Embedding of Boolean algebras in $P(\omega)/\text{fin}$

by

J. Baumgartner (Hanover, N.H.), R. Frankiewicz (Warszawa) and P. Zbierski (Warszawa)

Abstract. A model of ZFC set theory is constructed in which \aleph_1 (the continuum hypothesis) is assumed, then each Boolean algebra of cardinality $\leq \aleph_1$ can be embedded into $P(\omega)/\text{fin}$. What happens if CH fails? Kunen [K] proved that after adding ω_2 Cohen reals to a model of CH, there is an algebra of cardinality \aleph_1 which cannot be embedded into $P(\omega)/\text{fin}$. In [F] a model of ZFC $+$ MA is constructed in which $\aleph_1 = 2^{\aleph_0}$ and the powerset algebra $P(\omega_1)$ cannot be embedded into $P(\omega)/\text{fin}$. There is also a model in which $\aleph_1 = \omega_2$ and the measure algebra does not embed into $P(\omega)/\text{fin}$. On the other hand, Laver shows (in [L]) that, consistently with a large value for ω_1, each linear ordering of cardinality $\leq \omega_1$ embeds in ω^ω (ordered by eventual dominance).\(^1\)

Using Laver's technique we prove here the following:

Theorem. There is a model of ZFC set theory with arbitrarily large \aleph_1 in which each Boolean algebra of cardinality $\leq \aleph_1$ can be embedded into $P(\omega)/\text{fin}$. In addition, the Martin Axiom for σ-linked orderings holds in the model.

In particular, it follows that the conclusion of the Parovichenko theorem is not equivalent to CH.\(^1\)

Proof. In the ground model V we fix a regular cardinal $\kappa > \omega_1$, with $2^{\kappa} = \kappa$, and force with a κ-stage finite support iteration $\langle P_\alpha, Q_\alpha : \alpha < \kappa \rangle$ so that the resulting extension $V[G]$ will have the required properties.

In a usual way choose names \check{Q}_α, $\alpha < \kappa$ and α odd, so that

$P_\alpha \vdash \neg \check{Q}_\alpha$ is σ-linked"\(^3\)

and $V[G] \models$ MA (σ-linked).

\(^1\) The consistency of ZFC $+$ \negCH $+$ each Boolean algebra of size $\leq \aleph_1$ can be embedded into $P(\omega)/\text{fin}$ has been pointed out without proof by Baumgartner in his article Application of the proper forcing axiom in Handbook of Set-Theoretic Topology.
Embedding of Boolean algebras

At even stages α, Q_α adds a subset $A_\alpha \subseteq \omega$ which fills a certain gap in $P(\omega)/\text{fin}$. To be more precise, let $C(\alpha)$ consist of finite zero-one functions s with $dm(s) \leq \alpha$. Set

$$D(\alpha) = \{s \in C(\alpha); \forall \xi \in dm(s) \; \xi \text{ is even}\}.$$

Each $s \in D(\alpha)$ determines a Boolean combination

$$A(s) = \bigcap_{\xi \in dm(s)} (\bigcup\{A_\xi \cap A(\xi)\})_{\xi > 0}.$$

Now, in $V^{P(\omega)}(\alpha)$ a pair $\langle S, T \rangle$ is called a generic gap if $S, T \subseteq D(\alpha)$ and the following two properties hold:

1. $A(\alpha) \cap A(\alpha) \in \text{fin}$, for each $s \in S$ and $t \in T$.
2. If $A(\alpha) \subseteq \bigcup_{s \in S} A(s)$, then $s \in S$; similarly for T.

Standard reasoning shows there is a sequence $\langle S_\alpha, T_\alpha \rangle$ such that $\langle S_\alpha, T_\alpha \rangle$ is a P_α-name of a generic gap in $V^{P(\omega)}(\alpha)$ and each $< \alpha$-generated gap occurs in the sequence, for arbitrarily large $\alpha < \kappa$.

