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Proof The proof is almost identical to the proof of Lemma 4. Without loss of
generality every g;, Y, satisfies (+) and also for all i < j and all » we assume that ¢,(n)
< ¢;m) and yY;(n) > ;(n). Again we choose an ascending sequence of integers
N, < N, <... such that if n > N, then (y)¥(n) > 2*¢,(n). The function y is defined by
() = max {y(n—1), YEn)} if N2 < n < Ny 1y2. Obviously y < i, for every ie N. Also if
n > N,., then

Y ) = @)™ (M) if Nue <n<Npsgpe.
Therefore
P = W)™ () = W)™ () 2 27 @,2(n) > 25, (),
which implies that ¢, <y for all neN. u

The main theorem now follows as a corollary of all the work we have done.

THEOREM. There exists a continuum of topologically distinct orbits.

Proof. According to Lemmas 4 and 5 the space (¥, <) contains R as an ordered

subset. Any two different elements of R correspond to non-equivalent orbits accordin,
to Lemma 3. )

We conclude with an unsolved problem. Consider an irrational rotation g, on the
circle $*. The flow Z(S*, g,) is called an irrational flow on the torus. It is well known
when Z(§*, g,) and Z(S", g,) are equivalent. Consider one orbit I, from Z(S*, g,) and
I, from X(s*, @p)- It is highly unsatisfactory that the following question has not been
answered yet:

QUEsTION. Are there « and f such that I', and I'; are not homeomorphic?

Acknowledgement. I would like to thank J. M. Aarts and K. P. Hart for their
valuable suggestions.
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Natural continuity space structures
on dual Heyting algebras

by

Marcel Erné (Hannover) and Ralph Kopperman (New York)

Abstract. Every dual Heyting algebra carries three intrinsic “generalized quasi-metrics™:
d(x, y) = x—y, d*(x, y) = y—x, and d&*(x, y) = (x—y)-+(y—x), where x—y denotes the relativc? dual
pseudocomplement. Formally, these are “continuity functions” satisfying the triangle inequaht}r. In
a dual Heyting algebra, a set of positives is a dual ideal P whose meet is 0. We investigate
properties of the topologies, T(4,), T(A¥), T(43), which arise [rom the continuity spaces so
defined. For example, T(4p) and T(A}) are completely distributive, and T(4}) is a zero-
dimensional Hausdorff topology. Furthermore, we show that for any coframe, that is, for any
complete dual Heyting algebra A:

(1) T(Ap) is the Scott topology iff P satisfies the ascending chain oondition.. .

(2) T(4¥) is the dual Scott topology iff P satisfies the local descending ‘cham condlltmy?.

(3) T(43) is the order topology (Lawson topology, interval topology) iff P is locally finite iff
T(Ap) is compact.

1. Motivation and preliminaries. Continuity spaces are among the many generaliza-
tions of metric spaces found in the literature. In [18] it is shown that all topologies arise
in a patural way from continuity spaces. More to the point for us, it was shown in [12]
that the hull-kernel topology long studied on spaces of prime ideals (see, €.g., [10],.[1 1],
[13], [16], [25]) arises from a continuity space in which the distance betwee‘n two 1dea‘1s
1, J is their set-theoretic difference d(J, J) = J\I. The “converse” continuity space, in
which the distance I\J is used in place of J\I, gives rise to the Scott topolc?gy on the
power set of the underlying ring. Further, its “symmetrization”, in which. J\I is replaced
by (A UI\J), gives rise to the patch topology, which here agrees with the Lawson
topology (see [9], [13]). '

The above construction can be generalized from power sets to arbitrary dual
Heyting algebras, alias (dual) Brouwerian lattices (cf. [17, [22], [24_]). \‘{e shall carry out
this construction below and describe just when it actually does give rise to Scott, dlfal
Scott and Lawson topologies, respectively. The “structure spaces” of [12] are special
cases of the “lattice continuity spaces” studied in the sequel.

1980 Mathematics Subject Classification: 06B30, 06F20, 54E99, S4F05.


Artur


158 M. Erné and R. Kopperman

Henceforth, 4 denotes a bounded lattice with least element 0 and greatest element
oo, reminiscent of the standard example of the extended nonnegative real line. Join and
meet of a subset B are written \/B and /\B, respectively. However, it will be convenient

to use the symbol + (rather than v) for the binary join and the symbot - (instead of A)
for the binary meet.

Now, a lattice continuity space is a quadruple X = (X, d, 4, P), where
X is a set,

A is a bounded distributive lattice,

d: Xx X — A, called the distance or continuity function, satisfies

dix,x)=0 and d(x, z) < d(x, y)+d(y, 2),

P, called the set of positives, is a meet-dense dual ideal of A.
As usual, meet-density means that each xe A is a meet of elements from P.

If, in addition, d(x, y) = d(, x) then d and X are called symmetric, and if d(x, y) #0
for x sy then d and X are called separated.

Notice that any bounded distributive lattice is a set of positives in itself; this choice

leads to Alexandrov (discrete) topologies, i.e. topologies in which arbitrary intersections
of open sets are open.

The converse of X is X* = (X, d*, A, P), where
@*(x, y) = d(y, x).

(In [18] this is called the dual, but we avoid this terminology to prevent confusion with

other notions of duality studied below.,) The symmetrization of X is X* = (X, &% A, P),
where

&(x, y) = d(x, y)+d(y, x).
Given a (lattice) continuity space, its associated quasi-uniformity and associated topology
- are defined by generalizing classical constructions on metric spaces:
Ny ={(xy): dx, ) <p}  (peP),
UX)={Uc XxX:N,< U for some peP},
N(x)={yeX: d(x, ) <p} . (peP, xeX),
T(X)={T< X: if xeT then N,(x) = T for some pe P}.

.In accordance with Fletcher and Lindgren [8], we call a quasi-uniformity transitive if it
is generated by a set of quasi-orderings, ie. reflexive and transitive relations. Our first
theorem summarizes and refines some of the main facts fi

rom [18] (see also [17]).
L.1. THEOREM. For any lattice continuity space X,
(1) URX) and U(X*) are transitive quasi-uniformities;
(2) UX®) is the transitive uniformity generated by U (X) and U(X*);

() T(X) is the topology induced by U(X), and the neighborhoods N ,(x)
= {yeX: d(x, y) < p} form an open base Jor T(X); :
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4) T(X*) is the topology induced byf U ;}E;);) and the neighborhoods N¥(x)
= X: d*(x, y) < p} form an open base for ;

{J’é) T(X"§ isy)the t}apology induced by U(X®) and generated by T(X) and T(X*):
Furthermore, T(X*) is zero-dimensional, since the neighborhoods Nj(x)= {yeX:
d(x, y) < p} form a base of clopen sets. . .

