On supercomplete uniform spaces IV: Countable products

by

Aarno Hohti (Helsinki) and Jan Pelant (Prague)

Abstract. We show that the product of countably many supercomplete C-scattered spaces is supercomplete. The result implies similar but weaker theorems of [1], [17] and [4].

1. Introduction. It is well known that the product of paracompact spaces is in general not paracompact. It was proved by Z. Frolik in [5] that a countable product of locally compact paracompact spaces is paracompact. The same is true for the larger class of paracompact p-spaces of Arkhangel’skii [2]. Recently a weaker structural condition of being scattered or C-scattered has been used by K. Alster [13], M. E. Rudin and S. Watson [17], and by L. M. Friedler, H. W. Martin and S. W. Williams in [4], to obtain similar results. We prove in this paper a natural extension of their results by showing that a countable product of supercomplete C-scattered spaces is supercomplete. The notion of supercompleteness was defined by J. R. Isbell in [13]; by his result — we can take it as a definition — a uniform space μX is supercomplete iff X is topologically paracompact and the Ginsburg–Isbell locally fine coreflection (μX) fix is the fine uniformity of |μX| of X. By using the concept of metric-fine coreflections, we show at the end of the paper that a countable product of C-scattered paracompact spaces is paracompact.

Our proof uses a simple recursive technique based on well-founded (or Noetherian) trees, applied e.g. in [11], [12], [15] in the context of uniform spaces.

2. Preliminaries. This section consists of preliminary definitions. We refer the reader to [14] for basic information on uniform spaces. For the definition of the Ginsburg–Isbell locally fine coreflection λ, the reader is referred to the first three papers [3], [9], [10] in our study on supercomplete spaces. A well-founded tree is a partially ordered set T = (T, ≤) with a unique minimal element Root(T) such that every branch, i.e., a maximal linearly ordered subset, of T is finite. We denote by End(T) the set of all maximal elements of T. Given p ∈ T, the set of all immediate predecessors of p is denoted by S(p). Thus, S(p) = {q ∈ T: q > p and q > r > p for some r ∈ T}. Furthermore,

INSTITUTE OF MATHEMATICS
NICHOLAS COPERNICUS UNIVERSITY
ul. Chopina 12/15
87-100 Toruń, Poland

Received 30 May 1980

1985 Mathematics Subject Classification: Primary 54E15; Secondary 54B10.
On supercomplete uniform spaces IV

A. Hohti and J. Pelant

for every $p \in \text{End}(\mathcal{F})$ there is a unique branch $\{p_0, \ldots, p_n\}$ such that $p_0 = \text{Root}(\mathcal{F})$, $p_n = p$, and $p_{i+1} \in s(p_i)$ for $0 \leq i < n$.

Let \mathcal{F}_1 and \mathcal{F}_2 be two well-founded trees. Given $p \in \text{End}(\mathcal{F}_1)$, the symbol $\mathcal{F}_1 \vee_{p} \mathcal{F}_2$ denotes the tree obtained from \mathcal{F}_1 by "hanging" \mathcal{F}_2 below p, i.e., it is the tree $\mathcal{F} = (T, \leq)$ defined by

$$T = T_1 \cup (T_2 \backslash \text{Root} (\mathcal{F}_2)))$$

with the partial order satisfying $r \leq s$ iff either

(1) $q, r \in T_1$ and $q \leq s$, $r = 1, 2$, or

(2) $q \in T_1$, $r \in T_2$, and $r \leq s$.

Obviously $\mathcal{F}_1 \vee_{p} \mathcal{F}_2$ is well-founded.

There is a strict connection between well-founded trees and locally fine correlections.

Indeed, if μX is a uniform space and $\mathcal{U} \in \Lambda_\mu$, then there is a well-founded tree \mathcal{F} and a natural map $\phi: T \to 2^X$ satisfying the following properties:

(1) $\phi(\text{Root}(\mathcal{F})) = X$;

(2) $\phi[S(p)]$ is a uniform cover of $\phi(p)$ for each $p \in \text{End}(\mathcal{F})$;

(3) the sets $\cap \phi(p): p \in B(\mathcal{F})$, the collection of all branches of \mathcal{F},

refine the cover \mathcal{U}.

Let K be a closed-hereditary class of topological spaces. A space X is called K-scattered ([19]) if every nonempty closed subset of X has a point with a K-neighbourhood.

