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Relative congruence distributivity within quasivarieties of nearly
associative @-algebras

by

Wieslaw Dziobiak (Torun)

Abstract. The recent papers [3], [5], [6] and [16] contain some results that concern finite axio-
mtizability of relativsly congruence distributive quasivarieties of abstract algebras. However the
scops of their applicability is not yet satisfactorily recognized, The reason is that a satisfactory
characterization of relative congruence distributivity is unknown, though several general methods
of establishing the property do exist. In this paper one more such method is proposed and then it
is applied to characterize relative congruence distributivity within quasivarieties of nearly associa-
tive P-algebras.

0. Introduction. By a quasivariety we mean any class of abstract algebras of
the same type, say, 7, which are models of some set of universally quantified first-
order sentences whose matrices are of the form p = g or of the form

Po=Gqo&..&p,=q—~p=g¢g,

Where po, s Pi> Jos --> Gk> P> 9 are arbitrary terms expressed in the language of 7.
Or equivalently, a class of abstract algebras of type 7 is a quasivariety if it is closed
under isomorphisms (I), subalgebras (S), direct producis (P) and ultraproducts
(Py). An example of a quasivariety importaunt in our discussion is the class of all
&-algebras which satisfy the sentence Vx [x*> = 0—x = 0], where by a d-algebra
we understand an arbitrary (not necessarily associative) ring endowed with a structure
of unitary left module over a fixed associative and commutative ring & with unity
and whose multiplication is linked with scalar multiplication by elements of @ by
some natural requirements. i

Given a quasivariety K of abstract algebras. For a member 4 of K by Cong 4
we denote the set of all congruence relations @ on A4 such that the quotient algel;ra
A]© belongs to K. As K is closed under I, S and P and contains a 1-element algebra,
the set Congd forms a complete latticewith respect to lattice meets and joins induced
by inclusion. We say that K is relatively congruence distributive (RCD for short)
if, for each A of K, the lattice Cong4 is distributive. When K is a variety, the lattice
Cong A coincides with the lattice of all congruence relations on 4. So for varieties,
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relative congruence distributivity coincides with the notion of congruence distri-
butivity widely investigated in the literature. If a variety is RCD then we shall simply
say that it is CD.

One of the main results concerning CD varieties of abstract algebras is due to
Baker [1] and [2]. He has proved that every finitely generated CD variety of finite
type is finitely axiomatizable. This result has been strengthened by B. Jénsson in [10]
to the following: If the class of finitely subdirectly irreducible members of a CD
variety of finite type is finitely axiomatizable then so is the whole variety. In view
of these two important results a natural idea was to extend them or at least some
portion of them to quasivaricties. This has been realized in [3], [5], [6] and
[16]. A final effort made in the quoted papers can be summarized in the following
two theorems, where Q(M) denotes the least quasivariety containing M.

Treorem 0.1 ([16]). For a finite set M of finite abstract algebras of finite type,
if Q(M) is RCD then Q(M) is finitely axiomatizable.

Tueorem 0.2 ([S]). For a quasivariety K of abstract algebras of finite type,
if K is RCD and finitely subdirectly irreducible algebras in K form a universal class
which is finitely axiomatizable then K is finitely axiomatizable as well.

Both these theorems have many applications. However the scope of their appli-
cability is not yet satisfactorily recognized at least in comparison with the correspond-
ing results for varieties. The main reason is that a satisfactory characterization
of relative congruence distributivity is unknown, though several general methods
of establishing the property do exist and they appear to be quite effective in many
cases. In this paper, one more such general method is proposed and then it is
applied to characterize relative congruence distributivity within quasivarieties of
nearly associative @-algebras. We show that a quasivariety K of conditionally
associative ®-algebras, in particular, associative, alternative, or right alternative
@-algebras satisfying Vx [2x = 0—x = 0], is RCD if and only if K = ISPP,(M)
for some class M of ¢-algebras without nonzero divisors of zero. Moreover, we show
that a finite set M of finite conditionally associative @-algebras generates a RCD
quasivariety if and only if each algebra of M satisfies the quasiidentity
Vx [x* = 0> x = 0]. If M consists of Jordan rings, or right alternative @ -algebras
then Q(M) is RCD if and only if so is the subquasivariety of Q(M) determined by
the identity ¥x [2x = 0]. A portion of these results is proved partly on the base
of a result of Rjabuhin [17]. But we show that Rjabuhin’s result is a consequence
of Lemmas 3.2 and 3.3 of [5] which were crucial in the proof of Theorem 0.2. To
accomplish characterizations of RCD quasivarieties we aiso mention CD varie-

ties of &-algebras. As any ring can be viewed as an algebra over the ring of inte-
gers, all our results remain also valid for rings.

1. General characterization. Given a quasivariety K of abstract algebras. An
algebra 4 of K is said to be finitely subdirectly irreducible relative to K if id,, the
identity relation on 4, is finitely meet irreducible in Cong, that is, whenever
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6y, ..., O, € Cong 4 and () (8,: i<k) = id, then O; = id, for some i <k, and
A is said to be ﬁnit::ly subdirectly irreducible in the absolute sense if id, is finitely
meet irreducible in the lattice of all congruence relations on 4. By Kgpg; We denote
the class of all finitely subdirectly irreducible relative to K members of K, and by
K, the class consisting of those members of K which are finitely subdirectly irredu-
cible in the absolute sense. Evidently, Kgg; © Kgysr- However if K is RCD then by
a result of [6] we have the equality Kpg; = Kppgr. A least element of Congd con-

taining H, where H < 4 x A4, will be denoted by Ox(H), and instead of @E({(a,b)})

- we shall write Og(a,b). By ©(a, b), where a, b € 4, we denote a least congruence

relation on A that contains (a, b).

An abstract algebra A4 is said to have permutable congruences if, for any con-
gruences © and Y on 4, the relational product © o  of ® and ¥ coincides with i o 8.
Among algebras with permutable congruences are groups, rings, modules and, in
particular, algebras over an arbitrary associative and commutative ring with unity.

A method on which our description of RCD quasivarieties of @-algebras will
be based refers to the following proposition.