Conversely, all transitive quasi-uniformities and all (zero-dimensional) topologies arise
in this way from suitable (symmetric) lattice continuity spaces.

Proof, The asserted properties of U(X), T(X) etc. are easily verified. For example,
down-directedness of the set of positives guarantees that U (X) is in.fact a filter, and thi:
triangle inequality ensures that each N, is~ a transitive .relatlon‘ Morem;er, N.,,
= {(x, y): d"(x, y) < p} is an equivalence relatlon.' Now consider any set R. o quasz
orderings on a set X. Certainly the power set of Ris a complu.at'e Bo-olean lattice 4, e.m
the collection P of all cofinite subsets of R is a set of positives in 4. The function

d: XxX—A with d(x,y) ={ReR: (x, y)¢R}

satisfies d(x, x) = @ and d(x, z) S d(x, )ud(y, z). Hence X = (X, 4, 4, P) isa B;ol;a[r]x
lattice continuity space, and U e U(X) means N, & U f.or s.ome PeP, that is, [ R—Of
for some finite subset F of R. Hence U(X) is the quasx-umform.xty gencratt?d by R.
course, if R consists of equivalence rclations only, then d is .symmetnc (buF 1}1)(;t
conversely!) Furthermore, it is well known that every tf)polog).' is ?nducfed. by a su1t?8])e
transitive quasi-uniformity (namely the so-callf:d Pervin quasz—u;?;'formlty', see ':.g' ,
and that every zero-dimensional topology arises from a trar.xsimve umforml.y. .

We shall need some more order- and lattice-theoretic definitions and notat_lons (for
background, the reader is referred to [1], [21, 61, [91, [1'2]). Let (Q, <) (or simply Q)
denote a partially ordered set (poset) and 0 =(Q, ») its dual.

- (] ={xeQ: x <y}
is the principal ideal and .
D) ={xe@: x>y}
is the principal dual ideal generated by y€@Q. Furthermore,
LY = J{0]: ye¥}
denotes the lower set and
1Y = U{D): yeY}
the upper set, respectively, generated by Y. The upper sets of Q form
rov-discrete topology o(@). - ' i
0 satisfies the Ascending Chain Condition (ACC) iff each n.onernpty s:ileT; uII fgeaCh
a maximal element. The Descending Chain Condition (DCC(E): 1(;) (éeg;i;ilenu; fs If cach
= tisfies the A
closed, bounded interval [x, z] = [x)n(z] satis . e om0t
’ h of these intervals is finite then
isfy the local ACC (local DCC). If, moreover, eac inte : .
:Z::;‘;);‘:: lg:‘ally ﬁnn;. For example, the chain o of nonnega.tlve.mteger‘s is loc_:a;ly t;;)mttﬁ
and satisfies the DCC but not the ACC. Notice that a distributive lattice satisfies bo

(local) chain conditions iff it is (locally) finite.

*-xand-
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. Let 4 be any lattice (not necessarily complete). We call an element x of A compact
iff for every up-directed subset Y of 4 possessing a join with x < \/ ¥, there exists some
yeY with x <y (dual notion: cocompact). If each element of 4 is a join of compact
elements, then A is said to be compactly generated. A compactly generated complete
lattice is called algebraic. It is easy to see that a bounded lattice satisfies the ACC iff it is
complete and each of its elements is compact; of course, any such lattice is algebraic.

As already mentioned earlier, the major results of this paper are for dual Heyting
algebras, sometimes also called (dual) Brouwerian lattices. These are bounded lattices
endowed with a relative pseudocomplementation, that is, with a binary operation “—"
satigfying the equivalence

X=y<z < x<y+z.

The following rules are valid in any dual Heyting algebra and will be applied without
comment:

X-y=0<« x<y = z—}:sz~x,
x—2 < (x=y)+{y-2),
G=y)=y=x—y, (x~y)+y=x+y,
x~AY=\/(x~Y) where x—Y = {x—y: yeY},
provided Y has a mest. Every dual Heyting algebra is a distributive lattice. Moreover,

thc.comple.te <‘1ual Heyting algebras are precisely the so-called cofiames, i.e. complete
lattices satisfying the infinite distributive law

x+AY=A\(x+Y) where x+Y ={x+y: ye Y}.

of fsourse, the coframes are the lattice-theoretical duals of frames, i.e. complete lattices in
which the dual identity holds, viz.

x\Y=\/(xY) where x-¥ = {x-y: yeY}.
Notice that every .distributive algebraic lattice, and in particular every distributive
complete lattice satisfying the ACC, is a frame but not necessarily a coframe. But, on the
other hand, a frame satisfying the DCC must also be a coframe.
A stronger condition than the DCC has proved of particular relevance for modern

order theory: A poset Q is said to be well-partially ordered if it satisfies the fo

equivalent conditions: 110W!11g

(W1) For e.ach sequence (x,) in @, there are indices m < n such that x < X,
(W2) O satisfies the DCC and has no infinite antichains, e

(W3) The Iatt%ce oc(g) of all upper sets satisfies the ACC.
5345 The lattice a(Q) of all lower sets satisfies the DCC
5) Bach u i is fini i :
ubse 7 o pper set in Q is finitely generated (i.e. of the form 1F for some finite
We later use this well-known characterization of algebraic coframes:

12. LemMA. The following statements on a complete lattice A are equivalent:
(2) 4 is an algebraic coframe.
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(b) A is a coframe in which each element is a meet of completely meet-irreducible
elements (i.e. elements qe A such that g = A\ Y implies qeY).

(c) A is isomorphic to o(Q) for some poset Q.

Moreover, these conditions are self-dual, that is, they are fulfilled by A iff they are fulfilled
by the dual lattice A.

1.3. COROLLARY. 4 complete lattice is a coframe with ACC iff it is isomorphic to a(Q)
for some well-partially ordered set Q.

In Section 4, we shall need a certain strengthening of compactness. Let us call an
element x of a lattice A hypercompact if the complement of the principal dual ideal [x) is
a finitely generated lower set, i.e. A\[x) = |F for some finite set F = 4. The dual notion
is hypercocompact. Thus in a well-partially ordered lattice every element is hypercocom-
pact.

