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Universal spaces for locally finite-dimensional and
strongly countable-dimensional metrizable spaces

by

Wojciech Olszewski (Warszawa)

Abstract. In the present paper, we describe concrete and simple examples of universal spaces:
namely, the spaces ¥(z), W(z) and U(z) (for the definitions, see Section 3) — universal for locally
finite-dimensional metrizable spaces of weight not larger than 7, and the spaces E(z), F(z) and C(z)
(for the definitions, see Section 4) — universal for strongly countable-dimensional metrizable spaces
of weight not larger than 7. We give also some information about other universal spaces for the above
classes of spaces (see Sections 1 and 5).

1. Introduction. We restrict our considerations to metrizable spaces, and the
word “space” means here, except in the definition of partial products, “metrizable
space”. Our terminology and notation follow the books [4] and [5]. In particular,
the symbol J(r) denotes the hedgehog of spininess © with its standard metric d
(see [4], Example 4.1.5), and O the “origin” of this hedgehog.

Let us first recall the definitions of a locally finite-dimensional space and
a strongly countable-dimensional space, and outline the history of the problem.

A space is locally finite-dimensional if it has an open cover by finite-dimensional
sets.

B. R. Wenner showed in [19] that the subspace J,, of the Hilbert cube J* con-
sisting of all points x = (Xo, X1, ...) € IxJx ... which satisfy the conditions:

(1) there exists an ne N such that x, # 0,

(2) there exists a ke N such that x,, < 1/k for m <k and x, =0 for m>k
is universal for locally finite-dimensional spaces of weight No. A few years later,
L. Luxemburg established in [9] the existence of a universal space for Tocally finite-
dimensional spaces of weight not larger than t, where 7 is an arbitrary cardinal
number, but he did not indicate any concrete examiple of such a space. The same
result can also be found in L.J. Bobkov’s paper [2] and M. G. Charalambous’
peper [3]; they have both proved a factorization theorem, and — using Pasynkov’s
method — deduced from it just the existence of a universal space. In addition,
L. . Bobkov announced in [2] a concrete cxample (involving the notion of partial
product) of a universal space for locally finite-dimensional spaces of weight not
larger than 7 (see Remark 5.1).
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A space is strongly countable-dimensional if it is the union of a countable family
of finite-dimensional closed sets.

J. M. Smirnov and J. Nagata showed independently in [17] and [11] that the
subspace K, of the Hilbert cube I™ consisting of all points x = (g, Xy, ...) e IxIx...
with only finitely many non-zero coordinates is universal for strongly countable-
dimensional spaces of weight ¥,. A few years later, A. Arhangel’skil established
in [1] the existence of a universal space for strongly countable-dimensional spaces
of weight not larger than r, where 7 is an arbitrary cardinal number. The same
result can also be found in B. A. Pasynkov’s paper [14]. They have both deduced
the existence of a universal space from the corresponding factorization theorem.

The universal spaces for locally finite-dimensional spaces and strongly countable-
dimensional spaces we shall construct here follow the pattern of the spaces J,
and K,,. However, the following example, due to R. Engelking, shows that the most
obvious analogues of the spaces J, and K, are not universal spaces.

1.1. ExampLE. Let us denote by J,(v) the subspace of [J(t)]™ conmsisting of
all points x = (xg, X1, ...) € J(t) X J(z) X ... which satisfy the conditions:

(3) there exists an ne N such that x, # 0,

(4) there exists a ke N such that d(x,, 0)<1/k for m<k and x, = 0 for

mzk,
and by K,(z) the subspace of [J(x)[" consisting of all points x = (xg, Xy, ...)
eJ(t)xJ(1) X ... with only finitely many non-zero coordinates.

One can easily check that for each natural n, the Baire space B(7) of weight
7>¥, is not homeomorphic to any subspace of [J(7)]". Applying the Baire category
theorem, we deduce that neither J,(t) nor K,(t) contains a copy of B(z), whence
J(7) is not universal for locally finite-dimensional spaces of weight not larger than 7,
and K,(r) is not universal for strongly countable-dimensional spaces of weight
not larger than <.

