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The Ramsey sets and
related sigma algebras and ideals

by

Jack B. Brown (Auburn, Ala.)

Abstract. We investigate the similarities and dissimilarities between the o-algebra of
completely Ramsey subsets of the space of infinite subsets of w, the o-algebras of Lebesgue-,
Marczewski-, and universally-measurable sets, and the o-algebras of sets with the Baire properties.
We also study the relationships between the o-ideals associated with these o-algebras and other
classes of singular sets such as the concentrated sets, the sets of strong measure zero, and the
rarefied sets.

L Introduction. We are interested in the classes of sets represented in the following
diagram:

S

B represents the Borel sets. B,, represents the sets M with the Baire property in the
wide sense (i.e. M is the symmetric difference between an open set and a first category set).
B, represents the sets M with the Baire property in the restricted sense (ie. for every
perfect set P, MAP has property B, relative to P). U represents the universally
measurable sets.

L represents the Lebesgue measurable sets and (s) denotes the Marczewski [9]
measurable sets (a set S has property (s)if it is true that every perfect subset of the space
has a perfect subset which is a subset of or misses S). See [3] and [15] for more
information on (s)-sets and functions. Properties B, B,, B,,, U, and (s) have meaning in
any Polish space. L has its usual meaning for subsets of the reals R. The complete
Ramsey property, CR, has meaning only in the space [©]® of all infinite subsets of o,
and it has a definition similar to that of the (s)-sets. The CR-sets were first defined by
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Galvin and Prikry in [6], where they proved that Borel subsets of [w]® have the
Ramsey property R (this theorem was extended to analytic sets by Silver in [14], and
Silver’s proof was greatly simplified by Ellentuck in [5] and independently by Louveau
in [8]).

[w]® is naturally imbedded in w® as the class of all increasing sequences from
and the usual metric d; on w® relativized to [w]® produces the topology for [w]®. If
x and y belong to w®, then d, (x, y) = 1/n, where » is the first integer such that x,, # y,. It
is more common to think of [w]® as being imbedded in {0, 1}°, by taking the
characteristic sequences associated with those increasing sequences indicated above,
The metric d, usually associated with {0, 1}*, relativized to [w]®, also produces the
usual topology for [w]®. Thus, if x and y belong to [w]®, then dy(x, y) = 1/min{x,, Vuls
where n is the [irst integer such that X, # Yy We will see in Section II that there are
significant differcnces between these two metrics for [@]® insofar as they pertain to
“singular” sets.

We adopt present convention and say that an Ellentuck set or E-set is a set denoted
by the symbol [F, M], where F is a finite subset of o, M is an infinite subset of w, and
[F, M]={Se[w]*: Fc§=FuUM and max F < min S\F}. Then we say that a set
SeCR if every E-set [F, M] has an E-subset [F, N] which is a subset of or misses §.
A subset S of [w]® is 2 Ramsey set, or has property R, if there is an infinite subset M of
@ such that the set [M] = [@, M] of all infinite subsets of M is a subset of or misses S.
All of these classes of sets form c-algebras except the class R.

The o-ideals associated with the o-algebras discussed above are of course related as
follows:

CRy
/Lo
count T { ,
ey o\( ) ——7/
' AFC/
\

FC

count, FC, and L, denote the countable, first category, and Lebesgue measure zero sets,
respectively. The AFC (always first category) sets M are such that for every perfect set P,
MnPis FC relative to P. The Uy (universal null) sets have measure zero relative to the
completion of every non-atomic Borel measure on the space. The CR,, (Ramsey null)
sets § are such that every E-set [F, M] has an E-subset [F, N] which misses S. The (s%)
{(Marczewski null) sets M are such that every perfect set P has a perfect subset Q which
misses M. The TI-sets are the totally imperfect sets (ie. the sets which have no perfect
subsets).