ProrosimioN 1.1. For a quasivariety K of abstract algebras with permutable
congruence relations the following conditions are equivalent:

(i) X is RCD;

(ii) Kpgsy = Kyggr and there exists a finite sequence

<Pi(x= ¥ Z): qi(xs ¥ Z), ri(x’ ¥, Z)> 3
i<k, of triples of 3-ary terms such that the following quasiequation and equations
are valid in K:

D & (pilx,y,2) = rx, 3,20t i<k)—x = z;

(2) P.-(x, X, Z) = qi(x7 X, Z): qi(xs z, Z) = ri(xa z, Z);

3 pilx, y, %) = qx, 3, x) = r(x, v, %)
where i =0, ..., k—1.

Proof. (i)=-(ii): Assume that K is RCD. Then, by Theorem 2 of [6],
Krrst = Kgg;- Denote by Fa free algebra in K with x7, yF, zF as only free generators.
As ConFy is distributive, Ox(x%, ') = @(xF, 2H), @;i(x”, V) = 0(F, ) and
Ok(yF, zF)—= e0fF, 25, we have :

G2 e 0(F, ) n @ (T, yT) +x 00", 2NNnOG", 25,
where 4+ denotes the lattice join in Con,i F. This yields
L 2 e O[O, ) B (T, Y o [0, ) O (7, 2))

because the latter congruence coincides with

e, 2o 6 (F, y) +x ouF, NHneGr, ).

e
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Hence, as the lattice CongF is algebraic and its compact elements are of the form
Ox(H) where H is a finite subset of 2F, there exists a finite sequence

pi(x,, 2, 1(x, 7, 2)

i<k, of pairs of 3-ary terms having the following two properties:

o, 27y e 0, ({(pCx, v, 2, 7Gx, 3, 2): <)
and

o, 7, 2, y, D) € [O(", NN O, YD [0, 2)n 0 (¥, 2]
for all i< k. The first property implies
K EVxyz[& (pix, ¥, 2) = ri(x,9,2): i<k)~»x = 2]

while from the second follows the existence of 3-ary terms g,(x, ¥, z), i<k,
such that the equations of (2) and (3) composed with terms p;, ¢;, r;, (i<k) are
valid in K. This proves the part (i) implies (ii).

(i))=>(i): First assuming (i) we claim that, for ail 4 of K and congruence rela-
tions @, ©,, @; on 4, it holds:

where + denotes the join in the lattice of congruences on 4. The inclusion < of (x)
is clear. To prove the inverse inclusion it suffices to show that @ (0o+@y)
0. Bp+0n0,). Let (a,c)e O®n(O,+0,). Then, as congruences on 4
permute, we have a@c, a@yb and b0, ¢ for some be A. By the equations of @
and (3) it follows that p,(a, b, ©) @ (a, ) " O(a,b)g,(a, b,c)O(a, ) O (b, c)rfa,b, ¢)
for all i <k. Hence (pda, b, ¢), ria, b, ))e@NBO+ONO, for all i Therefore,
by (1), we get (a,c)e Ox(@NOy+6OnO,) which completes the proof of the
claim. )

Now, let AeK, @y, @, € Congd, @,n @, <Y and let yy be finitely meet
irreducible in Congd. As the lattice Cong 4 is algebraic, in order to prove that it
is distributive it suffices then to show that @, < or O <. Applying the above
claim we get Ox(lf+O,]N[y+0,]) =. Hence [+ O] Y+0,1<y and,
therefore, [+ @lN [+ 0,1 = Y. So @, <y or @, <y because, by A/ € Kprgr
and Kppgr = Kggr, ¥ is finitely meet irreducible in the lattice of congruences on 4.
Thus (ii) implies (i).

The assumption of Proposition 1.1 saying that algebras of K have permutable
congruences was used in the above proof only in the proof of (ii) => (i). We do not
know however how to prove this part without this assumption. Perhaps it is impossible
at all. But at least in the case K is a variety this can be done. Indeed, by the equations
of (2) and (3), we have (pi(a, b, 0), 7(a, b, O) € O (a, )N O (a, B+ O (2, YN O, )
for all i <k, where a, b, ce Aand 4 €K, and so, by (1), (a, c) € B(a, )N O(a, b)+
+8&(a, )n O (b, c). Thus, by a result of [9], K is congruence distributive.

Relative congruence distributivity 81

We begin now to characterize relative congruence distributivity within quasi-
varjeties of &-algebras.

Let & be an associative and commutative ring with unity. By a &-algebra we
mean (see [20]) any abstract algebra of the form (R, +, —, 0, ¢,k (re ®)), where
(R, +, —,0,0) is a ring (not mecessary associative), (R, +, —, 0,k (re @) is
a unitary left module over @, and, for each re ® and a,be R, kfa<b) = k(a)o b
= ao k,(b). Instead of k.(a) we usually write ra. By a ®-ideal on a $-algebra R we
mean any subset of R which is a two-sided ideal on the ring of R and as well as
a submodule of the left ®-module of R. In further parts of the paper ¢ will always
stand to denote an associative and commutative ring with unity. All results con-
cerning ®-algebras that are established in this paper are also valid for rings since any
ring R becomes an algebra over the ring Z of integers whenever, forneZandaeR,
we put k,(a) = 0if n = 0, k(@) = a+...+a (ntimes) if n> 0, and k(@) = (—a)+...
+(—a) (n times) if n<0. )

With the help of Proposition 1.1 we obtain )

THEOREM 1.2. For a quasivariety K of ®-algebras the following two conditions

-are_equivalent:

() K is RCD;

(i) Kpper = Kpgy and K E Vx [x? = 05x = 0].