A K-exhaustion of a K-scattered space X is a sequence $(S_n)_{n \in \mathbb{N}}$ of open subsets of X such that (i) if $\gamma < \alpha$, then $S_\gamma \subseteq S_\alpha \subseteq S_\alpha \setminus \{s_\gamma: s_\gamma < \alpha\}$ is in K for all $\gamma < \beta$ and (ii) $\bigcup S_\alpha = X$. The least such α in K for X will be called the K-length of X, written $\text{length}_K(X)$. The existence of K-exhaustions can be proved by induction. Indeed, given a K-scattered space X, let $S_\alpha = \emptyset$. Assuming that (S_n) has been defined for $\gamma < \alpha$, let $Y_\alpha = X \setminus \bigcup\{S_\gamma: \gamma < \alpha\}$. In case $Y_\alpha \neq \emptyset$, (S_n) is an exhaustion of X; otherwise the closed subspace Y_γ contains a point with an (in X) open neighbourhood U such that $U \cap Y_\alpha$ is in K; we put $S_\alpha = \bigcup\{S_\gamma: \gamma < \alpha\} \cup U$.

In the sequel we consider only the class $K = \mathcal{U}$ of compact spaces, although our arguments can be extended to some other classes. (For \mathcal{U}-scattered paracompact spaces, see [185].

Let $(X_n: n \in \mathbb{N})$ be a countable family of topological spaces. Then $T(\prod X_n)$ denotes the set of all trees \mathcal{F} with the following property:

(*) the elements of \mathcal{F} are subsets of $\prod X_n$ of the form $\prod Z_n$ where each Z_n is closed, and where the set $\{n \in \mathbb{N}: Z_n \neq X_n\}$ is an initial segment of \mathbb{N}. The partial order of \mathcal{F} is the set inclusion order.

For every element p of such a tree \mathcal{F}, define $\text{seg}(p) = \{n \in \mathbb{N}: \exists A(p) \neq X_n\}$, where $\text{seg}(p)$ is the standard projection.

Now assume that the spaces X_n are \mathcal{U}-scattered and paracompact. Let $\mathcal{F} \in T(\prod X_n)$. For each $n \in \mathbb{N}$, the j-reduct of \mathcal{F} at $p \in \text{End}(\mathcal{F})$, where $j \leq \text{seg}(p) + 1$, written $\text{red}_j(\mathcal{F}, p)$, is defined as follows. Put $a = \text{length}_\mathcal{U}(n, \mathcal{F})$. If a is a successor ordinal, and $j < \text{seg}(p)$, let $\text{red}_j(\mathcal{F}, p) = \mathcal{F}$; if $j = \text{seg}(p) + 1$, then let $\text{red}_j(\mathcal{F}, p)$ be a normal closed cover of X_n such that $X_j \neq X_n$ for $0 \leq i < 1$, and 1, and let $\text{red}_j(\mathcal{F}, p)$ be obtained from \mathcal{F} by adding the sets $\pi^{-1}_j(W_j) \cap P$ below p, i.e., let

$$\text{red}_j(\mathcal{F}, p) = \mathcal{F} \cup_{p} \mathcal{F}_j$$

where \mathcal{F}_j is the member of $T(\prod X_n)$ consisting of $P(= \text{Root}(\mathcal{F}))$ and the sets $\pi^{-1}_j(W_j) \cap P$, $j = 0, 1$. Otherwise, when a is a limit ordinal, $\pi[A]$ has an open cover by subsets S_β with $\beta < a$ with respect to the fine uniformity of X_n, this cover is uniform and can be refined by a uniform closed cover \mathcal{U}. Let $\text{red}(\mathcal{F}, p)$ be obtained by adding all the elements of $\pi^{-1}_j(W_j) \cap P$ below P in \mathcal{F}. (Notice that $\text{length}_\mathcal{U}(W) < a$ for all $W \in \mathcal{U}$.)

Let X be \mathcal{U}-scattered. If $\text{length}_\mathcal{U}(X)$ is a successor ordinal, then there is a compact subset of X, denoted by $\text{top}(X)$, such that if U is any neighbourhood of $\text{top}(X)$ in X, then $\text{length}_\mathcal{U}(X) < U < \text{length}_\mathcal{U}(X)$. In case $\text{length}_\mathcal{U}(X)$ is a limit ordinal, we simply define $\text{top}(X) = \emptyset$. (Notice that the functions red and top are defined by using the axiom of choice.)

We conclude this preliminary section by a simple lemma.

Lemma 2.1. Let $(P_n: n \in \mathbb{N})$ be a decreasing family of subsets of $\prod X_n$ such that for each $n \in \mathbb{N}$ there is n_0 such that $\pi[A]_n$ is compact. Given an open cover \mathcal{V} of $\prod X_n$, there is n_0 such that P_n is covered by finitely many elements from \mathcal{V}.

Proof. Indeed,

$$P = \prod_{n} \pi_{i}(P_{n})$$

is a product of compact sets. Thus, there is a finite $\mathcal{F} \subseteq \mathcal{V}$ such that $P \subseteq \bigcup \{V: V \in \mathcal{F}\}$. Write

$$P_{n_0} = \prod_{k=0}^{n_0} \pi_k(P_{n}) \times \prod_{k=n_0+1}^{\mathbb{N}} X_k.$$

Then $P = \bigcup \{P_{n_0}: n \in \mathbb{N}\}$. Hence, there is n such that already P_{n_0} is covered by \mathcal{F}. Choose n with $P_{n_0} \subseteq P_{n}$.

