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End-extending models of I4,+exp+ BX,
by

Zofia Adamowicz (Warszawa)

Abstract. Given a suitable theory T we characterize models of I4,+exp+BZ; having
a proper end-extension to a model of T.

Introduction. We consider the language of arithmetic where + and - are treated as
relations. We consider the following theories T: 14, I4,+exp, I14,+Q, where Q, is the
axiom introduced in [WP II] or Id,+"F, is total” where « < &, and F, is the ath
function in the Wainer hierarchy. We assume that T is presented in the form:
I4,+Vx3y B(x, y) where & is a 4, formula.

We prove the following theorem:

TueoReM. There is a II, formula @(x) such that for every neN, T+expto(n)
(n denotes the appropriate numeral) and such that for every non-standard model M of
I4,+exp+BZ, which is cofinal with o the following conditions are equivalent:

(1) M has a proper end-extension to a model of T.

(2) M has a proper end-extension to a model of T+BZ,.

(3) There is a non-standard r in M such that M= ().

The problem of the existence of the formula ¢ and of the equivalence of (1)~3) was
considered in [WP I] for the theory T= I4, and for countable models M of 14, + BZ.
The infinitary notion of “fullness” is an attermpt to find a counterpart of ¢ in that case
and some partial results towards the equivalence of (1)~(3) are proved in that paper. In
our case, where we consider ground models M satisfying the exp axiom, we are able to
characterize their extendability to a model of T in a very regular way — this is the
content of the theorem. The same regularity occurs if instead of exp we assume that
a certain strong form of the bounded Matiyasevich conjecture holds in M (see the
author’s forthcoming paper).

The technique of the paper is related to that of [WP I] but it is in some aspects
different. For instance it enables us to deal with models cofinal with  instead of with
countable ones. On the other hand, it cannot be directly applied to models not satisfying
exp. For models satisfying exp it can be treated as an alternative technique to that of
[WP IJ. Similar ideas were developed also in [WP II] [w], [K I], [K II].

The sense of the theorem is.a bit different in the case where T is one of the theories
I4,+Q, or I4, itself than in the case where T extends Id,--exp.
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In the first case the conditions (1}-(3) are just true for any model M satisfying the
assumptions (see §2). Thus we get an extension of the Wilkie-Paris theorem from the
case of countable M to the case of M cofinal with w.

In the second case we get a criterion for a model to be extendable. It can be shown
that there is a model which satisfies none of (1)-(3) (see. [WP IJ).

The most difficult part of the proof of our theorem is the construction of ¢ and the
proof of (3)=>(2). Let us sketch the proof. We extend our language by a new constant a.
Let ¢(x) be the formula Con(7T,) where Con is a certain semantical notion of
consistency described in §1 (related to “Tableaux consistency” studied in [WP II]) and
T, is the theory consisting of:

@) The first x axioms of a suitable axiomatization of 14,

(ii) The axiom y “y is the value of the xth iteration of the function defined by @

%

at a”.

Then ¢(n) is very much related to the sentence Con(T, n) introduced in [WP II].
We show that it is provable in T+exp. The rest of the proof is in showing that if
M = ¢(r) for a non-standard r then a version of the arithmetized completeness theorem
holds in M and there is a model M’ 2 M with M <aeM' such that the rth iteration of

the function determined by @ at a exists in M’ (e.g. 22 , r times, if & defines
exponentiation) and M’ = I4,. But then the initial segment M"” of M’ defined by
2

standard iterations of & at a (e.g. by 22
T+BZ,.

The proof of the theorem is given in §1. .

Our main technical notion is the notion of I-closure of a number a w.r.t. a theory
T in a model M of PA™. This notion is related to Herbrand’s theorem. Let le N. Let
M=PA™ and let a be an element of M. An I-closure of a w.r.t. T in M is a finite
approximation to a Skolem hull of ain M w.r.t. a certain family of Skolem functions for
the axioms of T and for their subformulas which is ordered in a certain very special way.
We close a under the Skolem functions ! times and order the set so obtained in such
a way that given the index of an element in this ordering we can easily decode which
subformula of which axiom the element satisfies. For technical reasons we also include
a finite initial segment of M into the Skolem closure. The following simple examples are
to explain how we order the closures. Later we give a precise general definition.