Acknowledgements. The paper contains some of the results from my
Master’s Thesis, which was supervised by Professor R. Engelking, whom I would
like to thank for his comments and improvements. I am also grateful to Professor
R. Pol for valuable discussion. He simplified my original proof of the universality
of the spaces E(z) and F(r) (the proof given here is carried out along his indications)
and suggested the use of the category method in the proofs of the corollaries from
Section 2.

2. Auxiliary results. For any space X, we shall consider on the space
C(X, [J@]™) the metric d*, where

B ) = sup {3 124(743), 0x): x< X}

for f=(fo.f1,--):9 = (gos 91, --) € C(X, [J(@I*); the space C(X, [J()I¥)
with the metric d* is complete (sce [4], Theorems 4.3.12 and 4.3.13).
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We shall also consider the subspace K(1) of [J(z)]** consisting of all points
x = (Xp, Xy, ...) €J(T) X J(7) X ... such that the set {keN: d0,x,) is a positive
rational number} has at most n elements; one can prove (see [12], Theorem VI.
10) that dim K, (1) = n.

Let us recall that a subset of a space X is residual if it contains a dense Gy-set
of X.

E. Pol has proved in [16] the following theorem.

2.1. THEOREM. If X is an n-dimensional space of weight not larger than 1,
then the set

= {he C(X, [J(DI™): & is an embedding and clh(X) < K,(r)}
is residual in C(X, [J()]*).
J. Nagata has established in [9] the following theorem (see also [18]).
2.2. THEOREM. For each n-dimensional space X of weight not larger than t,
there exists a 1-dimensional space Z of weight not larger than t such that X is homeo-
morphic to a subspace of Z"*1.

From the above theorems, we shall deduce in the sequel a few corollaries, but
first let us formulate two lemmas,

2.3. LemMa. If X is a space of weight not larger than <, then the set of all
homeomorphic embeddings of X into [J(D)* is residual in C(X, [J(D)™).

2.4. LEMMA. Let X be a space’of weight not larger than <, and Fits closed subset.
If fis a continuous map of X to J(z), and g is a continuous map of F to J(7) such that
d(f(x), g(x)) < ¢ for x € F, then the map g is continuously extendable to a map g*
of X such that d(f(x), g*(x)) < 2& for xe X.

The reader can find a proof of Lemma 2.3 in E. Pol’s paper [16], and the proof
of Lemma 2.4 is straightforward.

We shall denote by 0 the point of [J(z)]™ with all coordinates equal to 0; the
same symbo} will denote the corresponding point of ([J()]**)"**, which. is cano-
nically homeomorphic to [J()]*.

For any space X and any point x, € X, by C((X x0), ([J(D1*, 0)) we shall
denote the subspace of C(X, [J()]*) consisting of all maps f such that f (x;) = 0;
obviously, the space C((X, xo), ([J(x)]*, 0)) is complete as a closed subspace of

o, UEM).

Let us state now the corollaries announced above. The first of them will be
applied only in our discussion of locally finite-dimensional spaces (see Theorem 3.2),
whereas the third will be used only in the discussion of strongly countable-dimensional
spaces (see Theorem 4.1).

2.5. COROLLARY. For each n-dimensional space X of weight not larger than <
and any point x, € X, the set

?={he C((X x0), ([T, 0)) h is an embedding and clh(X) S K,(v)}
is residual in C((X, x5), ([J(I', 0)).
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Proof. Let F be a closed subset of X such that x, ¢ F. We shall show that

(1) the set oAp = {fe C((X, x0), (V@I™, 0)): f|F is an embedding and
clf (Fy € K,(x)} is residual in C((X , %0), ([T ()T, 0))

Indeed, by virtue of Theorem 2.1, the set x = {g e C(F, [J@1%): g is an
embedding and clg(F) < K(z)} is tesidual in C(F, [J(z)]*), and by Lemma 2.4
the operation of restriction 7' is an open map of C((X » %0, ([7()]*, 0)) onto
C(F, [7(x)]*™). Hence the set #y = T~ 1A} is also residual.

It is easy to verify that
' (2) the set & = {fe C((X, x0), ([J(DI*, 0)): 0 ¢ clf(F)} is open and dense
in C((X, xo), (7 ()]*, 0)).

Let ¢ be an arbitrary metric on X, and F, = {xeX: o(x, )= 1/n} for
«© o]
n=1,2,.. By virtue of (1) and (2), the set .# = | Ay, () Ly, is residual
. . n=1 n=%
in C((X s %), ([T ()T, 0)) Since # = &, the set 2 is also residual.