Proof. (i)=(ii): Assume that K is RCD. By Proposition 1.1, Kggst = Kgsr-
We show K k Vx [x2 = 0—x = 0]. Suppose that Rk Vx [x2 = 0= x = 0] for
some ReK. Then aoa = 0 and a # 0 for some a & R. Let § be a subalgebra of R
generated by a. Notice that the elements of S can all be written in the form
ny(ry@)+...+m(ria), where ny, ..., m are integers and ry, ..., rx€ ®. This yields
SEVxy[xey = 0] and hence the set J = {(b, b): be S} forms a d-ideal on Sx 5.
Notice that #-ideals J, J; and J,, where J, = {(b,0): be S}and J, = {(0, b): beS},
generate a diamond that is contained in the lattice of @-ideals of Sx S. Obviously,
SxS8/J, and §x S/J, belong to X, and an isomorphism @: S—§x S{J defined by
@(b) = (0, b)+J ensures that the algebra Sx.S/J also belongs to K. Thus the
diamond generated by J, J; and J, is isomorphic to a sublattice of CongSx § which;
by SxSeK, gives that K is not RCD, a contradiction. Thus (i) implies (ii).

(i) = (i): Assume (ii) and define the following terms p(x, y, 2) = (x—2)(x—2),
q(x, ¥, 2) = (x—z)(y—z) and r(x,y, z) := 0. By (iD), :

KEVxyz[p(x,y,2) =r(x,y,2)—»x = z] .

On the other hand, notice that in any ®-algebra the following equations are fulfilled:

p(x,x,2) = g(x, x, 2), q(x,z,2) = r(x,z,2) and
p(x,y,x)=gq(x,y,%) = r(x,y,x).
Thus, by (i) and Proposition 1.1, K is RCD. ‘
We want to mention that during the Algebraic Conference in Karlove Vary,
15-20- August, 1988, Professor Keith Kearnes has kindly informed the author that
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he proved the following result: A quasivariety K of abstract algebras contained in
a congruence modular variety is RCD if and only if Kpper = Kpgr and there are no
nonzero abelian congruences on members of K. Applying this result instead of our
Proposition 1.1 one can also prove the above Theorem 1.2.

We show later on that in Theorem 1.2 the equality Kppey = Kpgr cannot be
removed and even replaced by Kpsr = Kgr, Where Kpg; and K are the respective
classes of members of K which are subdirectly irreducible in the relative and absolute
sense.

For a class M of abstract algebras by Q(M) we shall denote the least quasi-
variely containing M. By a result of [8], we know that Q(M) = ISPPy(M) and,
in particular, Q(M) = ISP(M) whenever M is finite and consists of finite algebras
only. From Theorem 1.2 the following corollary immediately follows.

CoroLLARY 1.3. For a finite set M of finite $-algebras the following two condi-
tions are equivalent:

(i) 9(M) is RCD; _

(i) MEVx [x* = 0-x = 0] and each member of S(M) is either subdirectly
irreducible in the absolute sense or can be decomposed into a subdirect product of
members of S(M) which are subdirectly irreducible in the absolute sense.

We want now to look at the congruence distributive varieties of & -algebras.
As for each variety K the equality K prs; = Kggp is fulfilled, by Theorem 1.2 it follows
that a variety M of ®-algebras is CD if and only if M EVx [x* = 0—x = 0].
However we want to characterize CD varieties of @-algebras in terms of their equa-
tions. In order to do that we need some preparations.

By T(x, y) we denote the set consisting of all groupoid terms which contain the
variables x and y and possible others. For an element ¢ of T(x, y) we write t(x, y, %)
to indicate that the term f is composed with variables x, y, (z =) Zy, ey 2

For a @-algebra R and non-empty subsets 4, B of R we put

AoB={ach:acd and be B},

A+ B={t"a,b,0): acd, beB, (=) c;,..,c,e R and 1(x,,2) e T(x, »)} ,
and by X4 we denote the + -closure of 4. It is clear that 54 « B is a ®-ideal on R
whenever 4 and B are ¢-ideals. Notice that the lattice join 4 +B of @-ideals 4 and B
coincides with the set {a+b: a € 4 and b e B}. A binary operation [..., ...] which is
the largest among those defined on the lattices of & -ideals that satisfy: for any 4, B
and a surjective homomorphism 7, [4, Bl 4N B and n([A, B]) = [n(4), ©(B)]
is called the modular commutator (see [7]). As in [7] we have

Lemma 1.4. For any ¢,(4,B)—>ZA+ B+3Bx 4 defines the modular commuta-
tor on the lattices of ®-ideals.

For a groupoid term  we put d(t) = 1 when ¢ is a variable, and d(¢) = d(u)+
+d(w) when 7 is of the form u o w. The value d(t) is called the degree of r.

The proof of the next theorem refers to a result of Modular Commutator Theory
stating that a congruence modular variety K is CD if and only if the modular com-
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mutator on congruence lattices cf members of K satisfies the equality [x, y] = x A y
(see [7]). The following theorem for associative ®-algebras was noted in [12].

THEOREM 1.5. For a variety K of ®-algebras, K is CD iff there exist elements
Ty Ty Of @ and groupoid terms t, ..., t, each of degree at least 2 and involving
only the variable x such that x = ryt;+...+rpt, is an equation valid in each member
of K.

Proof. =: Assume that K is CD, and let F be a free algebra in K with x¥ as
only free generator. By Lemma 1.4, x* € ZF » F and hence there exist the required
elements ry, ..., r, of @ and groupoid terms ¢y, ..., §, with x = r; t; +... +r. £, € JA(K).

<=: This implication is obvious.

Another result of the Modular Commutator Theory we want to apply says that
a finite set M of finite algebras taken from a congruence modular variety generates
a CD variety if and only if the modular commutator fulfils the equality [x, ] = x A y
on congruence lattices of members of S(M). Applying this result to &-algebras
we obtain

COROLLARY 1.6. For a finite set M of finite ®-algebras the following conditions
are equivalent:

(i) HSP(M) is CD;

(i) HS(M) k Vx [x% = O—x = 0].

Proof. (i)=>(ii): Use Theorem 1.2. (ii)=(i): By Lemma 1.4, it suffices to show
that ANB<= XA * B+XB * A, where 4 and B range over ®-ideals of a member R
of S(M). But this easily follows from the observation due to (ii) that R R = R.

Inview of Corollaries 1.3 and 1.6 it is natural to pose the following two questions:
Given a finite set M of finite ¢-algebras without nonzero nilpotent elements, that is,
&-algebras satisfying the quasiidentity Vx [x* = 0—x = 0],

(1) Is the quasivariety generated by M relatively congruence distributive?