Assume that T' consists of just one sentence of the form Vx3y (x, y) where \ is
an open formula. Let M = PA ™ and let f denote a Skolem function (possibly partial) for

. dy ¥ in M. Let a be.an element of M.

We define the O-closure of a w.r.t. T in M to be @, the 1-closure to be <0, a), the
2-closure to be 0, 4, 1, £(0), 2, f ()}, the 3-closure to be <0, a, 1, £(0), 2, f(a), 3,1(0),
4,7(@) 5 (1), 6,F(f(O), 7.£(2), 8 f(f(a)). If the appropriate values of f are not
defined in M then the corresponding closure does not exist.

In general, if {x,, ..., x,.) is the I-closure of a in M w.r.t. T then the (I 4 1)-closure
is the sequence

<X31, teey szs L’f(xl)’ L+13f(x2): AR
provided that the appropriate values of f exist.

, h times, for ne N) is the required model of

L+2L -1, f (%,
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Thus, to build the l-closure we close {a} under f and the operation of taking
consecutive elements of M (0, 1, 2, ...) (I—1) times. Then we order the set so obtained by
putting the consecutive numbers 0, 1,2, ... at odd-numbered places and the appropriate
values of f at even-numbered places.

It is not hard to see what is the number L(l) — the half of the length of any
I-closure — in this case. Indeed, we have

LO) =0, L()=1, L{+1)=L{)+2L{)

The appropriate version of the Herbrand theorem in this case can be formulated as
follows: PA™ - 3xVy Ty (x, y) iff there is an IeN such that for every model M of
PA~ and every a in M there is no I-closure of a wrt. T in M.

If in a model M we can make an I-closure of a for every le N and if those closures
extend one another then the union of those closures is a model of T.

The same idea works for an arbitrary theory T. Before considering the general case,
let us consider another example. Assume that T consists of two sentences:

for every I.

@31 Vx Ay, Y, 3y, ¥y (xy, yy5 %2, y,)  and
@2 Vxy Ay, VX, Ay, Yo (X, ¥, X3, ¥3)
where ¥, ¥, are open.

Let M be a model of PA™, ae M, and assume that there are (partial) functions
fis for M—M and [, f;: MxM—M such that

M=V, 3y, ¥y(xq, fi060), X2, ¥2)s
M= Vx, 3y, Y,(xy, f5(xy), X2, ¥2)
for every x, for which f;, f, are defined, and
M=y (xy, f10en)s %0, fi(g, %),
M= (xs, f01), X, folxa, X2)

whenever f, f, fi, f, are defined.
Then the O-closure of a w.r.t. Tin M is @, the 1-closure is <0, a), the 2-closure is

<0, a, 1, £1(0), 2, f1(a), 3, £3(0), 4, /2(a)>,
the 3-closure is
<0 a, 1, £,(0), 2, /1(a), 3, £,(0), 4, fo(a),
5,£,00), 6,£,(a), ..., 13, /,(4), 14, £, (1>(a),
15, £,(0), 16, £,(@), ..., 23, 1,(4), 24, £,(f,(®)),
25,7,(0, 0), 26, 7.0, @), 27, £,(0, 1), 28, /1 (0, £,(0), -..)

To build the 3-closure we first list the 2-closure; then we keep putting the
consecutive numbers at odd-numbered places, and at even-numbered ones we first put
values of f; at consecutive terms of the 2-closure; then we put values of f, at
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those terms; thén we put the values of f, at all pairs {x,, x;> where x; is the ith term of
the 1-closure and x; is the jth term of the 2-closuxe and the pairs (i, j> are ordered
lexicographically; then we put the values of f, at all pairs {x;, x;> such as before.
Similarly we pass from the I-closure to the (I+ 1)-closure.