1.4. LemMa. Every hypercompact element is compact. In coframes the converse is also
true.

Proof. The first statement is clear since finitely generated lower sets are closed
under directed joins. For the second assertion, assume A is a coframe and x a compact
element of 4. An application of Zorn’s Lemma shows that A\[x) = |M, where M is the
set of maximal elements of A\[x). For each finite subset F of M, put x; = x— /\F. These
clements x form an up-directed set with least upper bound x (since for x< z there is
an me M with z < m, and then X,y = x—m% z). By compactness, x must coincide with
x— A\F for some finite F < M. Now the assumption F 7 M leads to a contradiction,
because for meM\F, the maximality of m in A\[x) would entail x< A\m+F)

=m+AF, so x=x—/F<m Hence |M=][F is finitely generated, and x is
hypercompact. w

The completeness assumption in 1.4 (which provides the hypothesis for Zorn’s
Lemma) is essential:

1.5. ExampLE. The set

A= {(—1/n, =1/n): neN}u{(£1/n, O): neN},

ordered componentwise by the usual <, isa non-complete dual Heyting algebra. The
element x = (—1, 0) is compact but not hypercompact. Indeed, 4\[x) has no maximal
elements at all. Notice that the normal completion NA =4 u{(0, 0)} is a coframe in
which x is no longer compact.

2. Topologies on lattices. In the sequel we let A denote a lattice, although most of
the definitions and results easily extend to posets. Here are a dozen of the most
important “intrinsic” topologies, defined in terms of the order relation on 4 (cf. [5],
[0

(1) The upper topology v(A), generated by the complements of principal ideals.

(2) The lower topology v(d) (denoted by w(4) in [9]), generated by the comp-
lements of principal dual ideals. _

(3) The interval topology 1(4) = v(A) v u(A), generated by v(4) and v(A4).
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{4) The Scott topology o(A), consisting of all upper sets U < A such that whenever
D = 4 is up-directed and has a join \/DeU, then D meets U.

(5) The dual Scott topology o(A).

(6) The Lawson ropology A(A) = o(A) v v(A).

(7) The dual Lawson topology A(A).

(8) The bi-Scott topology B(A) = B(A) = o(4) v o(d).

(9) The order topology Q(A)= Q(A), in which a set T is open iff for each
up-directed Y and down-directed Z with VY = A\ZeT, there are ye Yand ze Z such
that [y, Z1 = T (see [3]).

(10) The upper Alexandrov topology «(A4), generated by the principal dual ideals,

(11) The lower Alexandrov topology w(A), generated by the principal ideals.

(12) The discrete topology P(4)={Y: Y S A} = a(d) v a(A).

These topologies, together with the indiscrete topology {@, A}, are ordered by
inclusion according to the diagram after 3.5. If 4 is a complete lattice, they form
a meet-subsemilattice of the lattice of topologies on 4 — a fact whose proof is
fi nontrivial exercise. However, there are dual Heyting algebras A for which 1{A)noa(d)
is distinct from v(d): see Example 1.5, where [x) e 1(d) na(A)\v(A).

An arbitrary topological space (X, T) carries a natural quasi-order, the specializa-
tion < y defined by x < ;v iff x belongs to the closure of {v}. A topology Ton 4 is
compatible if <, agrees with the given order relation on A. It is easy to see that this is
the case if and only if v(4) € T< a(4). Thus v(4) is the coarsest, a(4) the finest
compatible topology on 4, and the Scott topology, as well as any other topology
betjveen D(Al and o(A), is compatible with the order on A. Dually, the topologies v(4),
o(A4) and «(A) are compatible with the dual order of 4. In contrast to these “one-sided”
topologies, the “two-sided” topologies 1(4), A(4), A(A), B(A), Q(4) and P(4) are all
compatible with the identity relation = » because they are T}-topologies. Unfortunately,
there are various different notions of compatibility floating around in the literature, The
present one is in accordance with [14], but not with [9], for example.

We also study some convergence relations on a lattice A which are well known at
least in the complete case (see e.g. [1], [3], [4], [5]). A filter F on 4 is said to be
S-convergent to a point xe A if there exists an up-directed set ¥ possessing a join with
x < \/Yand [y)ciF for all ye Y; and F is O-convergent to x if it is S-convergent to x in
A and also in 4. If 4 is complete, then

F S-converges to x in A iff x < liminf F = VA{AF: FeF},
F S-converges to x in 4 iff x > limsup F = N{\VF: FeF},
F O-converges to x in A iff x = lim inf F =lim sup F,

As usual, the corresponding convergence structures for nets are defi
convergent to x iff the associated filter does.

By a continuous lattice we mean a lattice A (not necessarily complete) such that for
each xe A there exists a least ideal possessing a join above x. For the following results,
see [3], [4], [5] and [9]:

2.1. THEOREM. Let A be any latiice,

ned by calling a net
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(1) The Scott topology is the finest topology T on A such that S-convergence implies
T-convergence.

(2) A is a continuous lattice iff S-convergence is topological (thus equal to
convergence in the Scott topology). _

(3) The order topology is the finest topology T on A such that O-convergence implies
T-convergence.

(4) If A and A are continuous lattices then O-convergence is topological (thus equal
to convergence in the order topology). The converse does not hold.

By a C-topology we mean a topology T on a set X such that every point has
a neighborhood base consisting of cores, that is, sets of the form

[¥)p={TeT: xeT} (xeX).
The cores are the principal dual ideals with respect to specialization and are always
compact (for us compactness does not require Hausdorff separation). Any topology with
minimal base, and in particular, every Alexandrov topology is a C-topology. The Scott
topology on the unit interval is an example of a C-topology which has no minimal base. It
is an interesting fact that the C-topologies are exactly those which are completely
distributive lattices (cf. [4], [14]).

2.2. THEOREM. Let A be any lattice.

(1) Every compatible C-topology on A includes the Scott topology.

(2) A is continuous iff 6(A) is a C-topology.

(3) A is compactly generated iff o(4) has a minimal base.

Proof. For (1), observe that for each yeA, the set of all points whose core is
a neighborhood of y is up-directed and has join y. Hence, if ye U €5(4) then U must
contain some core neighborhood of y.

For (2), refer to [4] (see also [9] and [14]).