2.6. COROLLARY. For each n-dimensional space X of weight not larger than © and
any point xo € X, there exists a homeomorphic embedding f of X into [K,()]**
such that f(x,) = 0.

Proof. Let g = (g, 92, ..-» gu+1) be a homeomorphic embedding of X into
Z™*', where Z is a 1-dimensional space of weight not larger than t (see Theorem 2.2).
Further, for i=1,2,..,n+1, let f; be a homeomorphic embedding of Z into
K, (7) such that f{{g,(x,)) = 0 (see Corollary 2.5).

Then the map f = (f;°dy1,/s0 g2, o> Jat1°Gug 1) Is 2 homeomorphic em-
bedding and f(x,) = 0.

2.7. COROLLARY. For each space X of weight not larger than « and any sequence
{Fi1i=1,2,..} of its finite-dimensional closed subsets, where dim F; = o; for
i=1,2,.., theset # = {he C(X, [J())]*): h is an embedding and clh(F) = K, (7)
Jor i=1,2,..} is residual in C(X, [J(2)]').

Proof. By virtue of Theorem 2.1, the set o, = {he C(F, [J(I*): & is an
embedding and clA(F) < K, (2)} is residual in C(F,, [J()1*) for i =1, 2, ... From
Lemma 2.3 it follows that the set %'y = {h e C(X, [V@I™): h is an embedding} is
residual, and Lemma 2.4 implies that the operation of restriction T, is an open map
of C(X, [J(x)I*) onto C(F;, [T@T%).

0

Hence the set o = on‘ﬂl T (o) is residual in C(X, [7()]*). Since
i=
X S R, the set & is residual, too.

2.8. Remark. In the sequel, we shall need only the fact that for each n-dimen-
sional space X of weight not larger than ¢ and any point x, € X, there exists an
embedding A: X~ [J(7)]* such that h(X) € K,(z) and h(x,) = 0, and that for each
space X of weight not larger than t and any sequence {Fi1i=1,2,..} of its closed
sets with dim F; = «; < oo for i = 1, 2, ..., there exists an embedding h: X - [J()]'®
such that /1(F)) € K,(7) fori = 1, 2, ... This can be deduced by a standard argument
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from Remark 5.1 in [15], which contains the basic lemma for E. Pol's simple proof
of the universality of K,(z) for n-dimensional spaces of weight not larger than r.
Instead of the lemma, we can also use the original method of J. Nagata, i.e. Propo-
sition VI.2. A from [12].

Now, we shall state a technical lemma that will be applied in the proofs of Theo-
rems 3.2 and 4.2. This lemma is a consequence of Hausdorff’s theorem on extending
mapping (see Problem 4.5.20 in [4]), but it can also be proved in a more direct way.

2.9. LemMA. For each space X of weight not larger than t and any its closed
subset E, there exist a space Y of weight not larger than <, a point ye Y and a con-
tinuous map q of X to Y such that ¢”(y) = E and q|X—FE is a homeomorphism
onto ¥ — {3}.

The remaining part of this section is devoted to some notions and results which
will be used in the proof of Theorem 4.2.

We say that a continuous map f of a metric space X to a metric space Y is
uniformly 0-dimensional on a compact Z < Y'if for each point zeZ and each real
number &> 0, there exists a neighbourhood W of z in Y such that the set f~1(W)
is the union of a family of its open pairwise disjoint subsets of diameter less than e.
It is easy to observe that if ¥'is compact, then our notion of uniformly 0-dimensional
map f1 X— Y on the compact Y is equivalent to the notion of uniformly 0-dimen-
sional map introduced by M. Katétov in [7].

In [6], M. Katétov has proved the following theorem (see also [7] and [12],
Section III.8).

2.10. THEOREM. For every n-dimensional metric space X, there exists a uniformly
0-dimensional map f of X to the n-dimensional cube I".

The next theorem is a generalization of Theorem. 2.10. In this theorem, we
consider the n-dimensional cube I" as the lower face of the (r-1)-dimensional
cube "+,

2.11. THEOREM. If F is a closed n-dimensional subset of a metric space X,
then there exists a continuous map f: X—I""* such that f is uniformly O- dimensional
on I" and f~1(I") = F.

