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On hereditarily decomposable hereditarily equivalent
non-metric continua

by

Lee Mohler and Lex G. Oversteegen (Birmingham, Ala.)

Abstract. We give a method for constructing hereditarily equivalent Hausdorff arcs. The
method yields four topologically distinct examples, two of which are known and two new. An
example is given of a hereditarily decomposable, hereditarily equivalent continuum which is not an
arc. This example shows that theorems of Henderson, Mahavier and Thomas, and Oversteegen
and Tymchatyn will not generalize to the non-metric setting.

§ 1. Introduction. A continuum is a compact connected Hausdorff space. A continu-
um is said to be decomposable if it is the union of two of its proper subcontinua and
hereditarily decomposable if each of its non-degenerate subcontinua is decomposable.
A continuum is said to be hereditarily equivalent if it is homeomorphic to each of its

- non-degenerate subcontinua. Clearly decomposable hereditarily equivalent continua are

hereditarily decomposable. In 1921 Mazurkiewicz [Maz] raised a question which has
still not been fully answered, namely whether there are any hereditarily equivalent
metric continua other than the arc [0, 1]. Henderson [H] has shown that the arc is the
only decomposable example. Moise [Moi] has shown that the pseudo-arc s heredital-ily
equivalent, thus answering Mazurkiewicz' original question. However, the question
whether there are any examples beyond these two remains open and appears to be very
difficult.

In this paper we investigate non-metric decomposable hereditarily equivalent
continua. All of the examples we have been able to find of such continua in the literature
are Hausdorff arcs. These examples are due to Arens [Arel] and Babcock [B], all
described in [B], and a new example due to Hart and van Mill [H-V]. A recent paper of
Ward [W] contains a lengthy and interesting discussion of general Hausdorff arcs,
including some results on homogeneity closely related to Babcock’s. In § 2 b.elow we
give a method for constructing hereditarily equivalent Hausdorff arcs which yields the
arc [0, 1], Aren’s original example and two new examples. An extension of the method,
to be described in a future paper, will produce all of the Arens-Babcock examplels anfi
many others. Other new examples may well be possible from our method described in this
paper (see Theorem 2.7 and Question 2.10). In § 3 we give an example of a decomposable
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hereditarily equivalent continuum which is not an arc. The example shows that
Henderson’s theorem cited above and a related structure theorem of Mahavier [Ma]
and Thomas [T] for hereditarily decomposable chainable continua will not generalize
to the non-metric setting. We wish to thank Profs. E. D. Tymchatyn and L. E. Ward, Jr.
for drawing our attention to the papers of Arens and Hart-van Mill respectively, and
Prof. G. R. Gordh for several helpful conversations. We also wish to thank the referee,
whose suggestions substantially improved our presentation.

§ 2. Hereditarily equivalent Hausdorff arcs.

DEFINITION 2.1. A Hausdorff arc is a continuum admitting a total order such that its
topology is the order topology. ’

It is well known that a continuum is a Hausdorfl arc if and only if it has exactly two
non-separating points. Hereditarily equivalent Hausdorff arcs are all first countable and
have cardinality ¢ (see [Tr] and [B]). We define interval notation in the usual way.

LEmMa 2.2. Let X = [a, b] be a hereditarily equivalent Hausdorff arc. Let pe(a, b].
Then there is an order preserving homeomorphism of [a, b] to [a, p].

Proof. Let pe(a, b]. Then there is a homeomorphism h': [a, b]— [a, p]. If i’ fails
to preserve order, then /' (a) = p and i (b) = a. Moreover, there must be a fixed point x,
for K, so that K carries the interval [x,, b] onto [a, x,] and the interval [a, x,] onto the
interval [x,, p]. Define h: [a, b]—[a, p] by setting h(x)=x for xe[a, x,] and
h(x)= K (K(x) for xe[x,, b]. It is easy to check that h is order preserving. w

Lemma 2.2 implies that every hereditarily equivalent Hausdorff arc admits order
preserving homeomorphisms onto each of its non-degenerate subarcs. Hart and van
Mill [H-V] have given an example which admits no order reversing homeomorphisms.

We now proceed to our construction of several distinct hereditarily equivalent
Hausdorff arcs. Let X be a hereditarily equivalent Hausdorff arc.