(2) Is the variety generated by M congruence distributive ?

It turns out that both these questions have megative answers, though within
a large collection of @-algebras they can be answered in the affirmative (see Propo-
sition 2.3, Corollary 2.7 and Corollary 3.3). Here we provide only an answer to
question (2). The question (1) is answered in section 2.

Let R be a 3-dimensional vector space over Zs, the 3-element field of integers
modulo 3, and let the vectors vg, vy, v, form a basis for R. Define the multiplica-
tion o on {vy, vy, v,} by aobh =v, when a =b and ae {v,,v,}, and aob = v,
otherwise, and next extend it in the obvious way on the whole R. As a result we get
a structure of Z;-algebra on R. We show that R has no nonzero nilpotent elements
and that the variety generated by R is not CD. Indeed, (rovy+riv;+7,0,)% =0
implies r§+rf =0 and ro(r, +ry)+ri(ro+rs)+ra(ro-+r)+r2 = 0 in Z5. By the
former equation we have ry = r, = 0 and therefore, by the latter ome, r, = 0.
Thus rovy+ryv,+7r,0, = 0, showing that R is without nonzero- nilpotent elements.
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AsRoR = {rovo+ryn: ro,ry€Z,}, we get RIR o R = Vx [x* = 0-x = 0]. Thus,
by Corollary 1.6, the variety HSP(R) is not CD.

We conclude this section by showing that in Theorem 1.2 the equality
Krrs1 = Kggr cannot be replaced by Krg = K.

Let R be the subring of those rational numbers which can be expressed in the
form i/m, where i is an arbitrary integer and m is an odd integer (see [11, page 113]).
By Proposition 2.2 of section 2, the quasivariety K := Q(R) is RCD. We show that
Krsr # K. Let A4;, i€ I, be members of Kpgy Which decompose R into a subdirect
product. As R is commutative and the Jacobson radical of R differs trom ), it
follows that R cannot be decomposed into a subdirect product of fields. Hence
among A’s there must exist a ring, say, 4 io> Which is not a field. The ring A4, does
not belong to Ky, since every commutative and subdirectly irreducible ring in the
absolute sense and without nonzero nilpotent elements is a field (see
[11, Theorem 3.14]). Thus Krg; % K.

2. Associative and power-associative algebras. The following lemma localizes
finitely subdirectly irreducible in the relative sense members of a quasivariety.
It will be helpful in our considerations.

LemMaA 2.1 ([5]). If K = Q(M) then Krps1 S ISPy(M).

An algebra R is said to be without nonzero divisors of zero if, for all a, b of R,
@ob =0 implies a = 0 or b = 0.
As a consequence of Theorem. 1.2 and Lemma 2.1 we have

PROPOSITION 2.2. Fora quasivariety K of associative ®-algebras, K in RCD iff
K = QM) for some class M of d-algebras without nonzero divisors of zero.

Proof. =: It suffices to show that each member of Krrer is without nonzero
divisors of zero. Let Re Kypor and a, b R be such that g o b — 0. As R is associa-
tive, (ba) o (ba) = 0, and, by Theorem 1.2, Rk Vx [¥2=0—>x = 0]. This yields
ba = 0. By associativity of R and ba = 0, we get (ach) o (ach) = 0 where c e R.
So, by REVx [x* = 0—x = 0], it follows that ach — 0 for all ¢ e R. This implies
@n(®) = (0) where (d) denotes a ®-ideal on R generated by d. Indeed, for
ee(@)n(d) we have ¢ = nf+ satar+2sat; = n'g+s'b+bt' +Is,bt! where n, n' are
integers, = ra, g = »'b for some rr'ed. ands, s, 1, 1, 5, §i. 4, tf are certain
elements of R. Hence, by ach = 0 for all c e R, it follows that e? = 0 which in. turn
implies e = 0. Thus (a) A () = (0), and consequently a = 0 or b = 0, since due to
Theorem 1.2 R is finitely subdirectly irreducible in the absolute sense, proving that R
is without nonzero divisors of zero.

<=: Assume that each member of M is without nonzero divisors of zero and
K = Q(M). Evidently, KFVx[x? = 0~ x = 0. We show KppgSKgpgr. Let
ReKgpg;. Then, by Lemma 2.1, R is without nonzero divisors of zero. As
ab & (a) " (b) for any a, b of R, we obtain that @n () = (0) impliesa = 0 or b = 0,
showing that R belongs to K5y Now, by Theorem 1.2, K is RCD.

icm

Relative congruence distributivity a5

In Section 3 there is proved a slightly stronger result than stated in Proposi-
tion 2.2. However, we have decided to present the above proposition in a separate
form because it is a direct consequence of Theorem 1.2. To accomplish the abgvc
proposition we want to mention that congruence distributive varieties of associative
&-algebras in terms of their generators are characterized in [12]. B.py Theorem 82 (I.)
of [12] we know that a variety of associative @-algebras in CD if ax}d c?nly if it is
generated by associative division @-algebras of bounded finite cardinality. In the
case of associative rings congruence distributive varieties are exactly those generated
by finite sets of finite fields (see [14]).

The answers to questions (1) and (2) within associative tb—algebra:s are affirma-
tive. This easily follows from Proposition 2.2. From that proposition it alsp fo]lov:'s
that each finitely generated quasivariety of associative @-algebras is a variety. This
observation however is not true within arbitrary @-algebras. Here is a counterex-
ample. S
Let S be a 4-dimensional vector space over Z,, the 2-element field of integers
modulo 2, and let the vectors vy, vy, v,, vz form a basis for S. Define on the set
{vo, vy, v5, 03} a groupoid by the table

bg Uy Uy U3

o ‘ Vg U2 Uy Uy
vy | v, Py Uy Uz
Uy | Uy Vg Uy Uy
vy | Uy U3 Uy Ug

and extend this groupoid in the obvious way on the whole S. The resulting structure
on S is a Z,-algebra, further denoted also by S. Notice that the set