For (3), use the fact that a compatible topology has a minimal (equivalently, a least)
base iff the open principal dual ideals form a base, and that [x) is o-open iff x is
compact. m

Given any topology T on A, let us denote by TV the topolog)f~ generated by the
T-open sets and all complements of cores. Thus TV = T v v(4) whenever T is
compatible with the order of 4; for example, 1(4) = v(4)" and A(4) = ¢(4)". Of course,
TV is always contained in the so-called patch topology which is generated by the T-open
sets and the complements of the T-compact saturated (i.e. upper) sets (cf. [9, VII-1.16]
and [13]). Recall that an ordered topological space is said to be totally order-
disconnected if for any two distinct points there is a clopen lower set containing one of
these points but not the other.

2.3. LEMMA. If T is a compatible C-topology on A then T is the patch topology, and
if T has a minimal base then (A, T") is totally order-disconnected.

Proof In order to show that the patch topology is contained in T, it suffices to
verify that any compact upper set U is finitely generated (hence a union. of finitely many
principal dual ideals). But this follows from the fact that =~ch point in 'U has a core
neighborhood contained in U, so by compactness, U is by a finite number of
these cores.
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Now assume T has a minimal base. For distinct points x, y, say x< y, the set A\(]
is open (by compatibility), so there exists a T-open core [2) = A\(y] containing x. Hence
A\[z) is a TV-clopen lower set containing y but not x. w

In accordance with [9, I1-3.9], we mean by a monotone convergence space
a topological T-space such that each subset which is up-directed by the specialization
order has a supremum and converges to it (as a net), Every sober space, that is, every
Ty-space whose point closures are the only irreducible closed sets, is 4 monotone
convergence space (cf. [9, II-3.17] and [26]).

24. TueoreM. For a compatible C-topology T on a lattice A, the Jollowing four
Statements are equivalent: )

(@) T=g(A).

(b) T-convergence coincides with S-convergence,

(c) Tis consistent with the order of 4, ie o(4) € T < o(A).

(d) Each monotone increasing net in A possessing a Supremum converges to it.
Furthermore, the subsequent six statements are equivalent:

(e) A is complete, and T= o(A).

(f) A is complete, and T = AA).

(8 TV is compact.

(b) T is strongly sober, ie. every ultrafilter has a greatest T-limit,

() T is compact and sober.

() (4, T) is a compact monotone convergence space.

Proof. (a)<>(b): Apply 2.1(2) and 2.2(2).

(@)= (c): This is clear.

(€)== (d): If (x;: iel) is a monotone increasing net in 4 and x = \/{x : iel} then
for each T-neighborhood U of x there is some ie] with [x) = U (since '{x Diel} is
up-directed and U is g-open), a fortiori x;eU for all j > i, r

. (d=(a): By 22(1), o(4) is contained in T Conversely, if U is a T-open
nexgt}borhood of x then U is an upper set, by compatibility of T Furthermore, if Yisan
up-directed subset of 4 with \/YeU then ¥ (considered as a monc;toxme net)
T-converges to VY so [y U for some ye ¥ Hence U is o-open

(e) =(f): This is clear because A(4) = a(A). l

D=(g): [See 9, I-1.97.

(8)=(e): Again by 2.2 (1), we have ¢(4)
Hence ¢(4) agrees with T and A(4) with the
interval topology is also compact, and this

(€)= (h): lim sup F is the greatest S-limit
before, S-convergence coincides with conver

(B)=>(): See [15].

(D= (): See above.

()= (e): Apply the implication
element. Hence every finite and ever
A is complete. w

< T For the converse inclusion, see [15].
compact topology TV. Thus the coarser
implies that 4 is complete,

of any filter F on 4, and as we have seen
gence in the topology o(d)=T.

(d)_-.'(a). By compactness, 4 must have a least
Y up-directed subset has a join, and consequently
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There are two well-known and related categorical duality theories for bounded
distributive lattices, both extending the classical duality between Boolean lattices and
Boolean spaces (see [23]). One is the Stone duality [24] and the other the Priestley dua-
lity [21]. In both cases, the categorical dual of a bounded distributive lattice A is
a topological space whose underlying set is the “spectrum”, i.e. the collection of all prime
ideals of A.

The topology of the Stone dual is called the spectral topology or hull-kernel
topology. It is obtained by relativizing the lower topology on the algebraic lattice I(4)
of all ideals, which in turn is the trace of the lower topology on the power set
P(A). The spectrum is meet-dense in I{4), so the hull-kernel topology is isomorphic
to I(A4). Up to homeomorphism, the Stone spaces (alias spectral spaces) arising
in this way are precisely those compact (strongly) sober spaces whose compact open
sets form a base B which is closed under finite intersection. The initial distributive lattice
is then recognized from its Stone dual as an isomorphic copy of B (for details,
see [16]).

The Priestley topology is that inherited from the Lawson topology on I (A); it is the
join of the Stone topologies of A and A. Since it “forgets™ the given order on 4,
a Priestley space is to be understood as an ordered topological space, where the order
relation on the spectrum is set inclusion. The Priestley spaces arising in this fashion are,
up to isomorphism, the compact totally order-disconnected spaces. The collection of all
clopen lower sets is isomorphic to the initial lattice 4, and that of all open lower sets is
simply the Stone topology. Of course, each Priestley space is Hausdorff and zero-
dimensional. The direct passage between Stone spaces and Priestley spaces is supplied
by associating to the Stone topology its patch topology. (For a survey, see [21])

Summarizing previous results and definitions, we are now in a position to give
some useful characterizations of consistent topologies with minimal base.

2.5. THEOREM. The following statements are equivalent for a topology T on a
lattice A:

(a) A4 is algebraic, and T= c(A).

(b) T is consistent with the order on A, has a minimal base, and A is complete.

(c) T is a compatible C-topology on A, and (A, T) is a Stone space.

(d) Tis a compatible C-topology on A, and (A, T") is a Priestley space.

Proof. (a) = (b): The principal dual ideals generated by compact elements form the
least base of g(4).

(b)=>(c): A minimal base consists of open cores, and these are compact. Moreover,
by compatibility of T, the base of all open cores is closed under finite intersection
(because A is complete). Furthermore, the compact open sets are precisely the finite
unions of open cores; consequently, they form another base closed under finite
intersection. By 2.4, T is sober.

(c)=(a): By 2.4, T must coincide with ¢(4). The open cores of ¢(A) are precisely
the principal dual ideals generated by compact elements of 4. Since each core [x) is the
intersection of open cores, it follows that each x4 is a join of compact elements. Also
by 2.4. 4 must be complete.

3 — Fundamenta Mathematicae 136.3
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The equivalence of (c) and (d) foilows from the aforementioned one-to-one
correspondence between Stone spaces and Priestley spaces, using the fact that TV is the
patch topology of T (see 2.3). m

The categorical duals of the spaces in 2.5 are described in [20].