Proof. Let g be a uniformly 0-dimensional map of F to I" (see Theorem 2.10),
and g,: X~—I" ancxtension of the map g over X. By virtue of Proposition II1.8.D
from [12], for every m e N, there exists an open subsct U,, of X containing F and a real
number J,, >0 such that

(3) if W= I" is an open set of diameter less than J,,, then the set gy W)n U,
is the union of a family of pairwise disjoint open subsets of X of diameters less
than 1/m.

@
Obviously, we can assume that ¢l Uy, & Uy, for eachme N and F= () U,. Let h

m=1
be a continuous map of X to the unit interval I such that BY([0,1/m)) = U, for
each meN.
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We shall verify that the map f = guHA: X1 "+1 has the required properties.
Let us take a point z € I" and a real number & >0, and next a number me N
such that 1/m < &, and a neighbourhood W< I" of z of diameter less than 6,. By

virtue of (3), the set
FAWx0,1m) = gz (W) b~ H([0,1/m) = g (W)U,

is the union of 2 family of pairwise disjoint open sets of diameters less than 1/m,
and therefore the set ¥ = Wx[0,1/m) is a neighbourhood of z in I"*1 the inverse
image of which is the upion of a family of pairwise disjoint open sets of diameters

o
less than ¢ Thus £ is uniformly 0-dimensional on I". Since F = () U, we obtain
Jam =F "
Let us recall the basic information on Pasynkov’s partial products. For a topo-
logical space X, its open subset U, and a topological space Z, the formula

_Jy if yeX-U,
q(y)—{x ify=(x,2)eUxZ

defines a map of a set ¥ = (X—U)u(UxZ) to X; by the partial product
P(X, U, Z) we mean the set Y with the topology generated by the family of sets
{g7X(V): V is an open subset of X} U {V'x W: ¥V is an open subset of U, and W is
an open subset of Z}. Obviously, ¢ is a continuous map of P(X, U,Z) to X.

Consider now a topological space X, a family {U,: a e 4} of its open subsets,
and a family {Z,: « e 4}) of topological spaces. We know how to define for each
w e 4 the partial product P(X, U,, Z,) and the map ¢, of P(X, U,,Z,) to X. By
the partial product P(X,{U,: o€ A}, {Z,: « € A}) we mean the set of all points
{ya: @€ 4} of the Cartesian product PA P(X,U,, Z,) such that g,(v) = q5(¥p)

(1]

for every «, B € 4, endowed with the coarsest topology for which all the projections p,
(where py({y,: a e d}) =y, for pe 4) are continuous. If Z, = Z for each u€ 4,
then we write P(X, {U,: a e 4}, Z) rather than &

P(X,{U;: wed},{Z,: acd}).

The notion of the partial product is thoroughly investigated in B, A. Pasynkov’s
paper [13]. In particular, one can find there the proofs of the following three pro-
perties of the partial product P(X, {U,: ie N}, D(v)), where D(z) is a discrete
space of cardinality © =N, (see [13], (9) p. 177, (12) p. 175 and (8) p. 183).

A. If X is metrizable, then P(X, {U;: ie N}, D(z)) is also metrizable.

B. If the weight of X is not larger than 7, then the weight of

P(X, {U;: ie N}, D())

is not larger than 7.
C. If X is n-dimensional, then P(X, {U;: ie N}, D(7)) is also n-dimensional.
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In the proof of the next theorem, we shall apply the same argument as that used
by B. A. Pasynkov in the proof of Theorem 8.1 of [13].

2.12. THEORBM. For each space X of weight not larger than © and any its
n-dimensional closed subset F, there exist an (n-+1)-dimensional space Z of weight not
larger than T and a continuous map g: X — Z separating points of F and closed subsets
of X.

Proof. Let us consider a map f: X— I"** such that fis uniformly 0-dimensional
on I" and f~1(I") = F. Then, for each x € Fand each s > 0, there exists a neighbour-
hood V of f(x) in I"*' such that

(4) the set f~(¥) is the union of a family of pairwise disjoint open sets of
diameters less than e.

Let {V;: ke N} be a countable family of open subsets of I"*! containing for
each xe F and each >0 a neighbourhood ¥; of f(x) satisfying condition (4),
andlet Z = P(I"*', {V}: ke N}, D(z)). From the properties A, B, and C of partial
products it follows that Z is an (n+1)-dimensional space of weight not larger than z.

