

Embedding of Boolean algebras in $P(\omega)/\text{fin}$

by

J. Baumgartner (Hanover, N.H.), R. Frankiewicz (Warszawa) and P. Zbierski (Warszawa)

Abstract. A model of ZFC set theory is constructed in which c (the continuum) is large, MA (σ -linked) holds and each compact 0-dimensional space of weight c is a continuous image of ω^* .

A well-known theorem of Parovichenko (see e.g. [C-N]) says that, if CH (the continuum hypothesis) is assumed, then each Boolean algebra of cardinality $\leqslant c = 2^{\omega}$ can be embedded into $P(\omega)$ /fin. What happens if CH fails? Kunen [K] proved that after adding ω_2 Cohen reals to a model of CH, there is an algebra of cardinality c which cannot be embedded into $P(\omega)$ /fin. In [F] a model of ZFC + MA is constructed in which $c = 2^{\omega_1}$ and the powerset algebra $P(\omega_1)$ cannot be embedded into $P(\omega)$ /fin. There is also a model in which $c = \omega_2$ and the measure algebra does not embed into $P(\omega)$ /fin. On the other hand, Laver shows (in [L]) that, consistently with a large value for c, each linear ordering of cardinality c c embeds in ω^{ω} (ordered by eventual dominance)(1).

Using Laver's technique we prove here the following:

THEOREM. There is a model of ZFC set theory with arbitrarily large c in which each Boolean algebra of cardinality \leq c can be embedded into $P(\omega)$ /fin. In addition, the Martin Axiom for σ -linked orderings holds in the model.

In particular, it follows that the conclusion of the Parovichenko theorem is not equivalent to CH.

Proof. In the ground model V we fix a regular cardinal $\kappa > \omega_1$, with $2^{<\kappa} = \kappa$, and force with a κ -stage finite support iteration $\langle P_{\alpha}, Q_{\alpha}: \alpha < \kappa \rangle$ so that the resulting extension $V \lceil G \rceil$ will have the required properties.

In a usual way choose names Q_{α} , $\alpha < \varkappa$ and α odd, so that

$$P_{\alpha} \vdash P_{\alpha}$$
 is σ -linked"

and V[G] = MA (σ -linked).

⁽¹⁾ The consistency of ZFC+ \neg CH+each Boolean algebra of size \leq c can be embedded into $P(\omega)$ /lin has been pointed out without proof by Baumgartner in his article Application of the proper forcing axiom in Handbook of Set-Theoretic Topology.

Embedding of Boolean algebras

At even stages α , Q_{α} adds a subset $A_{\alpha} \subseteq \omega$ which fills a certain gap in $P(\omega)$ /fin. To be more precise, let $C(\alpha)$ consist of finite zero-one functions s with $dm(s) \subseteq \alpha$. Set

$$D(\alpha) = \{ s \in C(\alpha) : \forall \xi \in dm(s) \xi \text{ is even} \}.$$

Each $s \in D(\alpha)$ determines a Boolean combination

$$A(s) = \bigcap_{s(\xi)=0} A_{\xi} \cap \bigcap_{s(\eta)=1} (\omega \backslash A_{\eta}).$$

Now, in $V^{(P_{\alpha})}$ a pair $\langle S, T \rangle$ is called a *generic gap* if $S, T \subseteq D(\alpha)$ and the following two properties hold:

- (1) $A(s) \cap A(t) \in \text{fin, for each } s \in S \text{ and } t \in T$.
- (2) If $A(s) \subseteq_* A(s_1) \cup \ldots \cup A(s_n)$, for some $s \in D(\alpha)$ and $s_1, \ldots, s_n \in S$, then $s \in S$; similarly for T.

Standard reasoning shows that there is a sequence $\langle S_{\alpha}, T_{\alpha} \rangle$ such that $\langle S_{\alpha}, T_{\alpha} \rangle$ is a P_{α} -name of a generic gap in $V^{(P_{\alpha})}$ and each $< \varkappa$ -generated gap occurs in the sequence, for arbitrarily large $\alpha < \varkappa$.