3. The result. In this section we prove that the product of a countable family of \mathcal{U}-scattered supercomplete spaces is supercomplete. In the proof we use well-founded trees and \mathcal{U}-exhaustions, defined in Section 2, together with the following principle. Let X be a set, let $\alpha < 2^X$ be a subset of 2^X closed under arbitrary increasing unions and let $\phi: \alpha \to \alpha$ be an expanding map, i.e., $A \subseteq \phi[A]$ for all $A \in \alpha$. Define maps $\phi^*, \phi^* \in \text{Ord}$, as follows: put $\phi^*(A) = A$ for all $A \subseteq X$, let $\phi^*(A) = \bigcup \{\phi^*(B): B \subseteq X\}$ for β a limit ordinal. There is (obviously) $\phi^* \in \text{Ord}$ with $\phi^*(A) = \phi^*(B)$; we call for each $A \subseteq X$ the set $\text{closure}(A)$ under ϕ.

Now let us state the main theorem of our paper.

Theorem 3.1. Let $(\mu X_n: n \in \mathbb{N})$ be a countable family of \mathcal{U}-scattered supercomplete uniform spaces. Then $\prod_{n} \mu X_n$ is supercomplete.

Proof. Let $T = T(\prod_{n} X_n)$ and note that we can assume that the spaces μX_n are (non-compact) fine uniform spaces, since (by [14])

$$\lambda \prod_{n} X_n = \lambda \prod_{n} \mu X_n = \lambda \prod_{n} X_n$$

when the spaces μX_n are supercomplete. To show that $\prod_{n} \mu X_n$ is supercomplete, we shall prove that for any given open cover \mathcal{V} of $\prod_{n} X_n$, there is a well-founded tree $\mathcal{F} \in T$, with the following properties:
(1) Root(\(\mathcal{F}\)) = \bigcap X_i;

(2) for each \(P \in \text{End}(\mathcal{F})\), the elements of \(S(P)\) form a uniform cover of the subset \(P\) of \(\bigcap X_i\);

(3) the elements \(P \in \text{End}(\mathcal{F})\) refine the cover \(\gamma^{<\omega}\) (consisting of all the finite unions of numbers of \(\gamma\)). We can (and shall) assume that \(\gamma\) consists of basic open sets. (Notice that every open cover of a Tychonoff space \(X\) is in \(\mathcal{F}(X)\) iff for every open cover \(\gamma\) of \(X\), \(\gamma^{<\omega}\) is in \(\mathcal{F}(X)\), cf. [16]).

Next we shall define a map \(E: T \to T\) as follows. Let \(\mathcal{F} \in T\) and let \(P \in \text{End}(\mathcal{F})\). Let us first define a tree \(E(\mathcal{F}, P)\). Recall that \(\text{seg}(P) = \max\{i \in \mathbb{N} : P_i \neq X_i\}\). We have to consider 4 cases.

Case 1. There is \(i \leq \text{seg}(P)\) such that \(\text{length}_\gamma(P_i)\) is an ordinal. Let \(E(\mathcal{F}, P) = \text{red}_\gamma(\mathcal{F}, P)\).

Case 2. Otherwise, if \(P\) is covered by an element of \(\gamma^{<\omega}\), let \(E(\mathcal{F}, P) = \mathcal{F}\).

Case 3. Otherwise, if \(\gamma\) is not covered by finitely many elements from \(\gamma\), let \(E(\mathcal{F}, P) = \text{red}_\gamma(\mathcal{F}, P)\).

Case 4. Otherwise, \(\gamma\) is covered by finitely many elements from \(\gamma\), and we can find, for all \(i < \text{seg}(P)\), open subsets \(U_i\) of \(X_i\) such that

\[
\text{top}_\gamma(P_i) \subseteq U_i \subseteq \mathcal{F}
\]

and

\[
\bigcap \{\pi^{-1}_i(\mathcal{F}) : i < \text{seg}(P)\}\n\]

is covered by an element of \(\gamma^{<\omega}\). (This easily follows from our requirement that the elements of \(\gamma\) be basic open sets.) Let \(E\) be the set of all \(i < \text{seg}(P)\) with \(\pi_i(P)\) non-compact. In case \(\mathcal{F} \neq 0\), let \(E(\mathcal{F}, P)\) be obtained from \(\mathcal{F}\) by adding the elements \(P_i^{-1}(U) : i \in \mathcal{F}\) and \(\pi_i^{-1}(\mathcal{F}) : i < \text{seg}(P)\) above \(P\) (in the obvious sense defined in Section 2); otherwise, simply let \(E(\mathcal{F}, P) = \text{red}_\gamma(\mathcal{F}, P)\). (Notice that if \(\pi_i(P)\) is compact, then \(\text{top}_\gamma(P_i) = \pi_i(P)\).)