I = {r(ug+vy): reZs}

forms a Z,-ideal on S and that the quotient algebra S/J is not embeddable into S.
Hence S/I¢ Q(S), since S/I is subdirectly irreducible in the absolute se{lse, and
thus Q(S) does not coincide with ¥(S). Using Corollary 1.3 one may easily show
that the quasivariety Q(S) is RCD. . o

The answer to question (2) is also positive within the so-called power-associative
algebras. An algebra is said to be power-associative if every one generated subalgebra
of it is associative. o

PROPOSITION 2.3. If M is a finite set of finite power-associative ®-algebras
without nonzero nilpotent elements then there exists n>2 with x = x" e Id(M) and
V(M) is CD. ‘ : ,

Proof. As M is finite and each member of M is' finite too, there must exist
natural numbers k>m>1 such that x* = x"eId(M). If m = 1 then, by Theo-
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rem 1.5, V(M) is CD else applying power-associativity and the equation x* = x™
we obtain (X I—x""H(F l-x""!) = 0eld(M) and consequently, by
MEVYx [x2 = 0-x = 0], X! = x* ' ¢ Id(M). Proceeding in this way, we get
xkmHl = x e Id(M). Thus, by Theorem 1.5, V(M) is CD.

We want to add that within pbwer-associative algebras question (1) has a nega-
tive answer. A counterexample is given at the end of this section.
To extend the above proposition we also notice the following

ProPOSITION 2.4. For a variety K of power-associative ®-algebras the following
two conditions are equivalent:

(i) K is CD;

(ii) x = x" e Id(K) for some n=>2.

Proof. (i)=-(ii): Let X be CD and let F be a free algebra in K with exactly one
free generator. Evidently, V(F) is CD. By power-associativity of K, ¥'(F) consists
of associative @-algebras only. Hence, by Theorem 8.2 (1) of [12], x = x" e Id(F)
for some n>2 and consequently x = x" e Id(K).

(ii)=>(i): Use Theorem 1.5.

We want now to show that for a finite set M of finite power-associative
&-algebras question (1) can be reduced to the same question but concerning some
finite collections of finite $-algebras uniquely determined by M. The details are
contained in the next proposition. At first however we notice the following

LemMA 2.5. Let R be a finite nontrivial power-associative ®-algebra without
nonzero nilpotent elements. Then there exist prime numbers p,, ..., p, and &-sub-
algebras Sy, ..., Sy of R such that S;kp,x=0, for all i=1,..,k and
R = S)x..xS8;.

Proof. Define S, = {a€ R: p"a = 0 for some natural number n}, where p is
a prime number, and as Sy, ..., S take those from among S,’s that satisfy S, # 0.

For a finite set M of finite $-algebras and a prime number p let p|M consist
of those members of S(M) which satisfy px = 0. Notice that p|M is never empty,
since a 1-element ¢-algebra always belongs to p|M, and, as M is finite and each
algebra of M is finite too, only finite number collections from among p|M’s may
contain nontrivial algebras. The reduction we have announced looks now as follows.

PROPOSITION 2.6. Let M be a finite set of finite power-associative & -algebras
without nonzero nilpotent elements. Then Q(M) is RCD iff, for each prime p, s0 is
Q(pIM).

Proof. =: By Theorem 1.2 and Lemma 2.1.

<: By Lemma 2.5, Q(M) = Q(U (pIM: p is prime)) which, by Lemma 2.1,
imp L (Mgesi € U (Q(pIM)gps;: p is prime), and hence the assumption that
each Q(p|M) is RCD gives us that each member of Q(M JrEss 18 finitely subdirectly
irreducible in the absolute sense. Thus by Theorem 1.2, Q(M) is RCD.
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A Jordan algebra is any algebra satisfying the equations xy = yx and
(x*y)x = x*(yx). Jordan algebras and, in particular, Jordan rings are power-
associative. Moreover, by Theorem 15.11 of Osborn [15] we know that any finite
Jordan ring satisfying x = x" for some n > 2 and of characteristic different from 2 is
isomorphic to a direct product of simple Jordan rings. So applying Proposition 2.6
we obtain the following corollary.

COROLLARY 2.7. For a finite set M of finite Jordan rings without nonzero nilpotent
elements the following two conditions are fulfilled:

() Q(M) is RCD iff so is Q21M);
(ii) If 2IM consists of a zero ring only then Q(M) coincides with V(M).

Proof. By Proposition 2.3, V(M) is CD. So in view of Proposition 2.6 it suffices
only to show condition (ii) because for p # 2 in the set p| A only zero ring satisfies
2x = 0.

By a result of Jonsson [9], V(M )gs; < HS(M). Hence assuming that 2|M
consists of a zero ring only, by Proposition 2.3 and Theorem 15.11 of Osborn [15],
we get V(M)gg S IS(M) which yields that Q(M) coincides with V(M).

The above corollary suggests that an example of finite set of finite algebras
answering question (1) in the negative may be found within Jordan algebras
over the field of integers modulo 2. Having this hint in mind we start now to prepare
such an example.

Let T be a 4-dimensional vector space over the field Z,. Supply the space T
with a structure of Z,-algebra by extending on the whole 7 in the obvious way the
multiplication defined on a fixed basis vy, vy, v, v5 of T by the following table

Vp Uy Uy U3

Vo | Vo Uy V3 U3
Uy | U2 Uy Uy Vg

Uy | Uy Uy Dy Up

Uy | U3 Vg Uy U3

A Z,-algebra obtained in this way, denoted also by T, satisfies the equations: x> = x
and xy = yx, and thus it is Jordan. The set J = {r(v, +v,): r € Z,} forms a Z,-ideal
on T and one may verify that the quotient algebra T}J is isomorphic to S/I, where
the algebra S and the Z,-ideal I are defined after Proposition 2.2. Fix an isomorphism
@: S[I>T)J and define R = {(a,b)e SxT: ¢p(a+l) = b+J}. Bvidently, R is
a Jordan Z,-algebra which is a subalgebra of the direct product Sx 7. In particular,
R is without nonzero nilpotent elements. Moreover, each of the projections mg

« mp of R onto S and T, respectively, is a surjection. By Proposition 2.3, the
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variety V(R) is CD. Using this conclusion one may verify that the lattice of
Z,-ideals of R is of the form