Now, Q_{α} consists of $q=\langle x_q,\, a_q,\, y_q,\, m_q\rangle$, where $x_q\subseteq S_{\alpha},\, y_q\subseteq T_{\alpha}$ are finite, a_q is a zero-one sequence of length m_a and

$$\bigcup_{s \in x_q} A(s) \cap \bigcup_{t \in y_q} A(t) \subseteq m_q.$$

The ordering on Q_{α} is defined thus:

$$p \leq q$$
 iff $x_p \supseteq x_q$, $a_p \supseteq a_q$, $y_p \supseteq y_q$, $m_p \geqslant m_q$

and for each i with $m_a \le i < m_p$ we have

$$a_p(i) = 0$$
, for $i \in \bigcup \{A(s): s \in x_a\}$,

$$a_p(i) = 1$$
, for $i \in \bigcup \{A(t): t \in y_a\}$.

If $H \subseteq Q_{\alpha}$ is a generic filter, then

$$A_{\alpha} = \{i \in \omega \colon \exists q \in H \ [a_{\alpha}(i) = 0]\}$$

fills the gap $\langle S_a, T_a \rangle$, i.e. we have

$$A_s \subseteq_* A_\alpha$$
, for each $s \in S_\alpha$,

$$A_t \cap A_\alpha \in \text{fin}$$
, for each $t \in T_\alpha$.

Remark. Let us note the following property of Q_{α} . Let $s \in D(\alpha)$. If $A(s) \subseteq_* A_{\alpha}$, then $s \in S_{\alpha}$. Similarly, if $A(t) \cap A_{\alpha} = {}_* \emptyset$, then $t \in T_{\alpha}$. Indeed, $q \Vdash A(s) \setminus n \subseteq A_{\alpha}$ implies

$$A(s)\setminus \max\{n, m_q\}\subseteq \bigcup\{A(s'): s'\in x_q\}$$

for otherwise we have a $q' \leq q$ and an $i \in A(s) \setminus n$ with $a_{q'}(i) = 1$. Thus, $s \in S_{\alpha}$, by the condition (2) above.

It remains to show that P_{κ} has the c.c.c. Indeed, assuming that for the moment, it is clear that $c = \kappa$ and MA (σ -linked) hold in the resulting model V[G]. Suppose that

 $B = \{b_{\alpha}: \alpha < \varkappa\}$ is a Boolean algebra and let b_{α} be such that $B_{\alpha+1}$ is generated by B_{α} and b_{α} , for $\alpha < \varkappa$. In view of the Sikorski extension theorem it suffices to find a function $f: \varkappa \to \varkappa$ (with even values) such that for each $s \in C(\varkappa)$ we have

*)
$$b(s) = 0$$
 iff $A(s^f) \in fin$

(where $b(s) = (\prod_{s(\xi)=0} b_{\xi}) \cdot (\prod_{s(\eta)=1} b_{\eta})$) and $s^{f}(f(\beta)) = s(\beta)$, for $\beta \in dm(s)$.

Assume that f has already been defined for all $\beta < \alpha$ so that (*) holds for each $s \in C(\alpha)$ and b_{α} not in the subalgebra generated by $\{b_{\alpha} : \beta < \alpha\}$. Let

$$S = \{s^f : s \in C(\alpha) \text{ and } b(s) \leq b_{\alpha}\},\$$

$$T = \{s^f : s \in C(\alpha) \text{ and } b(s) \cdot b_n = 0\}.$$

Now, $\langle S, T \rangle$ generates a generic gap $\langle S_{\gamma}, T_{\gamma} \rangle$ at some stage $\gamma > \sup\{f(\beta): \beta < \alpha\}$ and we define $f(\alpha) = \gamma$. To check (*), let $\max dm(s) = \alpha$ and for example $s(\alpha) = 1$. Then b(s) = 0 implies $b(s|\alpha) \leq b_{\alpha}$ and hence $(s|\alpha)^f \in S$, which gives $A((s|\alpha)^f) \subseteq_* A_{\gamma}$, i.e. $A(s^f) =_* \emptyset$.

Conversely, from $A(s^f) \in \text{fin follows } A((s|\alpha)^f) \subseteq_* A_\gamma$ and hence $(s|\alpha)^f \in S_\gamma$ by the Remark above. This means

$$A((s|\alpha)^f) \subseteq_* A(s_1^f) \cup \ldots \cup A(s_n^f)$$

for some $s_1^{\ell}, \ldots, s_n^{\ell} \in S$. By the inductive assumption

$$b(s|\alpha) \leq b(s_1) + \ldots + b(s_n).$$

Since $b(s_1), \ldots, b(s_n) \le b_{\alpha}$ we obtain $b(s|\alpha) \le b_{\alpha}$ and hence b(s) = 0.