Now, Q_α consists of $q = \langle x_q, a_q, b_q, m_q \rangle$, where $x_q \subseteq S_\alpha$, $y_q \subseteq T_\alpha$ are finite, a_q is a zero-one sequence of length m_q, and

$$\bigcup_{n \leq m_q} A(n) \cup A(n) \subseteq m_q.$$

The ordering on Q_α is defined thus:

$$p < q \Leftrightarrow \forall \alpha \in A_s \exists \alpha' \in A_\alpha (a_\alpha(0) = 1)$$

and for each i with $m_q < i < m_q$, we have

$$a_q(i) = 0, \quad \text{for } i \in \bigcup\{A(s); s \in x_q\},$$

$$a_q(i) = 1, \quad \text{for } i \in \bigcup\{A(s); t \in y_q\}.$$

If $H \subseteq Q_\alpha$ is a generic filter, then

$$A_s = \{s \in H; A_s(0) = 1\}$$

fills the gap $\langle H_s, T_s \rangle$, i.e. we have

$$A_s \subseteq A_\alpha, \quad \text{for each } s \in S_\alpha,$$

$$A_\alpha \cap A_\alpha \in \text{fin}, \quad \text{for each } t \in T_\alpha.$$

Remark. Let us note the following property of Q_α. Let $s \in D(\alpha)$. If $A(s) \subseteq A_\alpha$, then $s \in S_\alpha$. Similarly, if $A(s) \cap A_\alpha \neq \emptyset$, then $s \in T_\alpha$. Indeed, if $\alpha \vdash A(s) \cap A_\alpha \neq \emptyset$, then

$$A(s) \cap A_\alpha \subseteq \bigcup\{A(s); s \in x_q\}$$

for otherwise we have a $q < s$ and an $i \in A(s) \cap A_\alpha$ with $a_q(i) = 1$. Thus, $s \in S_\alpha$, by the condition (2) above.

It remains to show that P_α has the c.c.c. Indeed, assuming that for the moment, it is clear that $\kappa = \alpha$ and MA (e-linked) hold in the resulting model $V[A]$. Suppose that

$$B = \{b_\xi; \xi < \alpha\}$$

is a Boolean algebra and let b_α be such that B_{b_α} is generated by B_α and B_α for $\alpha < \kappa$. In view of the Sikorski extension theorem it suffices to find a function $f: \kappa \to \kappa$ (with even values) such that for each $s \in C(\alpha)$ we have

$$b(s) = 0 \quad \text{iff } A(s) \in \text{fin},$$

(where $b(s) = \bigcap_{\xi \in \alpha} \bigcap_{\eta \leq \eta} \bigcap \{b_\xi \cap B_{b_\eta}\}$) and $\tau(f(s)) = s(f(b))$, for $b \in dm(s)$.

Assume that f has already been defined for all $\beta < \alpha$ so that τ holds for each $s \in C(\alpha)$ and b_α not in the subalgebra generated by $\{b_\beta; f(\beta) < \alpha\}$. Let

$$S = \{s'; s \in C(\alpha) \text{ and } b(s) = b_\alpha\},$$

$$T = \{s'; s \in C(\alpha) \text{ and } b(s) = b_\alpha\}.$$

Now, $\langle S, T \rangle$ generates a generic gap $\langle S_\alpha, T_\alpha \rangle$ at some stage $\gamma > \sup \{f(\beta); \beta < \alpha\}$ and we define $f(\alpha) = \gamma$. To check (e), let $\sup dm(s) = \alpha$ and for example $s(\alpha) = 1$. Then $b(\alpha) = 0$ implies $b(s(\alpha)) = b_\alpha$ and hence $(s(\alpha))' \in S$, which gives $A((s(\alpha))') \subseteq A_\alpha$, i.e.

