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Embedding of Boolean algebras in P(w)/fin
by

J. Baumgartner (Hanover, NH., R. Frankiewicz (Warszawa) -
and P. Zbierski (Warszawa)

Abstract. A model of ZFC set theory is constructed in which ¢ (the continuum) is large, MA
(o-linked) holds and each compact 0-dimensional space of weight ¢ is a continuous image of w*.

A well-known theorem of Parovichenko (see e.g. [C-NJ) says that, if CH (the
continuum hypothesis) is assumed, then each Boolean algebra of cardinality < c¢=2*
can be embedded into P(w)/fin. What happens if CH fails? Kunen [K] proved that after
adding @, Cohen reals to a model of CH, there is an algebra of cardinality ¢ which
cannot be embedded into P(w)/fin. In [F] a model of ZFC +MA is constructed in which
¢ = 2°* and the powerset algebra P(w,) cannot be embedded into P(w)/fin. There is also
a model in which ¢ = w, and the measure algebra does not embed into P(e)/fin. On the
other hand, Laver shows (in [L]) that, consistently with a large value for ¢, each linear
ordering of cardinality < c embeds in »® (ordered by eventual dominance)(*).

Using Laver’s technique we prove here the following: '

THEOREM. There is a model of ZFC set theory with arbitrarily large ¢ in which each
Boolean algebra of cardinality < c can be embedded into P(w)/fin. In addition, the Martin
Axiom for o-linked orderings holds in the model. ‘

In particular, it follows that the conclusion of the Parovichenko theorem is not
equivalent to CH."

Prool. In the ground model V we fix a regular cardinal » > w,, with 2<% = », and
force with a x-stage finite support iteration (P,, Q,: a < x> so that the resulting
extension V[G] will have the required properties.

In a usual way choose names Q,, o < x and « odd, so that

P,I+—“Q, is o-linked”
and V[G]= MA (o-linked).

(%) The consistency of ZFC+ ~|CH +each Boolean algebra of size < ¢ can be embedded into
P(w)/fin has been pointed out without proof by Baumgartner in his article Application of the proper

- forcing axiom in Handbook of Set-Theoretic Topology.
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At even stages o, Q, adds a subset 4, < w which fills a certain gap in P(w)/fin. To
be more precise, let C(g) consist of finite zero-one functions s with dm(s) < . Set

D() = {seC(a): VEedm(s) ¢ is even}.
Each seD(x) determines a Boolean combination
A(s) = ﬂ A ﬂ (0\4,)-
) s()=0 s(m)=1
Now, in V¥« a pair (S, T is called a generic gap if S, T < D(#) and the following two
" properties hold:

(1) A(synA(f)efin, for each seS and teT
Q) If A(s) =, Als;)v...UA(s,), for some seD(w) and s, ..., 5,65, then seS;
similarly for T

Standard reasoning shows that there is a sequence {S,, T,> such that ¢S,, T.> is
a P-name of a generic gap in V') and each < x-generated gap occurs in the sequence,
. for arbitrarily large o« < x."

Now, Q, consists’ of g={x, Qg5 Ygs My), Where x, < §,, ¥, € T, are finite, a, is
a zero-ome sequence of length m, and

U A~ U A0 s m,.

sexg teyg

The ordering on Q, is defined thus:‘
p<gq iff

Xp2Xgs 0, 2Gy, Y, 2Y,, M2 m,
and for each i with m, <i<m, we have

ai}=0, for ie( J{A(s): sex)},

a@)=1, for ie( J{A(®): tey,}.
If H= Q, is a generic filter, then

4, ={iew: 3geH [a() = 0]}

fills the gap (S,, T.>, ie. we have
A,s,4,

A, n A, €efin,

for each seS,,
for each teT,.

Remark. Let us note the following property of Qy Let se D(w). Xf A(s) <, 4,, then
s€S,. Similarly, if A()n4, =, @, then te T.. Indeed, i A(s)\n < 4, implies

A@)\max{n, m;} = (J{A(s): 5 ex,}
for otherwise we have a ¢' < g and an i € A(s)\n 'with a_(i) = 1. Thus, se S,, by the
condition (2) above. )

It remains to show that P, has the c.c.c. Indeed, assuming that for the moment, it is
clear that ¢ = % and MA (0-linked) hold in the resulting model V[G]. Suppose that
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B = {b,: o < x} is a Boolean algebra and let b, be such that B, is generated by B,
and b, for & < . In view of the Sikorski extension theorem it suffices to find a function
f: #-rx (with even values) such that for each seC(x) we have

(*) bs)=0 iff A(s"efin,

(where b(s) = ([Tug=0b) ([Tun=1b,) and s'(f(8) = s(B), for pedm(s).
Assume that f has already been defined for all f < & so that (x) holds for each
seC(a) and b, not in the subalgebra generated by {by:%f < o}. Let

S={s": seC(e) and b(s) < b},
T = {s": seC(«) and b(s)-b, = 0}.