Ellentuck [5] (and independently, Louveau [8]) considered the topology on [w]®
one gets by using the E-sets as a basis. We will call this the E-topology, which is finer
than the classical topology. It was shown that a subset § of [w]®is 8 CR-set if and only
if it has the E-B,,-property, and that S is CR, if and only if it is E-FC, in which case it is
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E-(nowhere dense) (see [12] for more on the E-topology). It is because of this that it is
clear that the definition of the CR-sets can be reworded so as to be completely
analogous to that of the (s)-sets.

THEOREM 1. S is CR if and only if every E-set [F, M has an E-subset [G, N1 which is
a subset of or misses S.

Proof. This is a well-known result from the “folk-lore” of this subject, but we
include a proof for completeness.

It is obvious that CR implies this latter property. If S has this latter property, one
can let O, be the union of all the E-sets which are subsets of S, and let 0, be the union
of all the E-sets which miss §. O, and 0, are disjoint E-open sets, and it follows from the
assumption that O; U 0, Is dense in the space. Thus § = 0, U(S\0, U0,) is the union of
an E-open set and an E-FC-set and is an E-B,-set. =

Note. It is also true that S is CR, if and only every E-set [F, M] has an E-subset
{G, N] which misses S.

Il Theorems and examples. We now turn to the question of describing the
necessary examples to show that diagram (I) includes all possible implications that hold
between the properties in question.

Galvin and Prikry [6] gave an example which was FC and L, but not R. In [w]®,
L and L, are taken to mean measurability under the usual product measure y on
{0, 1}*. The paper [1] by Aniszczyk, Frankiewicz, and Plewik compares some of _the
properties of (I), and several interesting examples are given there. It is actually possible
to describe as many as 14 examples which would show that any combination of the
properties CR, L, (s), and B,, need not imply the others. The author has in fact checked
that all 14 examples exist (some assuming CH and others in ZFC). Most of these
examples are similar to previously described sets, so only the most interesting ones are
given here. : , ' .

Walsh [16] has recently given a ZFC example which shows that (s°) imphes neither
B, nor L. After the author discussed the 14 examples mentioned above with Corazza,
Corazza showed [4] that several of them could be described in ZFC (rather than
assuming CH). However, his example to show (s°) does not imply B,, L, or R tu.rned out
to need an extra set-theoretic assumption. Therefore, we will give our original CH
example below. We will need the following lemma.

LemMa 2. Every perfect set P in [w]® has a perfect subset Q which is L, and CR,.

Prool. Suppose P is a perfect set. First get an L, perfect subset P, of P. If P, is '
CR,, we are through, If P, is non-CR,, use the following procedure (modeled after
a trick in [1]). Consider an arbitrary E-subset [F, M] of P,. Assume that
[F, M1 =[{fos .+ s Jip» {Mg, My, ...0], and that f, < m,. Let O’ = {m;, m,,...> and
E'={my, ..., my,...>. Let

K, =[F, 0NU[F, E], ‘
K, =[F, 0'ulmgy, ..., My, DJU[F, Eulmyg, ..., Mau-1)],
H=[F, M\(KouK u..).
H is a dense relative G, in [F, M] and u(H) = p([F, M])=0.

n>0,

1
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We now show that H is CR,. Consider an arbitrary E-set [G, N]. Assume that
F ¢ G < Fu M (otherwise [G, N n M] misses [F, M]). Likewise, we may assume H M
is infinite (otherwise we’ are through). Therefore either NNO' or NnE' is
infinite. Let N’ be the infinite intersection. Then [G, N'] is a subset of some K,
and misses H. This shows that H is CR,. Since H is a dense relative G; in the perfect
set [F, M], we can take a perfect nowhere dense subset Q of H. This is the desired
set Q. =

ExampLE 3. CH implies that there exists an (s°)-set which has none of the properties
R, L, or B,.