The rest of the paper contains the proof of the countable chain condition. Let $E_n \subseteq P_n$ consist of all $p \in P_n$ having the following properties:

- (3) For each even $\xi \in \operatorname{supp}(p)$, there are x_{ξ} , a_{ξ} , y_{ξ} such that $p|\xi| \vdash p(\xi) = \langle x_{\xi}, x_{\xi}, y_{\xi} \rangle$, for each $s \in x_{\xi} \cup y_{\xi}$ with $dm(s) \subseteq \operatorname{supp}(p)$.
- (4) There is a number l=l(p) such that for each even $\xi \in \operatorname{supp}(p)$, we have $l(a_{\ell})=l(p)$ (i.e. all the a's are of the same length).

For odd α we have $P_{\alpha} \vdash \vdash ``Q_{\alpha}$ is σ -linked", and hence we can choose a P_{α} -name h_{α} such that

$$P_{\alpha} \Vdash h_{\alpha}: Q_{\alpha} \to \omega$$
 and $\forall n \ h^{-1}(n)$ is linked".

Let E_{α}^{*} consist of all $p \in E_{\alpha}$ which in addition satisfy

(5) For each odd $\xi \in \text{supp}(p)$, there is an $n < \omega$ such that

$$p|\xi| \vdash "h_{\xi}(p(\xi)) = n".$$

LEMMA 1. For each $p \in P_{\alpha}$ and $m \in \omega$, there is a $q \leq p$ such that $q \in E_{\alpha}^*$ and $l(q) \geqslant m$. Proof. By induction on α . Since supports are finite, it suffices to consider only the case $\alpha = \beta + 1$ and $\beta \in \text{supp}(p)$. If β is odd, we find a $q' \leq p \mid \beta$ and an $n \in \omega$ with $q' \mid \vdash \vdash h_{\beta}(p(\beta)) = n$. By the inductive assumption, there is a $q'' \leq q'$ such that $q'' \in E_{\beta}^*$ and $l(q'') \ge m$. Now, if $q \in P_{\alpha}$ is defined by $q \mid \beta = q''$ and $q(\beta) = p(\beta)$, then $q \le p$, $q \in E_{\alpha}^*$ and $l(q) \ge m$. If β is even, then we find a $q' \le p \mid \beta$ and $\langle x_n, a_n, y_n \rangle$ so that

$$q' \vdash p(\beta) = \langle x_{\beta}, a_{\beta}, y_{\beta} \rangle$$
"

and $dm(s) \subseteq \text{supp}(q')$, for each $s \in x_{\beta} \cup y_{\beta}$. By the inductive assumption, there is a $q'' \in E_{\beta}^*$ with $l(q'') \ge \max\{m, l(a_{\alpha})\}$. In particular,

$$q'' \vdash A(s) \cap A(t) \subseteq l(a_{\theta})$$
, for $s \in x_{\theta}$ and $t \in y_{\theta}$,

and q'' determines the segments $A_{\xi} \cap l(q'')$, for each $\xi \in dm(s)$ and $s \in x_{\beta} \cup y_{\beta}$. Hence, we can define an $a \supseteq a_{\beta}$ with l(a) = l(q'') such that $q'' \vdash \vdash ``(x_{\beta}, a, y_{\beta}) \leq (x_{\beta}, a_{\beta}, y_{\beta})$ ".

Now, if $q \in P_{\alpha}$ is such that $q \mid \beta = q''$ and $q(\beta) = \langle x_{\beta}, a, y_{\beta} \rangle$, then q has the required properties.

LEMMA 2. Let $p \in E_{\alpha}$, $s \in D(\alpha)$ and $\beta = \max dm(s)$. If $p \models A(s) \in \text{fin}$, then there is a $q \leq p$ with $q \in E_{\alpha}$ and l(q) = l(p), such that if $q \mid \beta \mid \vdash q(\beta) = \langle x_n, a_n, y_n \rangle^n$, then

$$s \mid \beta \in x_R$$
 if $s(\beta) = 1$,

$$s \mid \beta \in v_{\alpha}$$
 if $s(\beta) = 0$.

Proof. Induction on α . From the assumptions of the lemma it follows that $p|(\beta+1)|$ \vdash " $A(s) \in$ fin" and hence we may assume $\alpha = \beta + 1$. Suppose

$$p|\beta| \vdash p(\beta) = \langle x, a, y \rangle$$

and let $s(\beta) = 1$. Thus, we have

$$p|(\beta+1)| \vdash "A(s|\beta) \subseteq A_{\beta}$$
"

and hence $p|\beta| \vdash "s|\beta \in S_{\beta}$ ". In particular,

$$p|\beta| \vdash "A(s|\beta) \cap A(t) \in \text{fin"}, \text{ for each } t \in y.$$

We have to show

$$p|\beta| \vdash "A(s|\beta) \cap A(t) \subseteq l(p)"$$
, for $t \in y$.

