = XR), so Y = F (otherwise
RYXR = R?) and Z = F (otherwise ZRXR is the identity), but then RYXR = ZRXR.

TuroreM 2. There is.a bounded (2,2)-paradoxical subset X of the plane. .

Proof, We define the planar isometries R and F, and a subset E of C, exactly as in
I[MS]: R(z) = ¢'z, F(z) = z+ 1 and E consists of the point O together with all the images
of O under the action of the semigroup generated by R and F.

The (2, 2)-paradoxical subset X will be contained in E and also in the rectangular
subset § = [~8, 4]+i [—3, 6] of the complex plane.
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Let T=[-2, 5]+i[ -3, 6]. Fix k > 0 such that R*(T) < §. The rotation R* is then
approximately a quarter turn counter-clockwise. See the figure below.

Rez r

Imz

Let P=[—8, —2]+i[—3, 6], and let Q = (-2, 4]+i [—3, 6]. Then {P, Q} is
. a partition of S. Note that Q, Q+1, P+6 and P+7 are all subsets of T, so since
RH(T) < 8, it follows that R¥(Q), R*F(Q), R¥FS(P) and R*F7(P) are all subsets of S. We
define X = ( J2 o X, as follows.
Let X, = {0}, X, = {R*F(0)}. Define X,, X, ... inductively. Suppose n > 1, and
we have defined X,. For each point z in X,, assume inductively that ze S = PuQ.
If zeP, put R*FS(z) and R*F7(z) into X,.,.
If zeQ, put R*(z) and R*F(z) into X,.,.
This completes the definition of X. To show that X is (2, 2)-paradoxical we argue
that Py =P, ={XnP, XnQ} and Py = {R*FS(XnP), RYX Q) REF'(X A P),
R*F(X nQ)} are partitions of X. Py = P, is clearly a partition of X. It is clear from the
construction that X = ( JP, so it remains to show that P, is disjoint. Since ¢ is
transcendental, each point x in E other than 0 has a unique representation 'L,,
L,L,F(0) where L;e{F, R}, ne{0, 1, ...}. In particular, suppose xeX = {JP5. Then
xER*FS(X NP)=>x = RF6R...F(0); xeR*(XnQ)=>x=0 or x =RR...F(0);
xeR*F' (X P)=>x = R*F"...F(0); xeR*F(X nQ)=x = R*F(0) or x = R¥FR...F(0).
By uniqueness of the representations on the right, P, is disjoint.
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