DEFINITION 2.3. A set A « X is homogeneously embedded provided that for each
p<gq and r<s in X there exists a homeomorphism h: [p, g]—[r, s] such that

hlp, ) nA] =, )N A.

DErFINITION 2.4. Let X be a T,-arc and A < X. We define a countable inverse system
(X, f)) as follows: each X, is a Ty-arc, each map f"**: X, ., — X, is monotone. Put
Ay=4 and X,=X. f§: X, > X, is a monotone map such that

il x¢A,,
if xeAq,

B point}
iy [
() x) {B; ~X
where B. is' a homeomorphic copy of X for each x€Ad, and = denotes an order
isomorphism.

Each copy BI, xeA,, of X contains a copy Al of A.

Denote by 4, = ) AL = X,. f2: X,~ X, is a monotone map such that

xedo
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21y  JipOIt} if x¢d,,
D) (x)"{BizX if xed,,

where B2 is a homeomorphic copy of X for each XEA,.
Each copy B2, xeA,, of X contains a copy 42 of A.
Put 4, = |J 42 = X,. Inductively define 4,,,, X,,, and f**?

xeAd,
a monotone map such that

1 X, =X, as

{point}
B:+l ~X

if x¢d,,

nt1y—1 —
U (x)_{ if xeA,.

Each copy B:*! of X contains a copy 4%** of 4 (xe4,).
Put A, = | A"

xeAn

We will denote the inverse limit of this system by (X, 4), = im(X,, f"**). Note
that (X, 4), is a T,-arc.

THEOREM 2.5. Let X be a hereditarily equivalent Ty-arc and suppose A < X is
homogeneously embedded. Then (X, A), is a hereditarily equivalent T,-are.

Proof. It follows immediately from the construction that (X, A),, is a Ty-arc.
Hence it remains to be shown that (X, A), is hereditarily equivalent. Suppose
X = X, = [ay, by] and X, = [a,, b,]. Note that for each p < ¢ and r < s in X, where
{a, s} = 4, C1{fy" (. 1)) = CL(fo *((r, s])) (under an order preserving homeomor-
phism). Moreover, we may assume that this homeomorphism maps f; ' () homeomor-
phically onto f;*(s).

Let Y (X, 4), be a nondegenerate subcontinuum and let n, be minimal such that
Y,, =1, (Y) is non-degenerate, where f, : (X, 4),—X,, denotes the natural projection.
Then ¥, is contained in a copy of X, = X. Put ¥, =f,(Y) =[c,, d,] and Y= [¢, d].
Choose mye(ag, b)) A, and k, €(c,,d,)nA4,. It suffices to show that
J5 Q0> 16]) 2,7 ([enys k) A Y and 757 (Dmo, bol) % fy7 * (Thays dy,]) 1 ¥ under ho-
meomorphisms which agree on fy *(m,). We will show that

Jo t ([ao> mo) = ;" (Lewy kDO Y.

Suppose first that ag ¢ 4 and (f"7* )" (¢,,+; O Y,,+;+ is a point for each j > 0.
Then

15 (Tao, mo]) = CL{f5™((@0 mo1)) = CL{fiy *((enss kn) =17 (Lenss k)

and we are done.
Suppose next that age 4 and (£ )" (¢, +) N ¥, 441 is a point for each j = 0.
Choose a sequence k, >r,; >r,> ... >¢,, such that r,e4, and limr;=c,,.
Then  f£,7'((ry, k) zfq" (ag,me]) and for each =1 f74{(rj41.75])
ﬁfj_l ((a;, m3), where (f,)"*(a;-1) = [a;, m;]. It is easy to see that the homeomor-
phisms h; define a homeomorphism of
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onto

17 (Ca0> med) = CH(U £ (@ m))

=0

w
YOS, (s o) = ( U 17 500, )

There are three remaining cases to conmsider. The first is the case where
fo (@) = {point} and there are cofinally many n; <n,< such that
(i)™ (en,- )0 Y,y = [cy)s €] is non-degenerate. Choose a sequence m;e X, A,
such that my>my >m,. and limm;=a, Put e, =k, Then