If $s|\beta \cup t$ is not a function, then we have

$$P_{\beta} \vdash A(s|\beta) \cap A(t) = \emptyset$$
".

If $s|\beta \cup t$ is a function, then $A(s|\beta) \cap A(t) = A(s|\beta \cup t)$ and we can apply the inductive assumption: there is a $q_t \in E_\beta$ with $q_t \leqslant p|\beta$ and $l(q_t) = l(p)$ such that if $\beta_t = \max dm(s|\beta \cup t)$ and

$$q_t | \beta_t | \vdash "q_t(\beta) = \langle x_t, a_t, y_t \rangle"$$

then $(s|\beta \cup t)|\beta_t$ is in x_t or y_t according to the value at β_t . In either case we obtain

$$q_t \vdash A(s|\beta \cup t) \subseteq l(q_t) = l(p)$$
".

Repeating this for each $t \in y$ such that $s \mid \beta \cup t$ is a function, we find a $q' \in E_{\beta}$ with $q' \leq p \mid \beta$, l(q') = l(p) and

$$q' \vdash A(s|\beta) \cup A(t) \subseteq l(p)$$
, for each $t \in V$.

Hence, if $q|\beta = q'$ and $q(\beta) = \langle x \cup \{s|\beta\}, a, y \rangle$, then q has the required properties. The case $s(\beta) = 0$ is similar.

LEMMA 3. Assume that $p, q \in E_{\alpha}^*$, l(p) = l(q) and for each $\xi \in \text{supp}(p) \cap \text{supp}(q)$:

(6) if ξ is odd and $p|\xi| \vdash h_{\xi}(p(\xi)) = n$, $q|\xi| \vdash h_{\xi}(q(\xi)) = m$, then n = m.

(7) if ξ is even and $p|\xi| \vdash "p(\xi) = \langle x_{\xi}, a_{\xi}, y_{\xi} \rangle "$, $q|\xi| \vdash "q(\xi) = \langle u_{\xi}, b_{\xi}, v_{\xi} \rangle "$, then $a_{\xi} = b_{\xi}$.

Then p and q are compatible. In fact, there is an $r \leq p$, q with $r \in E_{\alpha}$ and l(r) = l(p) = l(q).

Proof. Induction on α . The only essential case is $\alpha = \beta + 1$ and $\beta \in \operatorname{supp}(p) \cap \operatorname{supp}(q)$.

Suppose that β is odd. By the inductive assumption there is an $r' \leq p|\beta, q|\beta$ with $r' \in E_{\beta}$ and l(r') = l(p). Since

$$r' \vdash h_{\beta}(p(\beta)) = h_{\beta}(q(\beta))$$
"

it follows that there is an r* such that

$$r' \vdash r^* \leq p(\beta), q(\beta)$$
.

Now, if $r|\beta=r'$ and $r(\beta)=r^*$, then $r\in E_{\alpha}$, $r\leqslant p$, q and l(r)=l(p) (it may happen that $r\notin E_{\alpha}^*$, since r' need not determine the value $h_q(r^*)$).

Let now B be even. Then we have

$$p|\beta| \vdash "p(\beta) = \langle x, a, y \rangle", \quad q|\beta| \vdash "q(\beta) = \langle u, a, v \rangle".$$

By the inductive assumption there is an $r' \in E_{\beta}$ with $r' \leq p | \beta$, $q | \beta$ and $l(r) = l(p | \beta)$. It follows that

$$r' \vdash A(s) \cap A(t) \in \text{fin}$$
, for each $s \in x \cup u$ and $t \in y \cup v$.

Now, we may apply Lemma 2 repeatedly to r' and to each $A(s \cup t)$ such that $s \cup t$ is a function. The properties of the resulting r^* ensure that there is an $r \in P_a$ such that $r|\beta = r^*$, $r(\beta) = \langle x \cup u, a, y \cup v \rangle$ and $r \in E_a$. In particular, $r \leq p$, q and l(r) = l(p) = l(q), which finishes the proof of the lemma.