Kerzg Kermy

This shows that R ¢ (R)gs;. We prove that R e Q(R)gps; Which, by Theorem 1.2,
would mean that the quasivariety Q(R) is not RCD. To this end it suffices to show
that R/Kerny does not belong to Q(R). Supposing otherwise that R/Ker p € Q(R),
by R/Kerny = T and the fact that the lattice of Z,-ideals of T is of the form

(?

o

we conclude that 7'is embeddable, say, via an embedding 1, into R. As T'is not isomor-
phicto S,J = Kerngo . In fact, J& Kerng o ¢ because T)J = S/I'and S/Iis not embed-
dable into .S. This together with |7] = 16 and |J| = 2 implies that the image of
T under ng o has at most 4 elements. But every subalgebra of R whose image under
g contains at most 4 elements has no more than 8 elements. Therefore, as |T| = 16,
it follows that T cannot be embedded into R. Thus R must belong to Q(R)ggsr-

The above example also shows that the quasiidentity Vx [x* = 0—x = 0]
cannot solely characterize RCD quasivaristies of ¢-algebras. Thus the equality
Krps1 = Kggr in condition (i) of Theorem 1.2 cannot be removed.

3. Conditionally associative algebras. An algebra is said to be conditionally
associative if it satisfies the following two quasiidentities:

Vxyz [(xp)z = 0> x(y2) = 0] and Vxyz [x(yz) = 0 (xy)z = 0].

This notion is due to Rjabuhin [17] as well as the following result:

A ®-algebra is isomorphic to a subdirect product of @ -algebras without nonzero
divisors of zero if and only if it is conditionally associative and has no nonzero nil-
potent elements - e ‘ e :
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Denote by Dy the class of all @-algebras without nonzero divisors of zero,
and by ModgZ the class of all @-algebras that satisfy each first-order sentence
from a set 2. As the class Dy is closed under substructures and ultraproducts, the
above quoted Rjabuhin’s result can be phrased as foliows.

Trrorem 3.1 (Rjabuhin [17], rephrased). Q(Dg) = Mod, {Vx [x* = 0—
—x = 0], Vayz [(2)z = 0—x(p2) = 0], Vxpz [x(y2) = 0= (xp)z = 0]}.

We show in section 4 that Rjabuhin’s result is a particular instance of a more
general result implicitly stated in [5].

In this section we want to collect with the help of Rjabuhin’s result some obser-
vations concetning relative congruence distributivity and congruence distributivity
as well.

We begin with the following proposition which strengthens Proposition 2.2
from section 2. )

ProrosiTionN 3.2. Let K be a quasivariety of conditionally associative & - algebras.
ThenK is RCD iffK = Q(M) for some class M of @ -algebras without nonzero divisors
of zero.

Proof. =: By the assumption, Theorem 1.2 and 3.1, it follows that
K = Q0(Dy). Hence, by RCD of K, Theorem 1.2 and Lemma 2.1, Krrsi & Dy
So, as M we can take Kppgr.

<=: Apply the arguments used in the proof of the “if” part of Proposition 2.2.

An algebra is said to be right alternative if it satisfies the equation x(yy) = (x3)y,
and if in addition it satisfies (xx)y = x(xy) then it is called alternative, or equiva-
lently, an algebra is alternative if every its subalgebra generated by two elements is
associative. By Proposition 3.1 of Rjabuhin [17] we know that any alternative algebra
without nonzero nilpotent elements is conditionally associative. The same is also
true for right alternative algebras satistying V¥x [2x = 0—x = 0] since due to
Miheev [13] any such algebra fulfils the equation [(xx)y—x(xy)]* = 0 and, therefore,
it is alternative and thus conditionally associative as well. This together with
Theorem 1.2 and Proposition 3.2 allows us to state that a quasivariety K of alternative
or right alternative algebras satisfying Vx [2x = 0—x = 0] is RCD if and only if
K = Q(M) for some class M of algebras without nonzero divisors of zero.

We know that within associative algebras questions (1) and (2) have affirmative
answers. It turns out that the answers are also affirmative within conditionally
associative algebras and thus within alternative and right alternative algebras
satisfying Vx [2x = 0~ x = 0]. This directly follows from the following corollary.

COROLLARY 3.3. Let M be a finite set of finite conditionally associative & -algebras,
and let each member of M be without nonzero nilpotent elements. Then V(M) is CD
and, moreover, V(M) coincides with Q(M).

Proof. Define inductively the term (x, n) as follows, where x is a fixed indi-
vidual variable and n3>2: (x,2) 1= xo x and {x,n+1) 1= ({x,n))ox for n>2.
As M is finite and each member of M is finite too, there must exist natural numbers


Artur


90 W. Dziobiak

k>m>2 such that {x,k) = <x,m)eId(M). Since due to Theorem 3.1 each
member of M can be decomposed into a subdirect product of algebras without non-
zero divisors of zero, we can see that (x,k—m+1) = xeId(M) and hence, by
Theorem 1.5, the variety V(M) is CD. In fact, V(M) is arithmeticall ‘?ecause
@-algebras have permutable congruences. As any ¢-algebra con‘fains a trivial sub-
algebra, to complete the proof that V(M) coincides with Q(M) it suffices to show
that the variety V(M) is semi-simple. But this directly follows from Theorem 3.1
becanse every finite algebra without nonzero divisors of zero is simple and from
a result of Jonsson [9] stating that V(M)g < HS(M).

Similarly as for Jordan rings question (1) in the case of a finite set M qf finite
right alternative algebras can be reduced to the same question but concerning the
set 2|M. In establishing this the following lemma will be helpful, where the term
{x,n) is defined in the proof of Corollary 3.3.

Lemma 3.4. Let R be a right alternative algebra without nonzero nilpotent ele-
ments. Then, for each a of R, if {a,ny = 0 for some n>2 then a = 0.