7 (my, m;_ J (f,,j (9 ,,j]) for each j. (See the second case above.) It is not
dﬁﬁcult to see that these homeomorphisms define a homeomorphism of

Jfo (aoa mol) = Ufo ((mj: mj—l]) Uf;u—l ((Cnp en,])
i

onto

which extends to a homeomorphism of the closures of these sets. Hence
15 (Lag, mol) = £  (Lens ,,‘])m ¥, as required. The remaining cases where fy™* (a,) is
non-degenerate and (f'_; ) e, -0 Yis non-degenerate for some n; > n, and the
case where fo~* (ao) is a point and (f;i )~ e - N Yis non-degenerate for finitely
many n; are similar to the above cases and are left to the reader.

In a future paper, the method of construction in the previous theorem will be
extended to ordinals o other than w. All of the examples given by Babcock [B] will be
seen to be of the form (I, I),. Using Theorem 2.5 we now construct four examples of
hereditarily equivalent T,-arcs. The arc (I, Q),, is the only metric hereditarily equivalent
arc, where Q < I denotes the rational numbers. The arc (I, I),, was constructed by Arens
[Arel] who also proved its hereditary equivalence.

THEOREM 2.6. The arcs (X, Q),, (I, I),, (I, S), and (I, M),, are hereditarily equivalent.
Here I denotes the metric unit interval [0, 1], Q denotes the rational numbers in I,
S denotes the irrational numbers in I and M a set constructed by van Mill and van Engelen
(see [V-V]).

Proof. It is easy to see that Q, I and S are homogeneously embedded in I. It was
proved by van Engelen and van Mill [V-V] that the set M has the following properties:

(1) M is uncountable, (2) M does not contain an uncountable analytic set and (3)
M is homogeneously embedded.

By Theorem 2.5, each of the above examples is a hereditarily equxvalenl T,-arc.

The following theorem shows that if (I, A),, is any T,-arc which is homeomorphic to
either (I, I), or (I, 5),, then 4 contains an uncountable analytic set. Since M does not
contain an uncountable analytic set, neither of these examples is homeomorphic to
I, M),

THEOREM 2.7. Let (I, A), and (I, B), be two homeomorphic T,-arcs where B is an
uncountable, dense subset of I. Then A contains an uncountable image of a G subset of B.

In fact there exists a countable set Q = B and a monotone map @: B\Q — A such that
@(B\Q) is uncountable.

icm
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Proof Let (I, B), = im(X,, fn), and let f,: (I, B),— X, and g,: (I, 4),—I be the
natural projections and let h: (I, B),—(I, 4), be a homeomorphism. We may assume,
without loss of generality, that A is also an uncountable set. Note that X, = I. Let
@o: Xo— I be defined by @q(x) = goohofy ! (x), then @ is upper semi-continuous and
continuum valued.

Let Qp = {xeX,| ¢o(x) is non-degenerate}. Note that Q, < B,=B. If
4, # 426 Q0. then Int(@o(gy)) M Int(pe(q,)) = @. Since I is second countable, Q, is
countable. Hence B\Q, is a G; subset of B. If ¢,(B\Q) is uncountable we are done (note
that ¢,(h)e 4 for each be B\Q,). Hence we may assume ¢q(B\Q,) is countable. Let

= (/)" 1(Qo) and define ¢,: J,~I by ¢, =gooho(f;)"*. Then J, is a countable
union of metric arcs each of which contains a copy of B. Let B, denote the union of all
these copies of B. Let @, = {geJ,| ¢,(g) is non-degenerate}, as above @, is countable.
If ¢, (B,\Q,) is uncountable, then there exists g& @, such that ¢ ([(f)~"(g) " B;1\Q,)
is uncountable and we are done. Hence we may assume ¢,(B;\Q,) is countable.
Construct inductively J, = (f~1)~'(0,), where Q,_; =J,-; is the countable set
{gedp-1] @n-1(9) = gooho(f,—1)"!(g) is non-degenerate}, B, which is the union of all
the copies of Bin J,—; and ¢, J,— I defined by ¢, = gooho(f,)~*. If for some minimal
n, ¢,(B\Q,) is uncountable, we are done.
Hence, assume that for all n, ¢,(B,\Q,) is countable.
For each n and each geQ,, let E,(g) denote the set of end points of ¢,(¢) and let