We are going to define maps g,: X'—P(I"**, ¥}, D(r)) which will satisfy the
condition,

(5) qio gi(x) = g0 g4(x) for xe X and k, I e N, where g,: P(I"**, V3, D(z))~
- I"** are the maps appearing in the definition of partial products.

We can assume that each member of the family { £ ~*(¥}): k& N} is the union
of a family {W{: 1€ A} of cardinality = of pairwise disjoint open subsets of X such
that for each x € F and each &> 0, there exists a neighbourhood ¥V} of f(x) such
that all members of the family {Wy: Ae A} are of diameter less than & For any
xe X, let

(F(, h(V) if xe Wy,
) = {f(x) ifx¢ U Wi,
Aed

where # is an injection of the set A into the space D(r). From the definition of
P(1"*, ¥, D(1)) it follows immediately that g, is a continuous map of X to
P(I"*, V,, D(z)). Further, by the definition of g, and g, we obtain (g g)(*)
= f(x) = (g0 9)(x) for xe X and k,[eN.

Equality (5) guarantees that the family of maps {g,: ke N} determines the
map g of X to P(I""*, {V;: ke N}, D(v)). Since pyog = gy for ke N, where
Pt P, {V,: ke N}, D())—~P(I"*L, ¥, D(z)) is the map appearing in the
definition of partial products, g is continuous.

It remains to check that the map g separates points of F and closed subsets
of X. Letus take a point x e F and closed subset E'< X such that x ¢ E, and let us con-
sider a neighbourhood ¥ of f(x) such that the diameters of the members of the
family {W}: Ae A} are less than the distance between the point x and the set E.
Then there exists a A e such that the set p; (V. x {#(D)}) is a neighbourhood of
g(x) disjoint from g(E), which shows that g separates x from E.
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3. Locally finite-dimensional spaces. Let us denote by V(7), where 7 is an infinite
cardinal number, the subspace of [J(D)[* = ([J(@I™)* consisting of all points
x = (Xg, X1, ) € [T % [J(D]¥ % ... which satisfy the conditions:

(1) there exists an ne N such that x, # 0,

(2) there exists a ke N such that x, < 1/k for m<k and x, = 0 for m=k,

(3) x,€ Ky(z) for each neN,
where the inequality x,, < 1/k means that the distance between cach coordinate of
%, € [J(O* and 0eJ(7) does not exceed 1/k.

The space W(x) is defined similarly, except that condition (3) is replaced by

(3" x,eK,(z) for each ne N.

Before we formulate the main theorem of this section, we have to establish
a certain property of locally finite-dimensional spaces.

3.1, TuroreM. Each locally finite-dimensional {space X has an open cover
{U;:i=1,2,..} such that dmU; < ifori=1,2,... and UinU; = &, whenever
limjl> 1.

Proof. Clearly, X = U V;, where ¥; € ¥, ... and ¥, is an at most i-dimen-

i=1

sional open subset of X for i = 1,2, ... Let us consider, for i = 1,2, ..., a conti~
nuous function fi: X — I which satisfies the condition: fJ‘(O) = X—V;, and define
U; = £~ Y(1/i+2, 1/i)), where

f(x) = k§1 126t (%)  for xe X,
For each x e X, we have 0 <f(x) <1, whence
X =70, 0) = 0 F @2, 1) = U U
Further, for any xe U;—V; we wouid have

0 @0 L]

Vi+2<f@) = Y 12 = 3 1276 < 3 12 =127,

k=1 k=it1 k=i+1
which is impossible. Hence U; < ¥;, and thus dimU; < dim ¥; < i. From the defini-
tion of the sets U, it follows directly that |i—j|> 1 implies U;nU; = @.

3.2. THEOREM. The spaces V() and W(t) are universal for locally finite-dimen-
sional spaces whose weight is not larger than <.

Proof. Obviously, ¥(c) is a subspace of W(z), but the proof of the universality
of the latter space is more elementary (for it does not involve Theorem 2.2, which is
indispensable to the proof of the universality of ¥(z)). Hence we shall first prove
the universality of W(z), and then indicate what modifications of the respective proof
are needed in order to show the universality of V(x).