In this case f;, /; and f,, f, are Skolem functions for the axioms ¢, and ¢, and for
their subformulas, respectively. If those functions are total in M then we can build the
I-closure for every le N and the union of all those closures is the Skolem hull of {a} and
a collection of consecutive numbers in M. It follows that such a union is a model of T.

The I-closure is the appropriate “(I— 1)-fold” Skolem hull which is ordered in such
a way that given the index i of a term x; of the l-closure {x,, ..., x,;> we can tell what
role x; plays in the hull. In particular, there are recursive functions g,(l, 1, h), g,(, 2, h),
g,(L 1, hy, hy), g5(L, 2, hy, hy) such that if & is an index of a term of the I-closure and
hy, h, are indexes of terms of the (/—1)-closure and the l-closure respectively then:

Xgarm = f1(x) is the g,(], 1, h)th term of the (I+1)-closure,

Yo,z = Jo(x;) is the gy(], 2, Wth term of the (I+1)-closure,

Xoat, Loty =J1 ns Xpy) 18 the g,(L, 1, by, hy)th term of the (/+1)-closure,

Xgatzohiha) = J2Oonys Xy,) is the g5(L 2, hy, hy)th term of the (I+1)-closure.

The exact form of these functions is not very important.

In this case the numbers L({) satisfy

L(0)=0, L()=1,
L{+1) = L{)+2-2L{)+2-2L()-2L(I—1) for I = 1.
Moreover, g, .gz are the following functions:
9,0, 1, ) = 2(L(1)+h),
g:(, 2, ) = 2(L(1)+2L() +h),
g2(, 1, hy, hy) = 2AL()+2-2L(1)+<hy, hy)),
g2(L 2, by, hy) = 2(L()+2-2L(1) +2L(1—1)- 2L +<hy, hy D)),

where <hy, h,>; is the number of the pair <h,, h,) in the lexicographical ordering of
pairs of numbers (hy, h,> such that h; < 2L(I—1), h, < 2L()).

Now we pass to the general case. We define the function L(l).and the functions
‘ gL, j, hy, ..., h) for an arbitrary theory T. The idea has been described above and the
definitions are technical.

Thus the reader may have a quick look at the next section and pass to §1.

P G g

§0. DermiTION 0.1. Let ¢(x) be of the form

Vyi3zy ... Yy 3z, 0(x, y1, 2y, .0y Yo 20)

where 6 is open. Later we assume about any formula that it is in this form.
We define a derivative of ¢ in the following way: ¢'(x, y,, z,) is

VY, 3z, . VY32, B(X, Y1, 2y, Yo Zgs ey Yis 20
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Then ¢"(x, ¥y, 2y, Y3, Z5) is )
Vys3zy ... Yy, 3z, 0(x, V1, 29y -5 Yio Za)-
Generally, we let @(x, y,, z,, ..., ¥;» 2) be
Vyie132ieq ... Yy 32, 0(x, ¥y, 21, ooy Vi 2) for i<k
and
00X, ¥4, 21, ooy Yis Z0&Zge1 = ... =2,=0 for iz k.
DeriNiTION 0.2, Let the function L(J) be defined as:
LO)=0, L(1)=1, '

LU+1) =L+ .Y (+1=s)-2L{)}2L0—1)...2L(+1—3)

1ss<l

in the case where we are dealing with an infinite theory

T={o1,02,)
and let
L0O)=0, L()=1,
Li+1)=L0+ Y n2L0)2L(~-1)....2L(+1-5)
1€s<k
for a finite theory T = {®y, ¢s, ..., ¢,} where every ¢, has at most k existential
quantifiers.