E, = U E,(g). Then Y= U {(#.(B\Q,) U E,) is a countable set. Since A is uncountable,
9€Qn
there exists a point ae A\Y We claim that there exists a point (go, 1, g2» 935 --)E 5 Bl

such that for each n, g, Q, and aeInt(p,(g,). Note that this implies that the point g, is
unique. We will prove this by induction on n. Suppose a¢@o(Q,)- Since ag ¢4(Bo\Qo)s
aé @o(Bo). Hence there exists se I\B, = I\B such that a& @q(s). Since Jo !(s) is a point, .
go'(a) is non-degenerate and B is dense, there exists beB, such that
o) nh~togs () # B. Then aepq(b). This contradiction shows that a€ ¢g(qq) for
some g, € Q. Since a¢ Eq, aeInt{py(qe)). Inductively assume that aelnt g, ((g,)- Hence
g, is unique and a& @y 1| (771G, I ad @ui 1 (Quer N DT g,) then it follows as
above that aeg@,.i(s) for some se(fi*")7'(g)\Bn+: and there exists
beBysi A ("t 4 (g,) such that ¢,.;(b)=a This contradiction shows that
A€ Qyi1(Qn+1) for some gpi 1 €Qns1 0 (fr* 1)1 (gy). Since ag B,y 1, a€ Im(fpnu(q"u))-
This proves that there exists a sequence (4o, 43, ---) such that aeInt (pulgy) for all n.
Hence

g5 @) = Nhofy *(g) = h((do» 41> 92> )

Since g5 *(a) is non-degenerate, this contradicts the fact that h is a function and the
proof of the theorem is complete.

In [B], Babcock constructed for each countable ordinal o> @ a (non-metric)
Ty-arc I* (I° is-the same continuum as the continuum (1, 1), in this paper) and showed
that I* is hereditarily equivalent for uncountably many o He used the following
theorem to show that if I* is homeomorphic to I?, then « = . We will use it to show
that I* (x > ) is not homeomorphic to (X, Q) (I, Da (I, 8), or (I, M),
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TrroreMm 2.8 (Babcock). Let o < f be countable ordinal numbers. Then there does not
exist a monotone surjection @: I*—»I°

COROLLARY 2.9. None of the examples (I, N),, of Theorem 2.6 is homeomorphic to I*
for any o > w.

Proof Let X = (I, N), where N is either the rational numbers, Q, the irrational
numbers, S, the interval, I, or the set M and let « > . Suppose X is homeomorphic to
I* Since o> w, I* is not metric. Hence N # Q. It is easy to see that there exists
a monotone surjection ¢ (I, I),~(I, N),. Since I? =(I, I}, and we assume that X is
homeomorphic to I% ¢’ induces a monotone surjection ¢: I”-»I* This contradicts
Theorem 2.8. m

In light of Theorem 2.6 (for the purpose of constructing distinct hereditarily
equivalent T,-arcs) the following question is of interest.

QUESTION 2.6. Do there exist infinitely many homogeneously embedded subsets R = I
such that no R, contains an uncountable subset which is the monotone image of a set
Cp = Ry (o # B) such that R\Cy is countable?

Hence we have established that the hereditarily equivalent T;-arcs (I, I),, (I, S),,
and (I, M), are distinct from any of the examples I* (x > ) constructed by Babcock.
The following theorem shows that they are distinct from each other.

THEOREM 2.11. The hereditarily equivalent arcs (I, Q),, (I, D)., (I, S), and (I, M),
constructed in Theorem 2.6 are topologically distinct.

Proof. Since (I, Q),, is separable metric, this example is clearly distinct from the
remaining three examples. It follows immediately from (2) and Theorem 2.7 that (I, M),
is not homeomorphic to (I, I), or to (I, S),. We will show next that (I, S),, is not
homeomorphic to (I, I),,. Note that (I, S),, contains a countable set D (= fo~*(Q), where
0 = I\S) such that each point of D (except the two end points corresponding to fg* (0)
and f5~* (1)) is a limit from two sides of points of D and every other point of (I, S), is
a limit from at most one side of points of D. It suffices to show that (I, I), does not
contain such a countable set.