The final result of this section shows that a compatible C-topology T on 4 is
uniquely determined by the patch topology TV (and the underlying order).

2.6. LEMMA. Let T be a compatible C-topology on A and T any topology on
A consisting of lower sets. Then T = (T v T)na(A). In particular, the TY-open upper sets
are precisely the T-open sets.

Proof. The inclusion T < (Tv T)na(4) is clear by compatibility of T. For the
other inclusion, assume U is an upper set which is open in Tv T For xe U, we find
yed, VeTand WeTwith xe V= [y) and xe[y)n W U. Since W is a lower set, it
must contain the point y; so ye[y)n W = U and therefore xe V< [y) & U. This shows
that U is T-open. m

3. Sets of positives in dual Heyting algebras. Throughout this section, A denotes
a dual Heyting algebra and P a set of positives in A. This simply means that P is a dual
ideal with /\P =0, and it is easy to see that in this case,

x=\/(x—P) = A\(x+P)
The map d: Ax A— A defined by

for all xeA.

d(x,y) =x—y
satisfies d(x, x) = 0 and the triangle inequality. Henceforth, d always denotes this special
type of “Brouwerian quasi-metric”. The symmetric difference d*(x, y) = (x— N+ (y—x)is
a well-known tool at least in the case of Boolean lattices (see [7] for example).
We denote the “Brouwerian” continuity space (4, d, 4, P) by Ap, its converse
(4, d*, A, P) by 4%, and its symmetrization (4, &, A, P) by 4% The defining
neighborhoods of the induced topologies are intervals. Indeed, from the equivalences

dx,y)<p<«x~p<y and d*x,))<p < y<x+p
we infer:

3.1. LemMA. If x€A and peP then _
Ny()=[x—p), N} =(x+p]

This together with 1.1 yields:

3.2. COROLLARY. Let xe A. Then:

(1) {[x—p): peP} is an open base Jor the T(Ap)-neighborhoods of x.

() {(x+p]: peP} is an open base for the T(A$)-neighborhoods of x.

() {[x—p, x+pl: peP} is a clopen base for the T (43)-neighborhoods of x.

3.3. LemMa. For any set P of positives in A:

and  Nj(x)=[x—p, x+p].

(1) Convergence in A, implies S-convergence.
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(2) Convergence in A} implies dual S-convergence.

(3) Convergence in A% implies O-convergence.

Proof. (1) If a filter F converges to x in A, then N,(x) = [x—p)eF for each peP, .
and the latter implies that F S-converges to x since x—P is an up-directed set with
join x. .

Using the equation x = A\ (x+P), we get (2) by a similar (but not entirely dual)
argument.

(3) is an immediate consequence of (1) and (2). =

Now we are in a position to establish the main properties of the three natural
topologies induced by the continuity spaces A, A% and A}:

3.4. THEOREM. For any set P of positives in a dual Heyting algebra A:

(1) T(4p) is a compact C-topology compatible with the order of A. Thus

a(d) = T(Ap) = a(A)

and {[x—p): xe A, peP} is the smallest base of T(4p).
(2) T(A¥) is a compact C-topology compatible with the dual order of A. Thus

o(d) € TP < a(d)

and {(x+p]: xe A, peP} = {(p]: peP} is the smallest base of T(A}).
(3) T(A}%) is a zero-dimensional Hausdorff topology on A with

Q(A) = T(4%) < P(4)

and {[x—p, x+p]: xeA, peP} is a clopen base for T(A}). Moreover, the ordered
topological space (A, T(Ai,)) is totally order-disconnected.

Proof. (1) Since the base in 3.2(1) consists of principal dual ideals, each
T (Ap)-open set is an upper set, i.e. T(4,) < a(A). Now compactness follows from the fact
that the only open upper set containing the least element is the entire space 4. From
2.1(1) and 3.3(1) we infer the inclusion o(4) < T(4,), whence v(4) = T(4p) € o(A).
Thus T(A4,) is compatible with the order of A. In other words, (x] is the closure and [x)
is the core of xe4 with respect to T(Ap). In particular, the base {[x—p): xe 4, pe P}
consists of open cores and is therefore contained in any other base of T(A4,).

(2) is shown analogously, noting that x+P < P for each xe 4.

(3) From 2.1(3) and 3.3 (3) we know that Q(4) = T(A3}). If x£ y then we find p e P
such that x y+p, so (y+p] is a lower set containing y but not x, and (y+p] is clopen
in T(A43). Thus T(43) is totally order-disconnected. w :

Using Lemma 2:6 and its dual, we see that the three topologies in question are
related as follows:

3.5. CorOLLARY. For any set P of positives in a dual Heyting algebra A:

CT(A5) =T(A) v T(4E), T4 =T} na(d), T(4}) = T(4p)na(d).

It is worth mentioning that the set of positives, P, is uniquely determined by T (A¥)
but not by T(A4,). Also notice that in contrast to T(A4,) and T(A$), the topology T (4%)
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has no minimal base unless it is discrete. The following diagram summarizes the
positions of these topologies among other order-related topologies:

/PiA)
al4) T145) \aM)

Tiag) 214l Tlany

T‘APJ Bl4)
A TN
alA) \ \t(A) —
MA)< ~—
{ZJ,A}/

Ti4})
)
b
v A)

The maximal choice P =4 (which is certainly a set of positives) leads to the
corresponding maximal topologies: T(dp) = a(A), T(4}) = a(d), T(4}) = P(A). This
shows that in general, T(4$) is not compact, and it is one of our main purposes to find
necessary and sufficient conditions under which it will be compact. In Section 4, we shall
answer this and the question when the lower extremes are attained, ie. when:
I:Tl(;],,) = o(4), T(4}) = o(4), T(4$) = Q(A). For related work on continuous posets, see

The following results on the continuity of the lattice operations in these topologies
are probably well known (see e.g. [18]):

3.6. LEMMA. (4, T(4)) and (4, T(A})) are topological lattices, and (4, T(4p) is
a topological Heyting algebra. In fact, the lattice operations are uniformly continuous with
respect to d, d*, &, and the relative pseudo-complementation is uniformly continuous with
respect to d°. .