Moreover, we let
a5, j, Bys ooy B = 2(LO)+F2LA+(—1)- 2L -1)-2L{1)
+(—2)-2L(I—2)-2L{~1)- 2L+ ... +{1+1—(s— 1)-2L(I1+1—(s—1))...-2L()
+(j—1)2L(+1—s) ... 2L+ <hys - s hyy)
in the first case and
a5y s Bys ooy B) = 2(L)+n-2L0)+n 2L~ 1) 2L(Y+ n-2L(1—2)-2L(I—1)-2L{)
+ oo 2L(1+ 1= (5= 1)) 2L+ G~ 1)-2L(I+1—s) ... 2L+ <hy, oy k)

in the second case, where h, < 2L(I+1—5), ..., hy<2L(Jand 1 <5< lin the first case

and 1 < s< k in the second case,

DermimioN 0.3. Let Mi=PA~, ae M. Let leN. A sequence {x;, ..., X210 of

elements of M is called an l-closure of a wat. T in M if
(1) x1=0) xz=a, ) . . .
@ if 1<s<l(or s<kif Tis finite), j<I+1—s (or j<n if T is ﬁmte),
J<iy iy <. <iy <l by 2L Gy, By < 2LG), ., By < 2L(E), then
M= @ (%45 Xouis,iht) Xhas Xgatiaibibnds > Xhes Xoabnihsoraha):

(3) if g is odd then x, =h where g = 2h+1.
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Remark 0.1. If M is a model of T then for every /e N and every ae M there is an
I-closure of ¢ wrt. T in M.

Remark 0.2. If x*, x%, ...
of ain M wr.t. T and if

,x', ... are a l-closure, a 2-closure, ..., an I-closure, ...

xex*c...exe...

then (J,x' is a submodel of M which is a model of T.
We prove this remark similarly to the proof of the Claim in the proof of Lemma
13.

§1. In this section we prove the theorem.

Assume that T is given. We shall first reformulate it in the language with an
additional constant a.

Let &@,(x,)) be a 4, formula such that IdyVx,y [®,(x,y) =3y, ..., ¥,
(Blx, y)& B, y)&... &DB(Yy-1, Y,)&Y, = Y)].

In the case of the theories that we consider, @, defines the nth iteration of the
function in question, ie. of the exponential function or of the w,-function or of F,. If
T is 14, let us assume that & is the formula y = x2. .

Instead of the original theory T consider the following theory: The collection of IT,
axioms axiomatizing the 4, induction + the collection of axioms of the form
“y @,(a, y)” for meN + the collection of IT, axioms ensuring the existence of
products and sums: “Vy, y' Vz,z' ((dim(g, N&®,i(a V&2, z<y)»To,wgy
w=1z2&w= z+z’))” for meN. ‘

Let now T denote the new theory and let T, denote the collection of the first
n axioms of T — in any natural enumeration of T, T, contains the axioms of the second
and third group only for m < n.

Idea of the proof Assume that we have found the suitable formula ¢. The
hardest part of the proof is to construct an end-extension of M under the condition (3),
ie. to deduce (1) or (2) from (3).

We look for an extension M’ of M with the following property: there is an element
ae M\M and a sequence {x': le M} of I-closures of a in the sense of M’ w.r.t. T such
that M' = | J{x": le M}. The notion of I-closure easily generalizes to the case where T is
in the language with the constant a (we repeat the definitions requiring that g is
interpreted as a) and this notion can be formalized in any reasonable theory T — hence
we can speak about its non-standard version. .

To construct M’ we construct its complete diagram in M. Thus we choose in
M constants to denote every element of M’. Since M’ is going to consist of terms of
I-closures of a for le M and every such term has its index in M as a term of an l-closure,
it is most convenient to use as constants the indexes. Hence the number 2 is used as
a constant to denote a (as well as the constant a), the odd number 2h+1 is used as
a constant to denote the number h for he M and the number g,(, j, hy, ..., h,) for
_hy, ..., heM is to denote an element xeM’ satisfying in M’ the formula

()
0P (nys Xguttjiheds Xngs Xgalhibishays -+ s X X)
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where X, ..., X, are elements of M’ denoted by h,,...,h, and XgsWjha)s -+ »
Xgom1(ihnihs- ) aT€ clements of M’ denoted by g,(, j, hy), ..., gs—1(L Jo By, ..oy B 1)
respectively.