CraM 1. Suppose E < (I, 1), is a countable set such that each point of E (except the
end points of (I, I),) is a limit from two sides of points of E. Then there exists a point in
(I, D,\E which is a limit from two sides of points of E.

Proof of Claim 1. Let E = (I, I), be a countable set such that each point of
E (except the end points of (I, I),) is a limit from both sides. Then there exists
a increasing sequence n, < n, < ... and finite subsets D; = f, (E) such that D, does not
contain an end point of

X, =f,(.D,) and (£ )7 @Dyl =2

Let D = im(D;, f4_,|D}), then D is clearly homeomorphic to the Cantor set and D < E.

Since E is countable, D\E is an uncountable separable metric space with the order
topology. Hence (see [Moo], Theorem 6, p. 3), there exists a point deD\E which is
a limit point from both sides. Since D = E, 4 is also a limit from both sides of points of
E. This completes the proof of the theorem.

for each deD,.
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Finally, we note that Vdzquez and Zubieta [V-Z] have given an example related to
our examples in § 2, but not satisfying the condition of compactness. It is a hereditarily
equivalent totally ordered spaces in which every increasing (or decreasing) sequence has
a limit.

§ 3. A hereditarily decomposable, hereditarily equivalent Hausdorff continuum which
is not an arc. In this section we construct the example indicated in the title. This
situation cannot arise for metric continua because of Henderson’s theorem [H] that
every decomposable hereditarily equivalent metric continuum is an arc, indeed is
homeomorphic to the unit interval [0, 1] (since there are no metrizable arcs topologi-
cally distinct from [0, 1]). Our example also shows that a related theorem of Mahavier
[Ma] and Thomas [T] (generalized by Oversteegen and Tymchatyn [O-T]) that any
chainable hereditarily decomposable metric continuum contains a subcontinuum with
a degenerate tranche, will not generalize to the non-metric setting. (See the remarks at
the end of this section.) We will not need the concept of a tranche in this paper, but we
will occasionally use the word to help the reader who is familiar with the concept
visualize the construction. For a discussion of tranches see [Ku], § 48, iv or [T].

The desired space X will be an inverse limit of metric chainable continua X where
F is an element of the directed set & to be described below. The construction is
reminiscent of Janiszewski’s famous example [J] of a hereditarily decomposable
chainable continuum which does not contain an arc. In that example countably many
points of an arc are replaced by limit segments of sin(1/x) curves, which are also built
into the space. The procedure is then iterated on the inserted limit arcs, countably many
times. Our procedure is the same except that every point of every arc must be replaced
by a sin (1/x) limit arc. The rather complicated directed set & described below is needed
to keep track of these insertions. If F,, F,,e % and F, is an immediate successor of Fy,
then X, will be X, with a limit arc inserted at a location indicated by the function F,.

The directed set % will be the collection of “all finite rooted tree-sequences in the
closed interval [—1, 1].” A finite rooted tree is a finite partially ordered set D with
a unique minimal element d,, called the root of D, and such that if de D, then there is
a unique sequence dy, d,...,d,=d of elements of D such that for every
i=1,2,...,n, d;is an immediate successor of d;;. (This is etuivalent to the condition
that each element d s d,, of D has a unique immediate predecessor.) Let D; and D, be
finite rooted trees. Then D, is said to be an extension of D if there is a one-to-one
function f: D, —D, carrying roots to roots and immediate successors to immediate
successors. A finite rooted tree-sequence in [—1, 1] is a function F from a finite rooted
tree, denoted D (F), into [~ 1, 1] carrying the root of D (F) to 0 and such that if ; and
d, are distinct immediate successors of some deD (F), then F(d,) # F(d,). Let F, and
F, be finite rooted tree-sequences in [—1, 1]. Then F, is said to be an extension of F, if
there is a function f: D(F,)~ D(F,) as above (i.e, D(F,) is an extension of D(F,)) and
for every deD(F,), F,(f (d) = F, (d). Note that the function f is necessarily unique.

Let # denote a set containing exactly one isomorphic copy of each finite rooted
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tree-sequence in [—1, 1]. Partially order & by extension. Note that & has a unique
minimal element. It is straightforward to verify that # is a directed set.