$$A(s(\alpha))' = \emptyset.$$

Conversely, from $A(s(\alpha))' \in \text{fin}$ follows $A((s(\alpha))') \subseteq A_\alpha$ and hence $(s(\alpha))' \in S$, by the Remark above. This means

$$A((s(\alpha))') \subseteq A(s(\alpha))' \cdots \subseteq A(s(\alpha))' \subseteq \cdots$$

for some $s_1, \ldots, s_\gamma \in S$. By the inductive assumption

$$b(s_1) = b(s_2) + \cdots + b(s_\gamma).$$

Since $b(s_1), \ldots, b(s_\gamma) \leq b_\alpha$ we obtain $b(s(\alpha)) \leq b_\alpha$ and hence $b(\alpha) = 0$.

The rest of the paper contains the proof of the countable chain condition.

Let $E_\alpha \subseteq P_\alpha$ consist of all $p \in P_\alpha$ having the following properties:

3. For each even $\xi \in \text{supp}(p)$, there are $\alpha_\xi, \alpha_\eta, \eta_\xi$ such that $p(\alpha_\xi) = p(\eta) = \langle x_\xi, y_\xi, \alpha_\eta \rangle$, for each $s \in x_\xi \cup y_\xi$ with $dm(s) \subseteq \text{supp}(p)$.

4. There is a number $l = l(p)$ such that for each even $\xi \in \text{supp}(p)$, we have $l(\alpha_\xi) = l(p)$ (i.e. all the α_ξ are of the same length).

For odd α we have $P_\alpha \vdash "Q_\alpha$ is σ-linked", and hence we can choose a P_α-name h_α such that

$$P_\alpha \vdash "h_\alpha; Q_\alpha \in \omega \text{ and } \forall n \in h_\alpha (n + 1) \in (\alpha) \text{ is linked}".$$

Let E^*_α consist of all $p \in E_\alpha$ which in addition satisfy

5. For each odd $\xi \in \text{supp}(p)$, there is an $n < \omega$ such that

$$p(\xi) = h_\xi; \eta = \omega \text{ and } n \in (\eta) \text{ is linked}.$$

Lemma 1. For each $p \in P_\alpha$ and $\eta \in \omega$, there is a $q \leq p$ such that $q \in E^*_\alpha$ and $l(q) \geq \eta$.

Proof. By induction on α. Since supports are finite, it suffices to consider only the case $\alpha = \beta + 1$ and β is a support. If β is odd, we find a $q \leq p$ and an $n \in \omega$ with $\eta' = h_\beta(p(\beta)) = n$. By the inductive assumption, there is a $q' \leq q$ such that $q' \in E^*_\alpha$ and
Repeating this for each \(r \in y \) such that \(s|\beta \cup t \) is a function, we find a \(q' \in E_y \) with \(q' \preceq \beta | \beta \) and
\[l(q') = l(p) \]
and
\[q' \vdash \{ \beta \} (p) = \{ q \} \]
and \(\alpha_m (q) \subseteq \text{supp}(q') \) for each \(s \in x_y \cup y_y \). By the inductive assumption, there is a \(q' \in E \)
with \(l(q') \geq \max \{ m, l(x_y) \} \). In particular,

\[q' \vdash \{ \beta \} (s) \subseteq \{ \alpha \} \]

and \(\alpha_m (q') \subseteq \text{supp}(q') \) for each \(s \in x_y \cup y_y \). Hence, we can define an \(a \in a_y \) with \(l(a) = l(q') \) such that \(q' \vdash \{ \beta \} (s) \subseteq \{ \alpha \} \cap \{ a \} \).

Now, if \(q' \in P_y \), then \(q' \) has the required properties.

Lemma 2. Let \(p \in E \), \(s \in D(\beta) \) and \(\beta = \max \text{dim}(s) \). If \(p \vdash \{ \beta \} \subseteq \text{fin} \), then there is \(a \) such that \(q \preceq \beta | \beta \) and \(q \vdash \{ \beta \} (s) \subseteq \{ \alpha \} \cap \{ a \} \).