Proof. By induction on n. For n = 2 the lemma is obvious. Let us assume that
our lemma is valid for each natural number less than n, and let {a, n) = 0 where
aeR. If n = 2* for some k=2 then {a, 2°"*) o {a, 2*"*> = 0, since the equation
(x, 2% = {x, 271y o (a, 2¥7 ) is valid in right alternative algebras, and hence
{a, 2¥"1) = 0 which, by IH, implies @ = 0. So assume n % 2* for all k>2. Then
=1 < p< 2™ for some m, and this yields {a, 2™) = 0 because {a,n) = 0. Thus,
by the equation {x,2") = {x, 2" 'Y ¢ {x,2™ ) and IH, we get a = 0.

COROLLARY 3.5. For a finite set M of finite right alternative algebras without
nonzero nilpotent elements, Q(M) is RCD iff so is Q(2|M).

Proof. Let R be a nontrivial member of M. Proceeding as in Lemma 2.5 we
get that R is isomorphic to a direct product of the algebras S,, where p is a prime
number and S, = {a€R: p"a = 0 for some natural number r}. These algebras
satisfy S, F px = 0. Indeed, let aeS,. Then p"a =0 for some n, and henye
{pa,ny = 0. Thus, by Lemma 3.4, pa = 0 which proves S, F px = 0. Now as in
the proof of Proposition 2.6 we obtain that Q(M) is RCD iff so is Q(p|M) for
each p. The corollary then follows from Corollary 3.3 and the observation that
PIMEVYx[2x = 0—x = 0] for p # 2.

As we mentioned in section 2, congruence distributive varieties of associatjve
d-algebras are exactly those generated by collections of associative division
d-algebras of bounded finite cardinality. The same characterization is
also valid for varieties of alternative and right alternative algebras satisfying
Vx [2x = 0—x = 0]. This results from the following proposition and the previously
mentioned Miheev’s result.

PROPOSITION 3.6. Suppose that K is a variety of alternative ®-algebras. Then
each member of K is associative whenever K is CD.
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Proof. By Propositions 3.2 and 2.4, each SI member of K has the following
two properties: it is without nonzero divisors of zero and satisfies the equation
x" = x for some n>2. It suffices then to show that each alternative ring A with
these two properties is associative. First we claim that, for each nonzero elements a, b
of 4, @' = b"~* which, in particular, would mean that 4 has a unity. Denote
by B the subring of A generated by a and b. Evidently, B is associative, without non-
zero divisors of zero and contains a"~! and 5!, In particular, B is FSI in the
absolute sense. Moreover, by the equation x” = x which is valid in B, the elements
a"~! and 5" ! are idempotents in B. So, applying Exercise 6 from chapter 3 of [11]
which is also valid for associative FSI rings, we get that each of "~ ! and 5"~ ! is
the unity of B, and thus "~ = b"~?, showing the claim. By the claim and the equa-
tion x" = x it follows that for any a, b of 4 with @ # 0 each of the equations ax = b
and ya = b has 2 solution which must be unique since 4 has no nonzero divisors
of zero. Thus 4 is a division ring. Hence referring to the description of alternative
division rings given by Bruck, Kleinfeld and Skornjakov (see [4] and [18], also Co-
rollary 2 of [20], chapter 7) we obtain that A is associative, or 4 is a 8-dimensional
algebra over its center. In the latter case, by Theorem 3 from chapter 1 of [20], it
follows that the center of 4 has at most » elements, since otherwise the equation
x"—x = 0 would yield the equation x = 0 valid in 4, which in tun implies that 4
is finite. As in an alternative division ring any two elements generate an associative
division subring, the finiteness of 4 and the Wedderburn theorem imply that 4 is
commutative. Thus, by Zevlakov’s result (see [19], or [20, Theorem 3 of chapter 7])
which says that any simple alternative and commutative algebra is a field, it follows.
that 4 is a field. In particular, 4 is associative which completes the proof.

4. A proof of Rjabuhin’s result. A quasivariety K of arbitrary abstract algebras

is said to have equationally definable principal meets (EDPM for short) (see [S])

if there exists a finite system 4= <{py(x, y, z, W), g,(x, ¥, z, W)D ;< of pairs of 4-ary

terms such that Kypg k Vxyzw [ & pilx, ¥, z, wy=q(x, ¥, =, w)ye(x=yorz=w).
i<k

This notion for varieties was proposed in Blok and Pigozzi [3]. With the restriction
|4] = 1, it was previously considered in Baker [1] where it is noticed that the notion
is reminiscent of the property of an integral domain. Indeed, in our setting it is easily
seen by the help of Lemma 2.1 that the system I = {(x—3)(z—w), 0) realizes
EDPM for any quasivariety generated by &-algebras without nonzero divisors
of zero.

Let K be a quasivariety of abstract algebras, and let

4= <Pi(x’ Y, 2, W), qi(x’ ¥y, z, w)>i<l:

realizes EDPM for K. Let Z be a set of quasiequations such that () Kgrst
= Mod Zu{Vxyzw [& pi(x,p, 2, w = q(x, ¥, z, W) > (x = yorz = w1}, where L
- i<k

is a fixed variety that contains K. Moreover, let for a quasiequation Q:=r,
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= So& .8 Ty_y = Sy —7 =5 the set 4(Q) consist of the following quasi-
equations:

& &pi(rjz §js Z, W) = qi("ja Sjs Z5 w) "’Pn(r, 5,2, W) = qn(r’ 8§, 2, W)

i<k j<m
where 1 = 0, ..., k—1 and the variables z, w are assumed to be distinct from the
variables occurring in Q. Then for a set I'(4) of quasiequations defined in [5]
we have:

ProPOSITION 4.1. K = Modﬂ,,ZuF(A)u U(4(Q): QeZul(4)).
Proof. =: By Lemma 3.2 of [5]. 2: By Lemma 3.3 of [5],

Mod, ZuT(4)u U (4(Q): QeZ Ul (A))rpst ¥ Vxyzw [iﬁpi(x, ¥V, Z, W)

= qx,y,z, W)er(x =y or z=w),

and hence, by (%), the inclusion follows.