We are now ready to define our factor spaces Xy We begin by defining a function
st (0, 00)—[—1, 1] similar to the sin(1/x) function. s is defined on the interval [1/2, 1]

as follows:
8x—4
s(x)=< —8x+6

8x—8

if xe[1/2, 5/8],
if xe[5/8, 7/8],
if xe[7/8, 1].

Extend s to (0, co) by imposing the condition

(%) s(2"x)=s(x) for all integers n.

Let Fe&. X will be a subcontinuum of the finite product IT 1., where for each
deD(F)
deD(F), I, denotes the interval [—1, 1] with the usual topology. For x an element of
the product, let x, denote the dth coordinate of x. X may be thought of as a chainable
continuum produced as follows: Let d, be the root of D(F). Start with the unit interval
I=[—1, 1]. For each immediate successor d of do, replace the point F(d)el by an
interval perpendicular to I and “parallel” to I, Make the rest of I converge onto these
inserted intervals by adding “s(x) oscillations”, in the direction of I,, to the arc I.
Continue this process recursively for the arcs just inserted. The precise definition of X
is as follows: A point xe [] I, is in Xy if and only if its coordinates x, satisfy the
deD(F)

following conditions: Let dg, dy, ..., d,— 1, d be the unique sequence of elements of D(F)
associated with d, as described in the definition of finite rooted trees. Then x, can be
defined once X, ..., X,,_, have been defined (ie. the following definition is recursive).

(1) x,, is arbitrary in [—1, 1].

2 ¥x, ,=F@d)foralli=1,...,n—1 and x,,_, = F(d), then x, is arbitrary in
[—1, 1]. (These are the “tranches” and “tranches-within-tranches”.)

(3) ¥ x,,_, = F(d), but x,,_, # F(d) for some i=1,...,n—1, then x, =0.

(4) If d is an immediate successor of d, then x, = s(jx;,— F(d)|) (unless x,, = F(d),
in which case (2) applies).

(I(4) are special degenerate situations. The generic case is (5) below, which
applies in all other situations. Note that in case (3), (4) and (5) the value of x, is forced by
the values of x,, ..., X, _,.

:Ellx.’,m L~ F
® Xg=xq,,~F@I"™"

s(1%q,-, — F(d)).
Let F,, F,e#, Fy < F,. Then the bonding map from X, to X will be the

natural projection of [] I to T[] I, restricted to X, This map will always be atomic
deD(F2) deD(F1)

in the sense of Cook [C]. (This is easiest to see in the case where D(F,) contains just one
more element than D(F,). Other cases follow from the fact that compositions of atomic
maps are atomic.) Therefore, if = is the projection map from X to some factor space X

icm
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and M is a subcontinuum of X such that n(M) is non-degenerate, then
M =n"*[r(M)]. (le. = is atomic.)

We are now ready to show that X is hereditarily equivalent. Let M be
a non-degenerate subcontinuum of X. First consider the special case in which n(M) is
non-degenerate, where m is the projection map from X to the first factor space,
X, = [—1, 1}, in the inverse system. Then (M) = [a, b], a subinterval of [—1, 1], and
M ==z"*([a, b]).

We begin by showing that M is homeomorphic to n™ ' ([ —e, ¢]), where 2e = b—a.
If F is a finite rooted tree-sequence in [—1, 1], then we denote by M the projection of
M in X, and by Ej the projection of 1 ([—~e €])in X, Then M is the inverse limit of
the spaces M, and n ([ —e €]) is the inverse limit of the spaces E, under the
appropriately restricted bonding maps from the system of X,'s. We will induce
a mapping of M to =~ ! ([—e, ¢]) by mapping the spaces M, homeomorphically onto
appropriately chosen factor spaces Ey. Let h be an isometry carrying [a, b] onto
[—e, ¢]. Let F be a finite rooted tree-sequence in [—1, 1]. Let dy be the root of D(F)
and let dy 1, dy.2, .-, d1,s b€ the immediate successors of d, in D(F). Suppose that for
each i=1,2,....n F(dij)ela, b]. Then define the trec-sequence F' by setting
D(F') = D(F), F'(dy,) = h(F(d,,)) for each i = 1, 2, ..., n, and for d a strict successor of
any d ;, F'(d) = F(d). M can then be mapped homeomorphically (indeed isometrically)
onto E,. by the mapping h* defined as follows: Let xeMy. Then x4,E[a, b]. Let
h(x)y, = hlx,,). For deD(F') = D(F), d # dy, let h*(x); = x,. It is straightforward to
check that h* is a homeomorphism of My onto Ep.