First of all, we are going to showthat the space W(z) is locally finite-dimensional.
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Let us comsider a point x = (xq,xy,..) e W)= [J@OI*x [J(@D]*x ...,
where x; = (xj,0, X;,1,...) €J(T)XJ(r)x ... for j=10,1,.. From (1) it follows
that d(x;,;, 0)> l/k for some i,j,keN. The set U of all points satisfying this
inequ’ililty is a neighbourhood of x in W(z). From (2) and (3") it follows directly that

Ucs I;FOK_,(T)]X {0} x {0} x ..., and therefore W(z) is locally finite-dimensional.

Since W(7) is obviously a space of weight , in order to establish its universality
it remains to show that each locally finite-dimensional space X of weight not larger
than © is homeomorphic to a subspace of W(1).

Let {U;: i=1,2,..} be a sequence of open subsets of X with the properties
stated in Theorem 3.1. By virtue of Lemma 2.9 and Corollary 2.5, there exists
a map f; of X to Ki(r) such that

(4) f)|U; is an embedding,

©) f7(0) = X~ U,.

Obviously, we can assume that
() f(x) < 1/i+2 for xe X.
0

Let h = i Ao Ji, where fo(x) = 0 for x € X. From (4) and (5) it follows that the

map f; separates points of U; from closed subsets of X, Thus the family
{fi: i=0,1,..} separates points and closed sets of X, and therefore the dia-

gonal A is a homeomorphic embedding of X into P Ki(1).
i=0

In particular, for each point x € X, the point A(x) = (x4, X, ...) satisfies (3).
Now, let us consider an x e X, and take the smallest i € NV such that x € U;. From (5)
it follows that fi(x) # 0 and fj(x) = 0 for j # i, i+1. Further, (6) implies that
Six) < 1/i+2 for xe X and j = i, i+ 1. Hence the point A(x) = (x;, Xy, ...) satisfies
also (1) and (2), which concludes the proof of the universality of W(x).

Since V(z) is a subspace of W(z), then V(z) is a locally finite-dimensional space
of weight not larger than 7. To show that each locally finite-dimensional space X of
weight not larger than t is homeomorphic to a subspace of V(z), we have to con-
sider, for i = 1,2,..., 2 map f; = (hy-1y+1> Aya-1)+25 -5 Pypy), Where 7(0) = 0
andy()) = (L+D+Q+ D) +..+(j+1) = j(j+3)2forj = 1,2, .., of Xto KD+t
satisfying (4) and (5), and such that #(x) < 1/y(i+1)+1forxe Xand k = y(i—1)+1,
p(E—1)+2, ..., p(i) (such a map exists by virtue of Corollary 2.6).

3.3. Remark. From the last proof it follows that the space

00 o0
U@ = U {x=(xp,x;,..0e P K2): @ # {j: ; #0} =i, i+1}}
1=0 j=0
is also universal for locally finite-dimensional spaces of weight not larger than 7.
4, Strongly countable-dimensional spaces. Let us denote by E(z) (where t is an
infinite cardinal number) the subspace of [K (D" consisting of all points

x = (%, Xy, ...) € Ky(@) x K((¢) x ... with only finitely many coordinates distinct
from 0.
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The space F(r) is defined similarly — the only exception is the assumption.

that x, € K,(1) for ne N.
The main result of this section is the universality of the spaces E(t) and F(z)

(see Theorem 4.2). However, first we are going to give another example of a uni-
versal space.

o0
Let us consider the space C(t) = |J C,(v), where C,(7) is the subspace of
n=1

[T (D)% x I' consisting of all points x = (Xg, X1, ...
the conditions:

(1) xo € K (7).

2 x#0fork=1,2,..,m

(3) x, =0 for k>n

The space C(z) is perhaps not as nice as the spaces E(t) and F (), but the proof
of its universality is very simple.

4.1. THEOREM. The space C(7) is universal for strongly countable-dimensional
spaces of weight not larger than t.

Proof. By virtue of Theorems 4.1.7, 4.1.18 and 4.1.27 of [S], we have

Y& [J(@)I¥° x Ix I ... which satisfy

: L .
dim( Ll) CD) <( El: dim C(v))+1<( Z 2n)+l<oo.
n=1 n=1 n=1

1
The (I+1)th coordinate of each point of C(x)— U C (r) is distinct from 0, and the
(I+1th coordinate of each pomt of U C,(z)is equal to 0. Hence U C(n)i 1s a closed

subset of -C(x). Thus C(r) is strongly countable-dimensional.