Proof. Induction on \(\alpha \). From the assumptions of the lemma it follows that
\[p(\beta + 1) \vdash \{ \beta \} \subseteq \text{fin} \]
and hence we may assume \(\alpha = \beta + 1 \). Suppose
\[p(\beta) \vdash \{ q \} \subseteq \{ \alpha \} \]
and let \(s(\beta) = 1 \). Thus, we have
\[p(\beta + 1) \vdash \{ \beta \} \subseteq \text{fin} \]
and hence \(p(\beta) \vdash \{ \beta \} \subseteq \text{fin} \). In particular,
\[p(\beta) \vdash \{ \beta \} \subseteq \text{fin} \], for each \(r \in y \).

We have to show
\[p(\beta) \vdash \{ \beta \} \subseteq \text{fin} \], for each \(r \in y \).

If \(s|\beta \cup t \) is not a function, then we have
\[p(\beta) \vdash \{ \beta \} \subseteq \text{fin} \], for each \(r \in y \).

If \(s|\beta \cup t \) is a function, then \(A(\beta | \beta \) is a function and we can apply the inductive assumption; there is a \(q \in E \) with \(q \preceq \beta | \beta \) and \(l(q) = l(p) \) such that \(s(\beta) = \max \text{dim}(s) \) and
\[q_1 \vdash \{ \beta \} (s) \subseteq \{ \alpha \} \cap \{ a \} \]
then \(q_1 \vdash \{ \beta \} (s) \subseteq \{ \alpha \} \cap \{ a \} \). In either case we obtain
\[q_1 \vdash \{ \beta \} (s) \subseteq \{ \alpha \} \cap \{ a \} \].

Hence, if \(q \beta = q' \) and \(q \beta = \{ x, \alpha \} \cup \{ a \}, \alpha, y \} \) then \(q \) has the required properties. The case \(s(\beta) = 0 \) is similar.

Lemma 3. Assume that \(p, q \in E \), \(l(q) = l(p) \) and for each \(x \in \text{supp}(p) \)
\[(6) \] if \(x \) is odd and \(p(\xi) \vdash \{ x \} \in \{ \alpha \} \), then \(p(\xi) \vdash \{ x \} \in \{ \alpha \} \).
\[\text{and} \]
\[(7) \] if \(x \) is even and \(p(\xi) \vdash \{ x \} \in \{ \alpha \} \), then \(p(\xi) \vdash \{ x \} \in \{ \alpha \} \).

Then \(p \) and \(q \) are compatible. In fact, there is an \(r \in \rho, q \) with \(r \in E \) and \(l(r) = l(p) = l(q) \).

Proof. Induction on \(r \). The only essential case is \(r = \beta + 1 \) and \(\beta \subseteq \text{fin} \). Suppose that \(\beta \) is odd. By the inductive assumption there is an \(r' \leq \beta | \beta \) with \(r' \in E \) and \(l(r') = l(p) = l(q) \).

It follows that there is an \(r^* \) such that
\[r' \vdash \{ \beta \} \subseteq \{ q \} \]
and let \(r' \leq \beta | \beta \) be a function. Suppose \(r \leq p, q \) and \(l(r) = l(p) = l(q) \). Then \(r \in E \), since \(r' \) need not determine the value \(h(q) \).

Now let \(\beta \) be even. Then we have
\[\vdash \{ \beta \} \subseteq \{ q \} \]
and \(\beta \subseteq \text{fin} \). By the inductive assumption there is an \(r' \in E \) with \(r' \leq \beta | \beta \) and \(l(r') = l(p) = l(q) = l(q) \).

It follows that
\[r' \vdash \{ \beta \} \subseteq \{ q \} \], for each \(x \in x \) and \(r \in y \).