Proof. Assurné CH, and let 2 denote the first uncountable ordinal, List the perfect
sets, the E-sets, the perfect sets of positive measure, and the locally residual G;-sets as
{P,a<Q}, {E;a<Q}, {M,;:a<@}, and {R, a<Q}, respectively. A locally
residual G; is a set of the form O\F, where O is open and F is an FC-F.

Using the lemma, take Q, to be a perfect subset of P, which is CR, and L. Pick a,
and b, to be distinct elements of E,\Q,, ¢, and d, to be distinct elements of
Mo\(QoU{ao, bo}), and e, and f;, to be distinct elements of Ro\(Qo U {aq, by, ¢4, do}).
This completes step O.

For 0 <« < &, step « is as follows. Take Q, to be a perfect subset of P, which is
CR, and L,. Set

N, = pU Qg {ap, bps ¢ps dy, €, 1)U Q,

Pick a, and b, to be distinct elements of E,\(Q, U N,), ¢, and d, to be distinct elements
of MNQ,UN,u{a, b)), and e, and f to be distinct elements of
RNQ,UN,U{a,, b, ¢,, d.}). Let S = {a,, c,, e, & < Q}. It is obvious that § has none
of the properties R, L, or B,, because of the b,, d,, and f,. To see that S has property (s%),
suppose P is an arbitrary perfect set. P appears as P, for some a. At most countably
many points of S chosen up through step o intersect Q,, and none of the points of
S chosen after stage « intersect Q,, so there is a perfect subset Q of Q, (and of P) which
misses S. m

We now consider how the properties of diagram (1I) relate to other “singularity”
properties. In particular, we will be interested in those properties included in the
following diagram of implications.

con Ly
Lu—y ——-—av-——P \

w
count< / '\ \ / \(s°)~—-7'/
S/\a /)L AFC\

NFC

We will define only those properties discussed here (see [2], [7], and [10] for the
- others). For subsets X of a Polish space Y with metric d the properties are as follows:
con(rel Y) = concentrated about a countable subset C of Y (i.e. every open set containing
C contains all but countably many points of X). C(reld) = strong measure zero relative

f111))
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to the metric d (ie. for every sequence t,, t,,.... of positive numbers, there exists
a SeqUEnce X;, X,, ... of elements of X such that X < N(x,, t,)UN(x,, t,)u..., where
N(x, 1) = {yeY: d(x, y) < t} denotes the r-neighborhood of x under d. A = rarefied (i.e.
every countable subset of X is a G, relative to X); 1 (rel Y) = the union of X and any
countable subset of Y still has property A.

THEOREM 4. C(reld,)=> CR,.

Proof. First notice that S has property C(rel d,) if and only if it is true that
if n(l), n(2),... is any increasing sequence of positive integers, then there exists
a sequence X;=<X;1, X;z,...;, i=1, 2,..., such that the neighborhoods

(Xl, l/n(l)) [<xi1s oves Xiyy, @], i=1, 2,..., cover S. Now, consider an E-set
[F, M]=[{fis..0s fi>, {my, my, ...0]. Assume f, <m, and that [F, M] inter-
sects §. Consider the sequence k+2, k+4, k+8, k+16, ... There exists the sequence
X, i=1, 2,..., such that the neighborhoods N(X,, 1/(k+2)) described above
cover S.

Let I be the set of positive integers i such that the first k+ 2 terms of X, consist of
F, followed by 2! terms of M. Notice that if i is in I°, then N (X, 1/(k+2) misses [F, M].
If I is finite (or empty) and i exceeds all the elements of I, we can let N be the set of
elements of M which exceed k-2’ Then [F, N] not only misses S, it misses the union of
the neighborhoods described above. If I is infinite, construct an infinite subset N of M as
follows. If i is the jth smallest element of I, the first k+2' terms of X, consist of F,
followed by 2 terms of M. Let G, consist of those 2/ terms of M. Put one element of G,
in N (leaving the others out). Put one element of G,\G, in N (leaving at least one other
out). In general, put one element of G,\(G, U...wG,—,), in N (leaving at least one other
out). [F, N] misses the union of the neighborhoods described above. m

THEOREM 5. A'(rel{0, 1}*)=>CR,.