Proof Use the following three inequalities:

@ XY= +y) < (x—p)+'~y),

since x+x' < y+(x—y)+y +(x —y);

@ xx'=yy < (x=y)+x'—)),

since xx' < (x—y)+y+ 0 ~y) (=) +Y +(x =) = (=) + ('~ ) + yy's
3 (e=x)=(y=y) < (x =y + (' ~x),

since x < Y +(x—¥) < X+ —x)+(x =)+ (=), »

Cauchy nets in symmetric continuity spaces are defined as expected: A net (e iéI)

is Cauchy iff for each pe P there is an ie I such that if J, k = ithen d(x), x,) < p. Cauchy

nets and limits are easily characterized in A$:
3.7. Lemma. For any peP:

Ex,)<p i x+p=y+p.

Thus (x;: iel) is a Cauchy net in A} iff for all peP there is an iel such that
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X;+p = x;+p for j =i (ie. each net (x;+p) is eventually constant). Similarly, (x;: iel)
converges to x€ A in A iff for all pe P there is an iel such that x+p = x;+p for j 2 i.

Since d°(x, y) = 0 implies x—y = y—x = 0, hence x = y, the symmetric continuity
space Ap is always separated, and so is the corresponding uniformity U(A4}). The
following result relates the completeness of the uniform space (4, U( $)) to the lattice
completeness of A.

3.8. THEOREM. Let A be a coframe and P a set of positives in A. Then the uniform
space (4, U(4})) is separated and complete.

Proof. If (x;: iel) is a Cauchy net, 3.7 provides for each pe P an index i(p) such
that Xy, +p = x;+p whenever j > i(p). Let x = A{xi,+p: peP}; we show that (x;)
converges to x by demonstrating that x+g = x;,+4 for all g P and then applying 3.7.
By the infinite distributive law, we have x+gq = A{xy,+p+4: peP} < xyy+g. On
the other hand, for each pe P, we may choose a jeI with j = i(p) and j > i(q) to obtain
Xigp+4q = X; 49 < x;+p+q = X +p+g, whence xiy+q < A{xin+p+4q: peP}
=x+q. =

We conclude this section with the remark that completeness of the lattice A is not
necessary for completeness of the uniform space (4, U(4})). We have already mentioned
that the choice P = A leads to discrete uniform spaces, and these are certainly complete.
Consider, for example, the rational chain 4 = {41/n: ne N}. Being a bounded chain, it
is a dual Heyting algebra, but, of course, it is not complete. However, the uniform space
(4, U(4%) is complete, and T(4%) = 1(4) = Q(4) = P(A).

4. When are the associated topologies minimal? For the answer to this question, let
us consider various classes of Heyting algebras. Some of them will serve as sources for
sets of positives.

HA: dual Heyting algebras,

HC: dual Heyting algebras in which all elements are compact,

HC: dual Heyting algebras in which all elements are cocompact,

HH: dual Heyting algebras in which all elements are hypercompact,
HH: dual Heyting algebras in which all elements are hypercocompact,
CF: coframes,

AC: algebraic coframes,

CC: coframes with ACC = coframes in which all elements are compact,
CC: coframes with DCC = coframes in which all elements are cocompact,
CH: coframes in which all elements are hypercompact,

CH: coframes in which all elements are hypercocompact,

FC: frames with DCC (these are also coframes),

FD: finite distributive lattices (these are both frames and coframes).

From 1.2 and 1.4 we infer:
41. LemMa. CC = CH, F€ < CH = CC and FC < AC.
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Hence the above classes of Heyting algebras are ordered by inclusion according to the
Sfollowing diagram:

/HA\
1A T
il - cc AL cc ;
~ cc - >FL‘ /cﬁ
Fo

Notice also that FD = CCnCC.
By a strong homomorphism between lattices 4 and B, we mean a map f from 4 into
B which has both a lower adjoint g: B—A and an upper adjoint h: B— 4, ie.

fl@zb < azgb) and f(a)<b < a<hd)
(cf. [9, 0-3]). Notice that a strong homomorphism preserves all existing joins and meets,
and conversely, every complete homomorphism between complete lattices is strong. An

easy verification shows that the previously introduced classes of Heyting algebras have
the following useful closure properties: A

42. LemMA. Let K be any of the classes in Diagram 4.1. Then:
(1) K is closed under the formation of finite products. .

(2) If a bounded lattice A is strongly embedded in some BeK then A also belongs
to K.

(3) If A is in K then so is every interval of A.
(4) X is closed under images of strong homomorphisms.

Given a subclass K of HA and AeHA4, let K, denote the set of all p€ A such that
the principal dual ideal [p) belongs to K.

4.3. LemMA. Suppose K satisfies 4.2(1)~(3). Then K 4 I8 a dual ideal, .

Proof If [p)isin K then so is [) for each r & [p), by (3). Hence K 4 is an upper set. If
p and g belong to K, then so does p-g, since the embedding f: [p-¢)—[p) x [g) with
f@) =(@+p,r+q) is a strong homomorphism with upper adjoint

B[ —=[pa), hix,y)=xy

and lower adjoint

9: x[D->[p'a)  g(x, y) = xy+E—p)+(y—¢g). «

Denoting the class of all coframes with cocompact least element by CC®, we see
that for a coframe A4, CCY, is the set of all cocompact elements of 4. Consequently, CC5
must be contained in any set of positives, and on the other hand, we have €€, = CC:,.
Furthermore, CC¢ is always closed under finitary meets, but it need not be a dual ideal.
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44. ExampLes. In each of the subsequent four examples, 4 is the only set of
positives.

(1) In the following product 4 of two complete chains, cC,, is properly contained
in CCY, and the latter fails to be an upper set:

A={0,1}x({0, u{i+1i/m: nz2})=CC,,
CCy= A\{(0, ), (1, 1)},
FD, = CC, = CC){(0, 0), (1, 0)}.

(2) If we adjoin a greatest element co to the product {0, 1} x », we obtain a coframe
which satisfies the DCC but is not a frame. In this example:

CH,=CC,=CCy=4, FC,={l}xw)u{w}, FD,=CC, = {o}.

(3) Again adjoining a greatest element co, this time to the collection of all finite
subsets of an infinite set, another coframe with DCC is obtained. In this example,
CC, = A, while CH, =FC,=FD, = {w0)}.

(4) If a coframe is well-partially ordered then it belongs to CH. The following
example shows that the converse is not true. Let T be a countable binary tree and
A= {|F: F is a finite subset of T} U{T}. Then A is a coframe satisfying the DCC and
CH, = A. But neither T nor A are well-partially ordered.

We now describe some of the ideals K, in terms of suitable intrinsic topologies.

4.5. LEMMA. Let A be a dual Heyting algebra and pe A.

(1) peHC, iff for each x€A, [x—p)ec(A), ie. x—p is compact.