We claim that the homeomorphisms just described suffice to generate the desired
homeomorphism of M onto n~*([—e, ¢]). For suppose that F is an arbitrary finite
rooted tree-sequence in [ — 1, 1]. Then there is a finite rooted tree-sequence F,, which is
a restriction of F such that F,,(d,)e [, b] for each immediate successor d; of the root in
D(F,,) and such that D(F,) is maximal with respect to this property among all sub-finite
rooted trees of D(F). It is not difficult to show that M is homeomorphic to M, (the
“extra” coordinates of points in M are all forced). Thus the mapping h*: M > Er,
can be easily lifted to a homeomorphism of M onto any Ep. where F is any extension
of F', such that D(F') = D(F) and every immediate successor d, of the root in D(F") such
that F'(d,)e [ —e, ¢], lies in D(Fy,). Thus the homeéomorphisms described in the previous
paragraph can be lifted to other factor spaces to produce homeomorphisms of the entire
inverse system of spaces M, onto the entire inverse system of spaces Ep.

So we may assime that M ="' ([ —e, ¢]) lor some ee(0, 1). Let n be a natural
pumber such that 2"<e¢ and let ¢=(2"e—1)/(2"—1). Then c<e and
271 —¢) = e~c. For each F e F, let M, denote the projection of M in the factor space
Xp. Let Fe#. We will map X, homeomorphically onto M p, where F' is defined as
follows: D(F’) = D(F) and for d an immediate successor of the root,

F(d) if F(d)E[—C, C],
F'(d) = { c42""F(d)—¢) if F(d)y>c,
—¢=2""(—c=F(d)

if Fd) < —c.
For all other de D(F), F'(d) = F(d).
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We define h*: Xp— M as follows: Let xeXp and let r be the root of
D(F') = D(F). Then

X, il x,e[—c¢, ],
h*(x), = c+27"(x,—c¢) if x,2c¢,
—c—27"(~x,—¢) if x, < —c.

Note that * is continuous, one-to-one and onto in the root coordinate. Now suppose
that d is an immediate successor of r in D(F') = D(F). It may happen that the definition
of h*(x), is forced by the definition of h*(x),. If not, we define ~*(x), = x,. To see that h*
is continuous in the d coordinate, we note that h*(x), will turn out to equal x, on one of
the following closed intervals: [—1, —c], [—1, ¢}, [—¢, ¢], [—¢, 1] and [¢, 1]; namely,
the smallest of these containing F(d) in its interior. Suppose, for example, that F(d) > c.
We claim that h*(x), = x, on the interval [¢, 1]. This follows from property (*) of the func-
tion s. Suppose for example, that x,6J and x, s F(d). Then h*(x), is forced to be
s(|h*(x),— F'(d)]). But
B*(x),— F'(d) = ¢ +27"(x,~¢)—(c+27"(F(d)—¢)) = 27"(x,~— F (d)).
So
¥ (x); = s(27"(x,— F(@)|) = s{x,— F(d)} = x,.

For d, a successor (immediate or not) of a d as above, we similarly define h*(x),, = x,,,
in all cases where h*(x);, is not forced. It is straightforward but tedious to verify that h*
is a homeomorphism of X onto M., and commutes with the appropriate bonding maps.

Note that the tree sequences F' described above all have the property that for
immediate successors 4 of the root, F'(d)e [ —e, ¢]. In order to insure that our mapping
into M is well defined, we need to produce homeomorphisms onto factor spaces
Mg where F" is arbitrary in & from. appropriately chosen factor spaces X, of X. But
we claim that, as above, the homeomorphisms just described suffice to induce these
desired maps. For if F” is an arbitrary element of &, then D (F”) contains a maximal
subtree D, such that F' = F"|,, satisfies the restricted condition above. But then M. is
homeomorphic to My (the “extra” coordinates for points in My are all forced) and
consequently the homeomorphism from the appropriate X, to My can be lifted to
Mp in such a way that it continues to commute with the bonding maps. This completes
the special case in which M projects non-degenerately in X, =[—1, 1].