Proof If mew, let {m, --> denote the set (or increasing sequence) of all elements of
w greater than or equal to m. The sets [F, {m, -->], where F is a finite subset of w, form
a basis for the topology on [@]®. Let E = [w] “® be the collection of all finite subsets of
. E is identified with the “left-endpoints” of {0, 1}* which terminate in zeros. Assume
SUEis 4, and let 0;; 0,, ... be a sequence of open sets in {0, 1}, all containing E, such
that SN0, N0, ... is empty. For each i, let §; = S\(0;n...n0). Each §, is clearly
CR,, and S =S, US,uU..., so § is CR,, because CR, forms a o-ideal. m

It is shown in Theorem 4 of [1] that an axiom weaker than CH implies the
existence of a U -set which does not have property CR. We will combine the techniques
of that proof and the trick in a 1941 paper of Rothberger [13] to show that CH implies
the existence of a much stronger example.

ExampLE 6. CH implies that there exists a set S < [w]® which has properties
con(rel {0, 1}*) and A'(rel ©®) but not property R. .

Proof. We will modify Rothberger’s construction [13] of a set whlch isconand 4,
applying a trick of Aniszczyk, Frankiewicz, and Plewik [1, Th. 4]. As usual, iff andgare .
elements of w®, we say f <*giff; < g, for all but finitely many i, and f < g if f; < g, for


Artur


184 J. B. Brown

all i. ((0, f)) denotes {g: g <*f} and ((f; o)) denotes {g: f <*g}. It is well known that
(1) every (0, 1)) is o-compact, (2) every o-compact subset of ® is a subset of some (©, 1),
and (3) every ((f; o)) is an F,. List ©® = {¥,: « <} and the increasing sequences
[w]® = {d,: &< Q). Let g = ¥, and look at ((0, g,)). Pick distinct p, and g, in [4,] so
that both are > g,. Continue the process. At stage «, first pick the first element of w»®,
call it g, such that (Js<((0, gp))u {ps 44} = (O, g.))- Notice that ¥; < g, for every
B <o Then pick distinct p, and g, in [4,] so that both are >g, and ¥,
S ={p,; « <R} is wellordered by <* and unbounded, so it is concentrated about
E =[0]*® in {0, 1}* and has property A

It is actually the case that if B is any countable subset of @, then SUB still has
property 4, so that § has property A’ (rel @®). To see this, suppose Cis a countable subset
of SUB. There will exist an o such that every element of BuC precedes Y, in the
wellordering of ®®. ((p,, ¢)) is an F, in &®, so SUB\((p,, ) is a countable relative
Gy-subset of SU B. It follows that Cis a relatlve G,-subset of SU B. Thus § has property
A'(rel ). :

On the other hand we have made S a subset of [w]®. Every 4, intersects S, but no
A, is a subset of S, so S-does not have property R. =

We note that it would be impossible to prove the existence of the set of Example
6 in ZFC (see [1, pp. 483-4]).

ProaLeMs. Expand that part of diagram III concerning the concentrated sets,
strong measure zero, and the rarefied sets as follows:

Ug—--- e

\con(rel wu)—\‘»c (reld,)<

CR,

~~~~~ TR
. q/

It is clear that the set § of Example 6 is con (rel {0, 1}) but not rel w®, &' (rel @) but not
rel {0, 1}, and has property C (reld,) but not reld, (also see [11]). Miller [10, Th. 5.7]
used Rothberger’s approach to build a set which is con and . We do not see how to
make the set of Example 6 have property o. It is conceivable that o= CR,. We also
wonder how the property of being concentrated relative to every complete space Y in
which X may be embedded relates to property P, and how the property of being A’
relative to every complete space Y in which X may be embedded relates to properties Si
and o. It is known [11] that having property C relative to every equivalent metric is
equivalent to having property C".
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