(2) peHC, iff for each xe A, (x+pleo(d), ie. x+p is cocompact.

(3) peHH , iff for each xe A, [x—p)ev(d), i.e. x—p is hypercompact.

(4) peHH, iff for each xe A, (x+plev(d), ie. x+p is hypercocompact.

(5) peHC,nHC  iff for each xe A, [x—p, x+p]€B(A), respectively, Q(A).

Proof. (1) pe HC, means that each element of [p) is compact in [p). If Y = 4 is
up-directed and x—p < \/¥; then x+p < \/Y+p =\/(¥+p), so for some yeY, we
must have x+p < y+p, ie. x—p < y. This shows that x—p is compact, or equivalently,
that [x— p) € a(4). Conversely, if this bolds for all xe 4, and Y is an up-directed subset
of [p) with g < \/Y for some ge[p), then \/Ye[g—p)es(4). Thus we find some ye Y
with g—p <y, ie. g<y+p=y. Hence peHC,.

The proof of (2) is similar to that of (1). .

(3) If peHH, then for each xed, there is a finite set F<{p) such that
[x+p) = [p)\|F. For arbitrary ye 4, one obtains the following equivalences:

X—p<y < XK y+p < X+p<y+p
< y+pgz for all zeF <> yeA\|F.

Conversely, assume x— p is hypercompact, ie. [x—p)ev(4) for all xe 4. For g & [p),
choose a finite set F with [g—p) = A\lF. Then E = Fn[p) is a finite subset of
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[p), and for arbitrary ye[p), one obtains the following equivalences:

velp\[g) < gLy < gk y+p = q—p&ky

< y<z for some zeF < ye[p)n]E.

Hence each ge[p) is hypercompact in [p).
[4] Suppose peHH,, xc 4 and q = x+ p. Then [p)\(¢] = 1E for some finite set
E c[p). Thus F = E—p is finite, too, and (q] = A\TFev(d); indeed, we have:

YeA\TF <> e—pgy for ecE <> ek y+p for ecE

< y+pe[P\TE =[p, q] « y<q.

Conversely, if (g]ev(d) for g = x+p then there is a finite F < 4 such that
g€ A\TF < (q], and since A\1F is a lower set, this implies (4] = A\}F. Hence E = F + p
is a finite subset of [p) with [p, 4] = [P\1E. Thus peHH,.

(5) If peHC,nHC, then by (1) and (2, [x—p,x+plec(d)vo(d)
= B(4) = Q(A). Conversely, if [x—p, x+p] belongs to Q(A) for all x€ A, then similar
arguments as before show that each up-directed subset of [p) possessing a join has
a greatest element and that each down-directed subset of [p) possessing a meet has
a least element. Hence all elements of [p) are compact and cocompact in [p). w

Now we are prepared to answer the question in the title of this section. Combining
3.4 with 4.5, we arrive at

4.6. THEOREM. Let A be any dual Heyting algebra and P a set of positives.

(1) T(Ap) = o(A) iff each element of P is compact in P.

(D) T(4}) = o(A) iff each element of P is cocompact in P.

(3) T(4p) = v(A) iff each element of P is hypercompact in P.

@) T(4%) =v(A) iff each element of P is hypercocompact in P.

(5) T(43) = Q(A) iff each element of P is compact and cocompact in P.

For complete lattices, the above results can be improved essentially. Therefore we
shall assume from now -on that 4 is a coframe.

4.7. THEOREM. The following statements about a set P of positives in a coframe A are
equivalent:

(a) P satisfies the ACC.

(b) T(4p) = v(A).

(©) T(4p) = o(4).

(d) T(4p) is (strongly) sober.

(e) T(Ap)¥ is compact.

() (4, T(4p) is a Stone space.

(8) S-convergence on A coincides with convergence in Ap.

(b) Each monotone increasing net in A is Cauchy (convergent) in A45.

(1) Each monotone increasing net in A converges to its supremum in Ap,

@ (A T(4p)¥) is a Priestley space. ’
Each of these conditions implies that A is algebraic.
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Proof. (a)<(b)<(c): Apply I4 and 4.6(1).

(c)=>(d) <> (e) = (f) < (g) <> (i) <> (j): These equivalences follow from 2.4, 2.5 and
3.4(1).

Clearly (i) implies (h).

(h)=>(a): If Yis an up-directed subset of P then it is a Cauchy net in 4%, and by 3.7,
it must have a greatest element. m

Next we establish some conditions under which there is a set of positives with the
properties discussed in 4.7:

4.8. ProPOSITION. The following statements on a coframe A are equivalent:

(a) A is isomorphic to a(Q) for some poset Q whose principal ideals are well-partially
ordered sets. .

(b) A (respectively, A) is algebraic and CC% < CC,.

© ACC,=0.

(d) CC, is the greatest set of positives satisfying the ACC.

(e) 1CC% is the smallest set of positives satisfying the ACC.

() A has a set of positives satisfying the ACC.

Proof. (a)= (b): By 1.2, 4 and 4 are both algebraic. Each p e A which corresponds
to the complement of a principal ideal (g] in Q under the given isomorphism between
A and a(Q), belongs to CC ;. In fact, [p) is isomorphic to the collection of all upper sets
in Q containing Q\(q], hence dually isomorphic to that of all lower sets in (g]. Since (q]
is well-partially ordered, the latter satisfies the DCC, so [p) satisfies the ACC. Also note
that the sets Q\|F for finite F < @ are precisely the cocompact members of «(Q). Using
the equation Q\F = (}{Q\(g]: g&F} and the fact the CC , is closed under finite meets,
we finally obtain CC} < CC,.

(b)=(c): If 4 is an algebraic coframe then by 12 it is dually algebraic; thus
NCC5 =0, a fortiori ACC, =0 (as CC3 = CCy).

()= (d): By 4.3, CC,, is a dual ideal, thus by (c), a set of positives. Clearly, any set
of positives satisfying the ACC must be contained in CC,.

(b) = (e): Again, ACC% = 0 and CC% = CC , imply that TCC} is the smallest set of
positives satisfying the ACC.

The implications (d)=-(), (¢)=>(f) and (f)=>(c) are clear.