The diagram of M’ is comstructed in M piecewise. The pieces are called
preconditions. An M-long sequence of preconditions determines the whole diagram of
M. In preconditions we encode the information that the constant g,(l, j, h;, ..., by is to
denote an element of M’ with the above property — this implies that the constructed
model M’ is a model of T, that the interpretation of the constant 2 (and of ) is larger in
M’ than all elements of M, that the odd constants 2h+ 1 denote in M’ elements of M so
that 2h-+1 denotes h and finally that M’ is an end-extension of M.

We have the following definition for an arbitrary theory T:

DerviTION 1.1, Assume that the jth axiom of T is of the form

Vy, 3z, Y932 M\ @it (s, 215 o0 Vi 2)

mSmj

" where @, is atomic or negated atomic and u,; is the operation of choosing an

appropriate subsequence of length < 3.

Let xeM.

An x-precondition p is a function whose domain consists of all pairs {t, ¢) where ¢
is a sequence of length < 3 of numbers < x and ¢ is an atomic or negated atomic
formula in the language with the constant a with the number of free variables equal to
the length of t and p: domp—2 so that the following holds:

() Ift = {gy, g2, g3, ¢ does not contain g and g,, g,, g; are of the form 2k, +1,
2h,+1, 2hy +1 respectively, then p({t, @) = O iff @(hy, h,, h3) holds. Similarly for t of
length 2.

@) p(L2y, x =) =0.

(IlI) For any sequence s, J, iy, ---
2LG)<x, hy<2L(,), hy< 2L(3iy), -
P((umj(hn 91G1s Js B1)s Bay 922, s By B)s voes B, gslis o By oo B,
m < my, provided that p is defined for the pair in question.

(AV) p({{2h+1,2), x; < x,)) =0 if defined.
(V) I p({<g, 2h+1), x, <x,)) =0 then there is h' <h such that

p({Lg, 2 +1), x; = x39) = 0.

(VD) p(<t, @) =0 iff p(<t, T1p)) =1, where we identify 7 77¢ with ¢.
(VID) If p({<g1, 927> %y = X2)) =0 then

p(Cundg; >0, ) = p(u™{g2>", ©))

, g By, ..., hysuch that 1 <5, iy <i; <... <l
Lh<2L() i ¢f is open then
Qu)=0 for

if defined.

Comment on the definition. A precondition is supposed to be a fragment of th-e
atomic diagram of M". An x-precondition is supposed to contain a copy of the atomic
diagram of M up to x — a fragment of the atomic diagram of M. This is the reason why
we require an x-precondition to decide the atomic and negated atomic formulas of the
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form @(2h, +1, 2h,+1, 2h3+1) following their satisfaction in M by hy, h;, hs (con-
dition I), Condition II is to ensure that the constant 2 is interpreted as the constant a.
Condition III ensures that M’ is a model of T. Condition IV is to ensure that M < a.
Finally, condition V is to ensure that M < M'. Conditions VI and VII are natural

logical conditions. Condition VI states that a precondition, as a finite (in the sense of M)
theory, does not contain a contradiction. However, we are in fact interested in those
fragments of the atomic diagram of M’ which not only do not contain a contradiction
but are consistent in the sense of M. The semantical notion of the consistency of
a precondition in M is expressed by means of M-extendability of a precondition in the
following definition:

DermvITION 1.2. An x-precondition p is called arbitrarily extendable if
Vy>x 3q (g is a y-precondition and g 2 p).

An arbitrarily extendable precondition will be called a condition (following forcing
terminology) — this is the notion which is our main tool

Now we shall show how under a suitable assumption on M the construction of M’
can be carried out.

Assume that the empty set @ is a condition in M. Under this assumption we shall
show that there is an end-extension M’ of M which is a model of T. Here T is arbitrary
(recursive). The assumption is a version of semantical consistency of T in M. Later we
shall reformulate the assumption for our particular T defined at the beginning of this
section in terms of the condition (3) of the theorem for a suitable formula ¢.

We need the following lemmas:

LemMa 1.1, Let p be an x-precondition which is a condition. Let z >
a z-precondition q such that q 2 p and q is again a condition.