Finally, having thus defined the trees \(E(\mathcal{F}, P)\) for all \(P \in \text{End}(\mathcal{F})\), put

\[
E(\mathcal{F}) = \bigcup_{P \in \text{End}(\mathcal{F})} E(\mathcal{F}, P).
\]

The promised tree is obtained quickly from the map \(E\). Let \(\mathcal{F}\) be the tree consisting of one element, \(\bigcap X_i\), and let \(\mathcal{F}\) be the closure of \(\mathcal{F}\) under the map \(E\). (Obviously, the map \(E\) constructed above is expanding; \(\mathcal{F}\) is a fixed point of \(E\)).

To show that \(\text{End}(\mathcal{F})\) is a cover of \(\bigcap X_i\), it is enough to prove that \(\mathcal{F}\) is well-founded. To see this, suppose that \(\mathcal{F}\) contains an infinite branch. Hence, there is a sequence \((P_n : n \in \mathbb{N})\) of elements \(P_n \in \mathcal{F}\) such that for each \(n \in \mathbb{N}\), \(P_n \subseteq S(P_{n+1})\). We claim that there is a sequence \((n_r : r \in \mathbb{N})\) such that \(\pi_r(P_{n_r})\) is compact for \(r = n\). It then follows from Lemma 2.1 that some \(P_n\) is covered by an element of \(\gamma^{<\omega}\), implying that Case 2 is applied at some \(P_n\), stopping the branch, giving the desired contradiction. Thus, assume that there is \(\mathcal{F}\) such that \(\pi_r(P_{n_r})\) is non-compact for all \(n\). Then every application of Case 4 to \(P_n\) reduces \(\mathcal{F}\)-length.
Theorem 3.5. Let \(\{\mu_k X_k \mid k \in \mathbb{N}\} \) be a countable family of \(\sigma\delta \)-scattered supercomplete spaces. Then \(m(\bigcap_k \mu_k X_k) \) is supercomplete.

Corollary 3.6. A countable product of \(\sigma\delta \)-scattered paracompact spaces is paracompact.

References

On supercomplete uniform spaces V: Tamano's product problem

by

Aarno Hohti (Helsinki)

Abstract. In this paper we solve the analogue of Tamano's problem [8] for supercomplete spaces. We show that a supercomplete space \(\mu X \) has the property that its product with every supercomplete space is again supercomplete if, and only if, \(X \) is \(C \)-scattered [19].

1. Introduction. This is the last member in our series of papers [4]-[7] on supercomplete uniform spaces. These spaces were introduced and characterized by J. R. Isbell in [11]. By definition, \(\mu X \) is supercomplete if the uniform hyperspace \(H(\mu X) \), equipped with the Hausdorff uniformity, is a complete uniform space. By [11], supercompleteness is a uniform form of paracompactness: \(\mu X \) is supercomplete iff (1) \(X \) is (topologically) paracompact and (2) the Ginsberg–Isbell locally fine corefinement \(H(\mu X) \) is the fine uniformity of \(X \). In this case, every open cover of \(X \) can be analyzed combinatorially by using uniform covers as starting point. This notion has also been studied in the context of linear spaces and closed graph theorems [2], [15]; [10] gives an application to homogeneous spaces. Several results concerning product spaces and supercompleteness have been obtained in [4]-[7] and [8]; closely related questions on uncountable products are dealt with in [17].

In [18], H. Tamano asked for a characterization of paracompact spaces the product of which with every paracompact space is paracompact. While it is known [16] that in the class of \(\gamma \)-spaces of Arkhangel'skii [2], such paracompact spaces are \(\alpha \)-locally compact, the general problem has proved to be difficult. In this paper we solve the analogous question for supercomplete spaces, with a relatively simple proof.

2. Preliminaries. The basic reference to uniform spaces is [12]. For a completely regular space \(X \), \(\mathcal{U}(X) \) denotes the fine uniformity of \(X \), consisting of all the normal covers of \(X \), and \(A X \) denotes the Čech–Stone compactification of \(X \). The basic properties of the Čech–Stone compactification can be found e.g. in [20]. We repeat here the definition of (slowed-down) Ginsburg–Isbell derivatives (see [9]) of uniformities. Let \(\mathcal{U}(X) \) denote the collection of all covers of \(X \). Then \(\mathcal{U}(X) \) is ordered by the relation \(\prec \) of refinement. Let \(\mu, \nu \) be filters in \(\mathcal{U}(X) \) with respect to \(\prec \). The symbol \(\nu/\mu \)