(©) = (a): Since CC, is a dual ideal with infimum 0, we have CC3 = CC,, and
x = x—/ACC, =\/(x~CC,) for each xe 4. By 4.5(1), x—CC, consists of compact
elements. Thus A is algebraic, and 1.2 yields an isomorphism between 4 and some upper
set lattice o(Q). Now an argument similar to that for (a) = (b), using the inclusion
CC% =.CC,,, shows that each principal ideal of @ must be well-partially ordered. m

In contrast to 4.7, the equation T(4¥) = v(d) is not equivalent to T(4¥)= o(A)
without additional assumptions on 4. The coframe from 4.4 (3) satisfies the~DCC, so the
only set of positives is A. In this example, T(4%) = o(d) = a(A), while v(4) is properly
coarser, as {@} ¢v(d).

49, Tarorem. The following statements on a set P of positives in a coframe A are
equivalent:
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(a) P satisfies the local DCC.

(b} P=CCj5.

(©) T(4p) = o(d).

(d) T(43) is (strongly) sober.

(&) T(A¥)Y is.compact.

(O (4, T(4%) is a Stone space.

(g) S-convergence on A coincides with convergence in A¥.

(h) Each monotone decreasing net in A is Cauchy (convergent) in A*.
() Each monotone decreasing net in A converges to its infimum in A¥.
G) (4, T(A$)v) is a Priestley space. :

The proof of this theorem is quite similar (but not dual!) to that of 4.7 and refers to
3.4(2) and 4.6(2). :
Using the fact that CC, is always a dual ideal (see 4.3), we arrive at

4.10. CoroLLARY. The following statements on a coframe A are equivalent:

(2) A is an algebraic lattice whose compact elements form an ideal,
() ACC, =5

() CC, is the unique set P of positives with T(A}) = o(A).

(d) There is a set P of positives with T{A}) = o(A).

A combination of 34(2), 4.3 and 4.6(4) yields:

4.11. THEOREM. A coftame A has a set P of positives with T(A$) = v(d) iff its
hypercocompact elements form a meet-dense dual ideal, and in this case P = CH , is the only
such set of positives. .

If 4 is a well-partially ordered coframe then we certainly have 4 = CH,, and
consequently T(4%) = v(4). However, this equation may also hold in the absence of
a well-partial ordering, as Example 4.4(4) shows.

Now we can prove:

4.12. THEOREM. For a set P of positives in a coframe A, the following conditions are
equivalent: . i

(a) P=FC,.

{b) T(A¥) = v(A), and A is algebraic.

(©) T(A¥) =0(A), and A is algebraic.
Furthermore, in (b) and (), “algebraic” can be replaced by “a frame”, to obtain other
equivalent statements.

Proof. (a)=>(b): Since FC, < CH, < CCS < P for any set P of positives, (a)
implies T(4%) = v(d), by 4.11. In order to show that 4 is algebraic, we shall use 1.2
twice. For each pe P = FC,, [p) is a frame satisfying the DCC, hence dually algebraic.
Now we infer from 1.2 that sach element of [p) is a meet of completely meet-irreducibles
in [p) (thus in A). Since P is meet-dense in 4, we see that each element of 4 is a meet of
completely meet-irreducibles, and again by 1.2, it follows that A is algebraic.

(b)=>(¢): Use the inclusion v(d) < o(A) < T(4}).
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(c)=>(a): An algebraic coframe is also a frame, by 1.2. If 4 is a frame with
T(A¥) = o(A) then for each pe P, [p) is strongly embedded in A, thus a frame, too, and
by 4.9, [p) satisfies the DCC. Hence P = FC,, and the other inclusion is always true. u

4.13. COROLLARY. 4 coframe A is algebraic and admits a set P of positives with
T(A¥) = v(d) iff /\FC =0 (in which case FC, is the only such set of positives).

Example 4.4(2) gives a non-algebraic coframe 4 for which T(4%) = v(4) = a(A).

Finally, we gather a list of topological and convergence-theoretic equivalents of the
equation P = FD ,. ‘

.
4.14. THEOREM. For a set P of positives in a coframe A, the following statements are
equivalent: ‘
(a) P is locally finite.
(b) P=FD,.
() T(Ap) = v(4) and T(A¥) = o(d).
(d) T(4p) = o(4) and T(4¥) = a(4).
(€) T(A3) = 1(A).
() T(A4p)-is compact.
(g) O-convergence on A coincides with convergence in Ap.
(h) Each monotone increasing or decreasing net in A is Cauchy (convergent) in Ap.
(i) U(A}) is totally bounded.
() (4, T(4p) is a Priestley space.
Moreover, in (€), the interval topology 1(A) may be replaced by any other topology between
1(A) and Q(A), e.g. by A(A) or B(A).
Each of these conditions implies that A is algebraic, and that T(4%) is the paich
topology of T(Ap) and also of T(AF).

Proof. (a)<>(b)<(c)<>(d) < (h): Combine 4.7 with 4.9 and 4.12, observing that
P is locally finite iff it satisfies both local chain conditions.

By 3.4(3), (e) implies T(4} = 2(4), which in turn implies (c), by 4.6.

(d)=(g): Use the implications (¢)=(g) in 4.7 and 4.9, observing that a filter
econverges to x in Aj iff it converges to x in 4, and in A4}

(2) = (h): Every monotone net in a complete lattice is O-convergent.

(¢)=(¢): This is immediate from the equation T(A}) = T(4p)v T(4F).

(¢)=>(f): The interval topology is compact on any complete lattice.

(<> (i): T(4%) is the topology induced by U(4}), and any uniformity inducing
a compact topology is totally bounded.

()< (: By 3.4(3), (4, T(4$)) is totally order-disconnected.

() = (a): Total boundedness of U(A}) means that for each peP ther is a finite
FcA such that A=|J{[x—p,x+pl: xeF} (see 3.1). It follows that
[p) = {x+p: xeF} is finite.

If condition (c) is fulfilled then by 4.7, A is algebraic, and from 3.4(1), (2)and 2.3, we
infer that T(43) = T(4,) v 0(d) = v(d) v T(4$) is the patch topology of T(Ay) and of
T(A}). w
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4,15, COROLLARY. The following statements on a coframe A are equivalent:

(ay AFD,=0. :

(b) P = FD, is the unique set P of positives in A such that the equivalent conditions
in 4.14 are fulfilled. ‘

(¢) There is a set P of positives with T(A3) = 1(A)(A(A), B(4), 2(4)).

These conditions hold whenever A is a product of finite distributive lattices, e.g.,
a power set. Hence our results apply to the situation discussed in [12].

4.16. COROLLARY. Let A be a product of an arbitrary number of finite distributive
lattices. Then FD, = {peA: [p) is finite} is the only set of positives such that
T(4;) = o(A), T(A}) = o(A), and T(45) = 1(d) = Q(A).
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