Now suppose M is an arbitrary non-degenerate subcontinuum of X. Let F be
a minimal element of & such that M projects non-degenerately in M. (In fact F is
unique. But we do not need this fact.) As above, let M, be the projection of M in X,.

Xpe [ 1. Let deD(F) be such that the projection (normal projection in the
deD(F)

product) of My in I, is non-degenerate. Let dy, d,, ..., d, = d be the unique chain
associated with d as described in the definition of finite rooted trees. We claim that
{do, dy, ..., d,} = D(F). For if not, then F' = F|, 4,.....4,y Would be a strict predecessor
of F in which M would project non-degenerately. By the same line of reasoning, M r
must project degenerately in any of the arcs I, 4» 8 < n. Thus Mg is an arc. The rest of the

proof is like the proof of the special case, with the arc M, c X, replacing the arc
[a, b] = X,.
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In a construction somewhat analogous to ours above, starting from a pseudo-arc
instead of an arc, Michel Smith [S] has produced an example of an indecomposable
non-metric hereditarily equivalent continuum. Smith’s example fails to be first count-
able, and does not have cardinality ¢. However, as noted in § 2, all hereditarily
equivalent Hausdorff arcs are first countable and have cardinality .

QuesTION 3.1. Does every decomposable hereditarily equivalent continuum have
cardinality ¢?

QUESTION 3.2. Is every decompo;sable hereditarily equivalent continuum first count-
able?

Arkhangel’skii [Ar] has shown that every compact, first countable Hausdorff space
has cardinality at most ¢ Thus a positive answer to 3.2 implies a positive
answer to 3.1.

Every hereditarily equivalent continuum is irreducible. Therefore, if it is decom-
posable, according to a theorem of Gordh [G], it admits a monotone decomposition
into “tranches”, whose quotient space will necessarily be a hereditarily equivalent
Hausdorff arc. Moreover, any such continuum will, by a theorem of the first author
[Moh], be chainable. Thus our example above shows that the theorems of Mahavier
and Thomas [Ma] and [T] and the second author and Tymchatyn [O-T] mentioned at
the beginning of § 3, do not generalize to the non-metric setting.
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Intersection properties of partitions
of a cardinal

by

Greg Gibbon (St Lucia)

Abstract. We study the properties P and R which are statements about families of functions,
and are motivated by the characterization of Bernstein’s property B (of families of sets) in terms of
characteristic functions. In an earlier paper we applied constraints that were generalizations of
those introduced by Erdds and Hajnal for families of sets.

Here we impose conditions that are of an opposite nature and have meaning only for families
of functions. Positive results are obtained under weaker conditions, showing that these are more
appropriate for families of functions.

Introduction. In this paper we study the properties P and R introduced in [2].
These are statements about families of functions, and are motivated by the charac-
terization of Bernstein’s property B (of families of sets A) in terms of characteristic
functions y,. In [2] we imposed a condition, denoted by C(2, A), which is a direct
generalization of the condition C(2, 4) for sets, introduced by Erdds and Hajnal [1].

Here we look at families of functions all with the same domain (rather than of
arbitrary domain), and constrained by intersection conditions that are in a sense
opposite from those dealt with in [2]. The earlier intersection conditions require that
like preimages are “well-spaced”, while it seems more natural when considering families
on a fixed domain to require that different preimages be separated.

We introduce the intersection condition C [#, 4] on such a family, defined to mean
that every intersection of the preimages of n different values is of size less than 1.
Positive results are ensured even when the conditions are weaker than those of C (1, 1),
showing that C[n, 2] is more appropriate for families of functions.

Background. A family of sets A is said to possess property B if there is a set T'such
that ANT# @ and yet A & T for all sets A in 4. Equivalently:
Bx(er(x) = 2400 =1)  and  By(er0) # 140) = 1).

Bernstein showed that a family of « sets each of size » always possess property B.
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Artur