Now, we may apply Lemma 2 repeatedly to \(r' \) and to each \(A(\beta) \) such that \(\beta \subseteq \text{fin} \) is a function. The properties of the resulting \(r^* \) ensure that there is an \(r \in E \) such that \(r \beta = r^* \) and \(r \beta = \{ x \cup y \} \cup \{ x \cup y \} \).

In particular, \(r \leq p, q \) and \(l(r) = l(p) = l(q) \), which finishes the proof of the lemma.

Suppose now \(C \subseteq E \) is an uncountable antichain. By Lemma 1 we may assume \(C \subseteq E \). Applying the \(A \)-system lemma to \(\text{supp}(p) \) then \(p \in C \) and some elementary operations we find an uncountable \(C_0 \subseteq C \) so that any \(p, q \in C_0 \) are as in Lemma 3, a contradiction. Thus, each \(P_y \) has the c.c.c. and the proof is complete.

Remark. It is not difficult to see that, in the model constructed, each automorphism of a given algebra \(B \) can be, after embedding, extended to an automorphism of \(P(\alpha) \).
On bounded paradoxical subsets of the plane

by

Glen Aldridge Sherman (Toronto, Ont.)

Abstract. We give a precise lower bound for the number of pieces required in a bounded paradoxical subset of the plane.

Intuitively, a subset X of a metric space is said to be paradoxical if it admits a partition $X = A \cup B$ such that each of the sets A, B can be subdivided into finitely many pieces which can be reassembled via isometries to produce X; if A is subdivided into m pieces and B is subdivided into n pieces, the set X is said to be (m, n)-paradoxical.

The Sierpiński–Mazurkiewicz paradox is that there is a $(1, 1)$-paradoxical subset of the plane [MS]. Hadwiger, Debrunner and Klee [HDK, p. 80] have shown that a bounded (m, n)-paradoxical subset of the plane must satisfy $m+n > 2$. A bounded $(1, 3)$-paradoxical subset of the plane has recently been constructed by Just [J].

Our main purpose here is to show that there is no bounded $(1, 2)$-paradoxical subset of the plane. This improves the result of Hadwiger, Debrunner and Klee, and renders optimal the recent construction of Just. We also construct here a bounded $(2, 2)$-paradoxical subset of the plane.

Definition 1. X is an (m, n)-paradoxical subset of the plane if X is nonempty, and there are subsets C_1, \ldots, C_m, D_1, \ldots, D_n of X and planar isometries G_1, \ldots, G_m, H_1, \ldots, H_n, such that $P_1 = \{C_i\}$, $P_2 = \{D_j\}$ and $P_3 = \{G_i(C_i) \cup H_j(D_j)\}$ are each partitions of X.

Definition 2. Let X be an (m, n)-paradoxical subset of the plane whose paradoxical decomposition is witnessed by subsets C_1, \ldots, C_m, D_1, \ldots, D_n and planar isometries G_1, \ldots, G_m, H_1, \ldots, H_n. Write $\mathcal{G} = \{C_1, \ldots, C_m\}$, $\mathcal{D} = \{D_1, \ldots, D_n\}$, $\mathcal{G} = \{G_1, \ldots, G_m\}$, and $\mathcal{H} = \{H_1, \ldots, H_n\}$. We define the associated directed graph $\Gamma = \Gamma(\mathcal{G}, \mathcal{D}, \mathcal{G}, \mathcal{H})$ of the decomposition. Γ is an infinite directed graph with vertex set $V(\Gamma) = X$. The set of darts (i.e. directed edges) of Γ consists of all pairs $(x, G_k(x))$ and $(x, H_k(x))$, where $x \in C_i \cap D_j$.

It is helpful, when drawing diagrams, to label each dart of Γ with the planar isometry that determined its second coordinate.

Observe that every x in $V(\Gamma)$ has invalency 1 and outvalency 2.

Lemma 1. Let Γ be an infinite directed graph with invalency 1 at each vertex, and suppose furthermore that Γ is connected. Then Γ contains at most one cycle.