Now, <5, T) generates a generic gap <S,, T,> at some stage y > sup {f(8): § < «} and
we define f(«) = 7. To check (), let maxdm(s) = « and for example s(«) = 1. Then
b(s)=0 implies b(s|x) <b, and hence (s|a) S, which gives A((s|x)’) Sy 4, ie
Al) =, 0.

Conversely, from A(s)efin follows A((s|)) S,4, and hence (s|a} €S, by the
Remark above. This means

A((sla)) €, A(sDu...uA(sh)
for some sf, ..., sjeS. By the inductive assumption
b(sla)y < b(sy)+ ... +b(s,).

Since b(sy), ..., b(s,) < b, we obtain b(s|a) < b, and hence b(s) = 0.

The rest of the paper contains the proof of the countable chain condition.

Let E, < P, consist of all peP, having the following properties:

(3) For each even (esupp(p), there are x, 4, 1y, such that
PI&I=p(&) = <xy, Xy, Yy, for each sex,Uy, with dm(s) < supp(p).

(4) There is a number /=I(p) such that for each even ¢esupp(p), we have
l(ay) = I(p) (ie. all the a’s are of the same length).

"For odd o we have P,i-“Q, is o-linked”, and hence we can choose a P,-name h,
such that
P, “h,: Q,—w and Vn h™'(n) is linked”.

Let E¥ consist of all peE, which in addition satisfy
(5) For each odd ¢esupp(p), there is an n < w such that

PlE 1 “hy(p(&)) = n".

Lemma 1. For each pe P, and me , there is a q < p such that qe E3 and l(g) = m.
Proof. By induction on o. Since supports are finite, it suffices to consider only the
case o = f+1 and fesupp(p). If B is odd, we find a ¢' < p|p and an new with
41t “hy(p(B)) = n”. By the inductive assumption, there is a 4" < ¢’ such that 4" € E} and
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l(g") = m. Now, if ge P, is defined by q|8 = ¢" and g(B) = p(B), then ¢ < p, g E* and
lg) = m. If B is even, then we find a ¢’ < p|f and {x,, a5, y;> so that

q' 1= “p(B) = {xy, ay, yp>”

and dm(s) < supp(q), for each sex,u ;- By the inductive assumption, there is a ¢" cEf
with l(g") > max{m, l(a)}. In particular,

q" 1= “AS)NAW) = lay)”,  for sex, and tey,,

and ¢" determines the segments A, 1(q"), for each ¢edm(s) and sex,;vy,. Hence, we
can define an a = a, with /(a) = l(g") such that q'1=Cxgy a, ygd <<%, G, o

Now, if ge P, is such that g|f = ¢" and ¢(f) = {x, a, V2, then g has the required
properties.

LEMMA 2. Let peE,, se D(x) and f = maxdm(s). If pi~“A(s)efin”, then there is -

a g <p with geE, and I(q) = l(p), such that if q|Bi—"“q(f) = {xg, ag, yp>7, then
i sf)=1,
i s(B) = 0.

Proof Induction on o. From the assumptions of the lemma it follows that
pl(B+1)I-"A(s)efin” and hence we may assume « = f+1. Suppose

PIBI-p(B) = (x, a, p)
and let s(f) = 1. Thus, we have
plB+1) 1+ “AGsIf) S, 45"

and hence p|Bi+“s| BeS,". In particular,

s|Bexg

SLBE.V/J

pIBI- “A(s|B)nA()efin”, for each tey.

We have to show
piBI=“A(|nA@® = I(p)°, for tey.
If s|fut is not a function, then we have
Py “AGIBnA@R) = 9.

If s ﬂut_ is a fonction, then A(s|B)n A(t) = A(s| But) and we can apply the inductive
assumption: there is a geE, with ¢, <p|f and lig) =1(p) such that if
B = maxdm(s|fut) and )

Qtlﬂt_”_ “ql(ﬁ) = {x,, a, y"
then (s|fut)| B, is in x, or y, according to the value at f,. In either case we obtain

4,1 “A(s1BU0) < Uig) = 1)

- ©
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.
Repeating this for cach tey such that s|fut is a function, we find a ¢’ €E, with ¢’ < pj B,
l(q) = Up) and

q' = ASIp)uA@) < Ip),  for each tey.