LEMMA 1.2. Let x, < x, < ... be a sequence of elements of M cofinal with M. Then
there is a chain of conditions in M p, < p, < ... such that p, is an x;precondition.

x. Then there is

Lemma 13. If p,€p, €
a (proper) end-extension of M.

.. are as above then there is a model M' of T which is

Proof of Lemma 1.1 In this lemma we essentially use the fact that M= BZ,.
Consider the following easy observations.

Observation 1. There is a function f(x) which is provably total in 14, +exp and
such that every x-precondition is < f(x).
Indeed, for f we can take the function 27"

Observation 2. Assume that T is IA4y-provably recursive and identify T with
its 4, definition in M. Then the notion 8(x, p): “p is an x-precondition wrt T”is 4,
in M.
_ Observation 3. Let x < z < y, let p be an x-precondition, q a y-precondition and
¢ 2 p. Define g, as the restriction of q to those pairs (t, ¢ which belong to the domain
of a z-precondition. Then g,, is a z-precondition and p Q.S
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Now assume that p, z are given and satisfy the assumptions of the lemma. Let
v = 2%°, Suppose that there is no precondition q as in the conclusion of the lemma. Then
we have

Vg <v {(q is a z-precondition & g2p)=Iy >z

Ju (u=2*&Vr <u (r is not a y-precondition or ~I(r = 9)))}-

We can present the formula in curly brackets in a Z, form. By BX, we can find a w such
that for all ¢ < v the formula in {...} is bounded by w. We can assume that w is of the
form 2% for a y.

We shall show that there is no y-precondition extending p. So suppose that r is

a y-precondition, r 2 p. Con51der g=r,. Then p S g =r. But, by the choice of w,

W<w (Y 2z&t = 22" & there is no y'-precondition extending g).

We have y' < y. Now ry,. is a y'-precondition extending g, a contradiction. Thus p is
not arbitrarily extendable, which contradicts our assumptions and completes the proof.

Proof of Lemma 1.2, We just have to iterate the use of Lemma 1.1.

Proof of Lemma 1.3. We build a Henkin model for the theory
{o@): Zicw (p(<t, 3) = O)}.

For g, g’EM define the following e(]uivalence relation:

£ x,&p,(g, 475 X3 =x3)) = )

Let [4] be the equivalence class of g. Let the universe of M’ consist of classes [g] for
ge M. Let a = [2]. Define atomic relations in M’ as follows: [g,1+[g,] = [g5]in M iff
there is an i such that p,({{g1, 92> gap» X1 +X, = X3D) = 0. Similarly we define other
atomic relations. They are well defined in view of Condition VII of the definition of
a precondition.

Let us show that M'=T. Consider an axiom ¢; of T of the form

gr~g < diew (9.4

Vy, 3z,... Yy, 3z, /)(\ (p,,,j niV1s 215 -5 Vio ).
m<mj
By induction on ¢ < k we show
CLAIM. Whenever iy < iy <...<ig-g, By S2L(), by < 2L(i5), - he—e < 2L(k-)

then
5" ”([}h] [fh(lpla k)1, [hal, [92(izs Js hnh IS

vy [Me—sds /T By hk“!)])'

holds in M'.
For t = 0 this follows from Condltlon 11 of the definition of a precondlthor)x and
1)
from the construction of M’. The inductive step is straightforward. For t = k, o~ is @;
and hence M'i=¢,, ie. M'=T.
Define a substructure M = M’ as follows:

= {[g]: 3n (g=2h+1)}.
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By Condition I of Def. 1.1, M is isomorphic to M and by Condition V, M’ is an
end-extension of M. By Condition 1V, a is larger than every clement of M in M'. Thus
the proof of Lemma 1.3 has been completed.

We now proceed to the case of our particular theory T and to the proof of the
theorem.

Let T be the reformulation of the original theory defined at the beginning of this
section. Let ¢(x) be the formula

“d is a condition w.rt. T.”

where T, is the collection of the first x axioms of the theory T considered in M. Using
the bounds from the proof of Lemma 1.1 we can formulate ¢ in a IT, form. Namely, ¢ is
the formula

Vy,u [u=2"=3p<u (pis a y-precondition wr.t T,)].