The set I'(IT) for the system IT = {(x—»)(z—w), 0), which as we mentioned
realizes EDPM for any quasivariety generated by &-algebras without nonzero
divisors of zero, consists of the following quasiequations:

M) [G=NE-wp—1) = 0+ (x-»[—w)(v-1)] =0,

2) (x=P)[z—w) (-] = 0= [x—y)(z—W)](—u) =0,

(3) x =y~ (x-y)(z—w) =0,

@ (x—y)(z—w) = 0> (y—x)(z—w) =0,

(5) (ro—x1) (z—w) = 0& (x,—3x,)(z— W) = 0 (xo—x,)(z—w) = 0,

6)- x=P)(z~w) = 0=[(=x)—(-»)z—w) =0,

(N4 (Xo—Y0)(z—w) = 0& (x;—y,}(z—w) = 0>

= [(x0+21)— (P +yl(z-w) = 0,

(8)o (xo—yo)(z—w) = 0& (x;~y)(z—w) =0~

= [(xox)~(Yoy)lz—w) = 0,

@, (x=7)(z=W) = 0= (rx—r)(E—w) = 0,
where r is an element of &,

(10) (x=p)(z=w) = 0~ (z—w)(x—») = 0,

1) (x=p)(x=y) =0-x=y.

As ODo)rest = ModgVxyzw [(x—p){z—w) =0-(x =y or z=w)], by
Proposition 4.1 we have Q(D) = Mod,I'(IT)u U (I1(Q): Qe I'(I). So in order
to derive Rjabuhin’s result from Proposition 4.1 it remains then to prove the following
lemma.

Levva 4.2, Modol'(IMu U (IT(Q): Qe I'(ID) = Modg{Vx[x* = 0-x = 0,
Vxyz [(x3)z = 0x(yz) = 0]}

Proof. Notice that the quasiequation (11) is equivalent to

.. Vx[x* = 0—=x = (]
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and that the conjunction of (1) and (2) is equivalent to
(I Vxyz [(xy)z = 0x(yz) = 0]

This proves the inclusion <. To prove the inverse inclusion notice that the quasi-
equations (3), (4), (5), (6)=, (7)+, (9)., where r e &, are valid in any $-algebra and,
in particular, in 2 @-algebra 4 taken from the class Modg{(I), (I)}. Moreover,
notice that the remaining quasiequations of I'(IMvw U (I1(Q): Qe I'(IT)) are also
valid in 4 whenever in addition A4 satisfies the following sentences:

(1m Vxy [xy = 0->yx = 0],
av) Vxyz [(xy)z = 0> (yx)z = 0],
4] Vxyzw [[(xp)z]lw = 0o [x(y2)]lw = 0].

That A4 indeed satisfies (III), (IV) and (V) can be verified as follows (comp. Rjabuhin
[17, Lemma 1.1J).

(n:
1.xy=0 (assumption),
2. (xp)x =0,
3. x(yx) =0 (by (ID),
4 yxOx)] =0
5. 9px=0 (by (ID, ().
To verify (IV) we show
(V1) Vxyz [xy = 0> x(zy) = 0],
(VI):
1.xy=0 (assumption),
2.yx=0 (by (IID),
3. z(yx) = 0,
4. x(zy) =0  (by (L), (111),
av):
1. (xp)z=0 (assumption),
2. x[z(y»2)] =0 (by (ID), (VD),
3. [x2)ylz=0 (by (1)),
4. (x2)[y(x2)] =0 (by (VD), (D),
5. p(xz) =0 (by (D), (D),
6. (yx)z =0 (by (ID).
To verify (V) we show
(VI Vxyzw [(xy) (zw) = 0~ (x2)(yw) = 0] ,.
(VID): ’
L (xp)(zw) = 0 (assumption),
2. [(xp)zlw =0 (by (D),

2 — Fundamenta Mathematicae 135.2
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3. [(x»)z][(xz)(yw)] = 0 (by (VD),

4. x[y(z[x(w))] = 0 (by (D),

5. (G2 WDy (zIx2) (W) = 0 (by (VI), (IL),

6. y(z[(x2) yw)]) = 0 (by (D),

7. z[(xz)(yw)] = (by (VD), (IN), (1)),

8. (xz2)(yw) =0 by (VD), (I, (D),
(V):

L. [(xp)zlw =0 (assumption),

2. [z(xp)]w =0 (by (IV)),

3. (wa)(xy) =0 (by (I1I), (ID)),

4. (wx)(zy) =0 (by (VID),

5. (p2)(wx) = 0 (by (1), (1)),

6. wix(yz)] =0 (by (1ID), (ID),

7. [x(yz)lw =0 (by (II)).

Thxs proves one direction of (V) The proof of the inverse direction of (V) runs
from (7) to (1).

We also notice the following

CORO.LI-..ARY 4.3 (comp. [5, Theorem 3.4]). For a class M of P-algebras without
nonzero divisors of zero, the quasivariety Q(M) is finitely axiomatizable relative to
the variety of ®-algebras iff so is the universal class ISPy(M).

Proof. =: As each algebra of Q(M) without nonzero divisors of zero is a mem-
ber of Q(M)gps, by Lemma 2.1 it foliows that

ISPy(M) = Modp ZU{Vxy[xy = 0~ (x = 0 or y = 0)]},

where 2 is a finite set of first-order sentences such that OM) = Mod,Z.
<=: By compactness theorem we may assume that

ISPy(M) = Modp 2 U {¥xy [xy = 0 (x = 0 or y = )]}

for some finite set X of universally quantified first-order sentences whose matrices

are of the form & (#; = 0: i<m)— OR(s; = 0: i< n). For each such sentence U
denote by [U] the quasiidentity

V& (i =0: i<m)=s5g0(sy 0. ($5-505uy) ) =

where V is the prefix of universal quantifiers. It is clear that

ISPy(M) = Mode{[U]: UeZ}u{Vxy [xy = 0—(x =0 or y=0)]}.

So, as Q(M)ggg = ISPy(M), by Proposition 4.1 and Lemma 2.1 it follows that
QM) = Modo{[U]: UeIZ}u{I(UD: UeZ}u |
U{Vx [x* = 0—x = 0], Vayz [(xp)z = 0> x(y2) = 0]} .
Thus Q(M) is finitely axiomatizable relative to the variety of &-algebras.
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