Suppose now that $C \subseteq P_{\alpha}$ is an uncountable antichain. By Lemma 1 we may assume $C \subseteq E_{\alpha}^*$. Applying the Δ -system lemma to $\{\text{supp}(p)\colon p\in C\}$ and some elementary operations we find an uncountable $C_0\subseteq C$ so that any $p,q\in C_0$ are as in Lemma 3, a contradiction. Thus, each P_{α} has the c.c.c. and the proof is complete.

Remark. It is not difficult to see that, in the model constructed, each automorphism of a given algebra B can be, after embedding, extended to an automorphism of $P(\omega)$ /fin.

192

J. Baumgartner, R. Frankiewicz and P. Zbierski

References

- [C-N] W. W. Comfort and S. Negrepontis, The Theory of Ultrafilters, Springer, Berlin-Heidelberg-New York 1974.
- [F] R. Frankiewicz, Some remarks on embeddings of Boolean algebras and topological spaces, Fund. Math. 126 (1984), 63-68.
- [K] K. Kunen, Inaccessibility properties of cardinals, Doctoral Dissertation, Stanford 1968.
- [L] R. Laver, Linear orders in ω^{ω} under eventual dominance, preprint.

DEPARTMENT OF MATHEMATICS DARTMOUTH COLLEGE Hanover, New Hampshire 03755 U.S.A.

INSTYTUT MATEMATYCZNY PAN INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES Sniadeckich 8, 00-950 Warszawa Poland

INSTYTUT MATEMATYKI UW DEPARTMENT OF MATHEMATICS WARSAW UNIVERSITY PKIN, IXp., 00-901 Warszawa Poland

Received 22 May 1989

On bounded paradoxical subsets of the plane

by

Glen Aldridge Sherman (Toronto, Ont.)

Abstract. We give a precise lower bound for the number of pieces required in a bounded paradoxical subset of the plane.

Intuitively, a subset X of a metric space is said to be paradoxical if it admits a partition $X = A \cup B$ such that each of the sets A, B can be subdivided into finitely many pieces which can be reassembled via isometries to produce X; if A is subdivided into m pieces and B is subdivided into n pieces, the set X is said to be (m, n)-paradoxical.

The Sierpiński--Mazurkiewicz paradox is that there is a (1,1)-paradoxical subset of the plane [MS]. Hadwiger, Debrunner and Klee [HDK, p. 80] have shown that a bounded (m, n)-paradoxical subset of the plane must satisfy m+n>2. A bounded (1, 3)-paradoxical subset of the plane has recently been constructed by Just [J].

Our main purpose here is to show that there is no bounded (1,2)-paradoxical subset of the plane. This improves the result of Hadwiger, Debrunner and Klee, and renders optimal the recent construction of Just. We also construct here a bounded (2,2)-paradoxical subset of the plane.

DEFINITION 1. X is an (m, n)-paradoxical subset of the plane if X is nonempty, and there are subsets $C_1, \ldots, C_m, D_1, \ldots, D_n$ of X and planar isometries $G_1, \ldots, G_m, H_1, \ldots, H_n$, such that $P_1 = \{C_i\}$, $P_2 = \{D_j\}$ and $P_3 = \{G_i(C_i)\} \cup \{H_j(D_j)\}$ are each partitions of X.

DEFINITION 2. Let X be an (m, n)-paradoxical subset of the plane whose paradoxical decomposition is witnessed by subsets $C_1, \ldots, C_m, D_1, \ldots, D_n$ and planar isometries $G_1, \ldots, G_m, H_1, \ldots, H_n$. Write $\mathscr{C} = \{C_1, \ldots, C_m\}$, $\mathscr{D} = \{D_1, \ldots, D_n\}$, $\mathscr{G} = \{G_1, \ldots, G_m\}$, and $\mathscr{H} = \{H_1, \ldots, H_n\}$. We define the associated directed graph $\Gamma = \Gamma(\mathscr{C}, \mathscr{D}, \mathscr{G}, \mathscr{H})$ of the decomposition. Γ is an infinite directed graph with vertex set $V(\Gamma) = X$. The set of darts (i.e. directed edges) of Γ consists of all pairs $(x, G_i(x))$ and $(x, H_i(x))$, where $x \in C_i \cap D_i$.

It is helpful, when drawing diagrams, to label each dart of Γ with the planar isometry that determined its second coordinate.

Observe that every x in $V(\Gamma)$ has invalency 1 and outvalency 2.

LEMMA 1. Let Γ be an infinite directed graph with invalency 1 at each vertex, and suppose furthermore that Γ is connected. Then Γ contains at most one cycle.