Let us show that T+expo(n) for neN (here T is the original theory).
To show this we first need the following claim:

CrLAM. Let n be given. For a number y let I(y) denote the least number 1 for which
L(l) = y, where L is the appropriate function Jrom Definition 0.2 for the theory T, (the
reformulated version). Let K be an arbitrary model of the original theory T plus exp. Then

KE=Va, y (there is an I(y)-closure of a wor.t. T,).

Proof of the claim. The proof is by induction on - In the proof we essentially
use the fact that any I-closure of any number a w.r.t. T, can be bounded by f(a, ) where
S is a 4, definable function with the property that f(a, I) exists in K whenever L())
exists.

Indeed, suppose that an I-closure of a w.r.t. T, exists in K. Then, since all axioms of
T, except those of the form “Iy &,,(a, y)” are 1T 1 and since T, contains axioms of the
form “Ay &,,(a, y)” only for m < n we infer that every term of that I-closure is bounded

-by the least y satisfying &, (g, y). Let this y be denoted by @,(a). Then the closure as
a sequence number is bounded by (&,(a))*?. Define f(a, 1) = (@, (@)X, Since &, is
total in K and since K= exp we infer that Sa, 1) exists in K provided that L(l) exists.

Now we can prove the claim by induction using the satisfaction relation to define

the notion of an /~closure uniformly in ! and then using the suitable bounds and the 4,
induction.

Now let us show that K= d(n).

Let y be given. We want to construct a y-precondition w.r.t. T, in K. Take any
element ae X such that L(I(y)) < a. Let X' be an I(y)-closure of a w.r.t. T, in K. Define
pas ff)llows: ift = <gy, g;, g5 is a triple of numbers < yand ¢ is an atomic or negated
atomic formula then define p({t, ¢)) = 0iff o(x,,, x,,, x,,) holds in M, where X,, is the
gith term of x'0,

Itis easy to see that p is a y-precondition w.rt. T, in K.

Thus we hgve proved that the original formulation of T'together with exp proves
o(n) for neN. -

Now let us prove the required equivalence. We shall show (3)=(2)=>(1)=>(3).
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Assume (3). Then @ is a condition w.r.t. the theory T, in M for a non-standard r.
Since T, is a finite theory in M we can apply our previous considerations to infer that
there is a structure M’ which is an end-extension of M and which satisfies every
standard axiom of T,. ‘ )

Let r be a non-standard number in M such that T, contains the axioms
“dy @,(a, y)" for all s <r'. Assume that for s < 7' the axiom “Iy & (a, y)’ is the j(s)th
axiom of T, and that it is syntactically of the form Vy'3y &g, y) where ®, is presented
in a suitable form (see Def. 0.1). Then gl(l, J (s), 0) < 2L(2) where g,, L are the functions
defined in M by Definition 0.2 for T,. Hence [g,(1, j(s), 0)] is an element of M’ for all
s < r'. By our assumptions about the original theory T, every x-precondition w.r.t. T, in
M for x > N decides positively all the formulas g, (1, j(m), 0) < g,(1, j(m), 0) (takes the
value 0 at the suitable pairs) for all m, m'e N such that m < m'. Fix an x-precondition
p for a non-standard x in the sequence determining M'. Then by 4, overspill we infer
that p decides positively all the formulas

gi(l’j(s)a 0) < gl(l:j(s’)s O)

for all 5, ' < s, for a non-standard s, < and s <s'. Hence, in M’ we have

[91(1; jtm), 0)] < [g.(1, j(so), O)]

But [g,(1, j(m), 0)] is equal to &,(a) in M". Hence &,,(a) < [g,(1, j(so) 0)] in M for
meN. Let M" be the initial segment of M’ determined by the elements of the form &,,(a)
forme N in M'. Then M” is a model of the original theory T. Since it is a proper initial
segment of M’ it is a model of BX, as well. So it is as required in (2).