Hence, if 4|8 = q' and q(B) = (x U {s|B}, a, y), then g has the required properties. The
case s(f) =0 is similar.

Lumma 3. Assume that p, qe E¥, I(p) = I(q) and for each ¢ esupp(p) nsupp(g):

(6) if ¢ is odd and pl&i-“hy(p(&) = n", g|E1-"“hy(q(&)) = m”, then n=m.

(N i & is even and p|&i-“p(&) = (xy, ag yY”, qlE1-q(8) = ug, by, v,)", then
ay = by.

Then p and q are compatible. In fact, there is an r <p, q with reE, and
Ur) = l(p) = I(g).

Proof. Induction on o The

Besupp(p)nsupp(g).
Suppose that f is odd. By the inductive assumption there is an ' < p|B, g|f with
reE; and () = l(p). Since

only essential case is a=p+1 and

v 1= “hy(p(B)) = hy(a(B)

it follows that there is an r* such that

= “r* < p(B), ¢(B)”.
Now, if r|f = r" and r(f) = r*, then reE,, r < p, g and I(r) = I(p) (it may happen that
r¢Ef, since ' need not determine the value hy(r¥). :
Let now B be even. Then we have

plBI-“p(B) = <{x, a, y)",  qlB I+ “q(B) = <u, a, vD".

By the inductive assumption there is an '€ E; with ¥ < p|f, q|f and I(r) = I(p|p). It
follows that

¥ i “A(s)n A(r)efin”, for each sexuu and teyur.

Now, we may apply Lemma 2 repeatedly to ' and to each A(sut) such that sut is
a function. The properties of the resulting r* ensure that there is an re P, such that
F|f =1, r() = {xuu, a, yUv) and reE,. In particular, r < p, ¢ and I(r) =1(p) = 1(g),
which finishes the proof of the lemma.

Suppose now that C < P, is an uncountable antichain. By Lemma 1 we may
assume C < E¥. Applying the 4-system lemma to {supp(p): pe C} and some elementary
operations we find an uncountable Cy< C so. that any p,qeC, are as
in Lemma 3, a contradiction. Thus, each P, has the c.cc. and the proof is
complete. ‘

Remark. It is not difficult to see that, in the model constructed, each automor-
phism of a given algebra B can be, after embedding, extended to an automorphism of
P(w)/fin.
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Poland
Intuitively, a subset X of a metric space is said to be paradoxical if it admits

a partition X = AU B such that each of the sets 4, B can be subdivided into finitely
many pieces which can be reassembled via isometries to produce X; if 4 is subdivided
into m pieces and B is subdivided into n pieces, the set X is said to be (m, n)-paradoxical.

The Sierpinski-Mazurkiewicz paradox is that there is a (1,1)-paradoxical subset of
the plane [MS]. Hadwiger, Debrunner and Klee [HDK, p. 80] have shown that
a bounded (m, n)-paradoxical subset of the plane must satisfy m-+n> 2. A bounded
(1, 3)-paradoxical subset of the plane has recently been constructed by Just [J].

Our main purpose here is to show that there is no bounded (1,2)-paradoxical subset
of the plane. This improves the result of Hadwiger, Debrunner and Klee, and renders
optimal the recent construction of Just. We also construct here a bounded (2,2)-parado-
xical subset of the plane.

DErINITION 1. X is an (m, n)-paradoxical subset of the plane if X is nonempty, and
there are subsets C,,...,C,, D{,...,D, of X and planar isometries G, ..., G,,
Hy,..., H,, such that P, ={C}, P,={Dj} and P,={G/(C)}u{H(D)} are each
partitions of X.

DeriNITION 2. Let X be an (m, n)-paradoxical subset of the plane whose para-
doxical decomposition is witnessed by subsets Cy, ..., C,, Dy,..., D, and planar
isometrics Gy, ..., G,, Hy,...,H, Write #={C,,...,C,}, 2={Dy,...,D,},
9 = {G, ..., G,}, and o = {H, ..., H,}. We define the associated directed graph
I = I'(%, %, %, #) of the decomposition. I' is an infinite directed graph with vertex set
V(I') = X. The set of darts (Le. directed edges) of I' consists of all pairs (x, G,(x)} and
{x, Hy(x)), where xeC;nD,.

It is helpful, when drawing diagrams, to label each dart of I' with the planar
isometry that determined its second coordinate.

Observe that every x in V(I') has invalency 1 and outvalency 2.

LeMMA 1. Let I' be an infinite directed graph with invalency 1 at each vertex, and
suppose furthermore that I' is connected. Then I' contains at most one cycle.
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