Thus we have proved (3)=(2).

Evidently (2)=-(1).

Now assume (1). Let M’ be a model of the original theory T end-extending M,
ae M'\M. Consider two cases.

Case I (in this case the proof is due to Wilkie). Assume T +—exp. Then M’ is a model
of T+exp and hence M’ satisfies ¢(n) for all standard n. We infer that M'=Vw ¢'(w, n)
where ¢ is of the form Vw ¢'(w,x), ¢'€d,, for neN. Hence in particular,
MEVw<a ¢'(w,n for neN. Thus, by 4, overspill M'=VYw<a ¢'(w,r) for
a non-standard r. We can assume that r& M. Then in particular, M= Vw ¢’(w, ) and
thus M= ¢(r), ie. (3).

Case Il Id,-+expr T. Then M is a model of T+-exp. Let b be the element of M
such that b = loglogloga in M'. Since M=exp, b > M. We have 9,,(b) < 2% for all
meN. Hence, if L" is the L-function for the theory T, then

(dsn(b))zv‘(l(b)) < (,p"(b))zb < 2b2® < 222" <a
From the proof of the Claim it follows that
M'=Vy < b (there is a y-precondition w.rt T,)

for every ne N. The above formula is bounded in M’ by a. Hence, applying 4, overspill
we infer that there is a non-standard r in M’ such that

for all meN.

for neN.

M'=Vy < b (there is a y-precondition w.rt. T,).
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Again we can assume that re M and now we infer that M= @(r) as in Case L. Thus we
have proved (3). '
So the proof of the theorem has been completed.

§2. Final remarks. By methods similar to the method of proof of Lemma 8.10 of
[WP II] we can show that if T'is one of our theories which is a subtheory of 144+ exp
then the condition (3) of the theorem is satisfied for our formula ¢ corresponding to T.
We can even prove a stronger result, namely

M=V o(x)

for any model M of I4,+exp+BZ,.
Thus we have the following

COROLLARY. If M is a model of T4y +exp+ B, and M is cofinal with w then M has
a proper end-extension to a model M' of 144+ Q,+BZ,, for any neN.

This corollary is an extension of .an analogous theorem for countable models
M proved in [WP I].

The notion of I-closure of a number w.rt a theory in a model of PA~ for
a standard [ is general and can concern any theory T in our language. Also, Remarks 0.1
and 0.2 are generally true. In general, an l-closure of a number a is not uniquely
determined. Hence, although for every I we can make an I-closure of 4, for a given a, in
a model M of T, it is not necessarily true that those /-closures extend each other, as
required in Remark 0.2. Now, let us briefly describe those theories T for which any
l-closure of any a is uniquely determined in any model of T.

DeriNiTION 2.1, Let ¢ be of the form considered in Def 0.1, ie.

Yy, 3zy... Yy, 3z, 6(x, Y15 245 ooes Yio )
where 6 is open.
We say that ¢ is univocal in T if

THVx [p(x)<Vy, 3!z, Vy, 3lz,... Vy, Az, 6(x, Vis 215 V25 225 o5 Yio ZQ)]-
The following remark is easy:

Remark 2.1. If T is IZ, for n >0 then for every II,, formula ¢ there is a IT,,
formula @* such that ¢* is univocal in T and T« o* for m<n+2.

Indeed, if k = 0 we take g* = ¢. If thé remark is true for k—1 and ¢ is of the above
form then we let @* be the normal form of

Yy, 3z (p™*(x, y,, z,)&Vz (z<zy=T1¢(x, V1. D).

Hence it follows that 14, and the theories that we consider in the paper can be
axiomatized by univocal sentences. It can be noted (although this is not important for
our considerations) that if M is a model of the form M = UIENx’(a) where a is an
element of M and x'(a) is the (uniquely determined) I-closure of @ in M wrt T where
T is axiomatized by univocal IT 1 sentences and sentences of the form 3y D,(a,y)

presented in a univocal form then every element of M is X 1 definable in M from the
parameter a. :
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