Since, obviously, C(7) is a space of weight 7, it remains to show that each strongly
countable-dimensional space X of weight not larger than 7 is homeomorphic to
a subspace of C(z).

From the definition of strong countable-dimensionality it 1mmedlately follows

that X = U F,, where @ = Fy < Fy <..., and F, is a closed subset of X such that
n=0 .
dimF,<nforn =0, 1, ... By virtue of Corollary 2.7, there exists a homeomorphic
embedding f, of X into [J(z)]* which satisfies the condition:
) fo(x) e K, (x) for xe F,.
Let f,,1: X—I be continuous function such that

() f2i4(0) =
Obviously, the diagonal f = A f; is 2 homeomorphic embedding of X into

[J(D)]¥ x I**. We shall show that f(x) e C(z) for xe X.

Let us take a point x € X and a number 7 & N such that x € F, . ;— F,. From (4)
it follows that fy(x) € K, 4(t), and from (5) that fi(x) # 0 for k= 1,2,...,n+1
and fi(x) = 0 for k> n+1. Hence f(x) € C,41(z) € C(1). :
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4.2. TueOREM. The spaces E(t) and F(t) are universal for strongly countable-
dimensional spaces whose weight is not larger than .

Proof. One readily sees that E(t) and F(z) are strongly countable-dimensional
spaces of weight not larger than 7.

Obviously, E(7) is a subspace of F(r), but first we are going to prove that each
strongly countable-dimensional space X of weight not larger than t is embeddable
into F(). In such a way we shall show that the universality of F(t) can be established
without using Theorem 2.2.

o
Clearly, X = |J E,, where ¥ = E,CF, ...

n=0
closed and dimE, <». Let Y,., be a space, and ¢,,, a map with the properties
described in Lemma 2.9, corresponding to the space X and 'its closed subset E,.
By virtue of Theorem 2.12, there exists a map g,4, of ¥, to an (z+2)-dimensional
space Z, ., of weight not larger than t which separates points of the set g, 1(E,+)
and closed subsets of the space Y, .. Further, by Corollary 2.5, there exists a homeo-

morphic embedding p,., of Z,,, into K,,+2(r) such that

and for each n the set E, is

Pos1 © Guss * Gur ) (B < (0} .
‘ It is easy to verify that the map‘ Byss = Pui1© Gns1® goe1 SCPATALES points of
the set E,.,—E, and closed subsets of the space X. Thus the dlagonal h= Ah,,
where h,(x) = 0forxe Xandn = 0, 1,is an embeddmg of X to P K,,(r) It remams

to show that A(X) < F(z). Consider a point xe X. Then there emsts a number
neN such that xe E,. Clearly, x e E,, for m>n. Hence for m 2n+2 we have

11"1 (x)

which yields the relation /., < F(1).
To prove t]mt each strongly countab]e dimensional space of we1ght not larger

= P~1°9m ”Ym—l(x) €Pm-1°Gm-1° qm—l(E - 2) = {0}

thd]l'l‘ is embeddable into E(r) it suffices to observe that the map( P f ) F (v:) where f,,

is an embedding of K,(t) into [K,(0)]"*! satisfying the condltlon f 0 =0 (wluch
exists by virtue of Corollary 2.6), is a homeomorphic embedding of F(z)
into E(t).

5. Other examples of universal spaces. To conclude the paper, we shall describe,
using the Pasynkov partial products and the Lipscomb spaces, other examples of
universal spaces for locally finite-dimensional and strongly countable-dimensional
spaces.

5.1. Remark. In [2], L.J. Bobkov announced that the partial product
P(J,,{U;: ie N}, D(z)), where {U;: ie N} is an arbitrary countable base for Ju,
is a universal space for locally finite-dimensional spaces of weight not larger than 7.
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There exists a similar universal space for strongly countable-dimensional
spaces of weight not larger than 7. Namely, the partial product

P(K,,{U;: ie N}, D(v)),

where {U;: ie N} is an arbitrary countable base for K,,, is such a universal space.

Both these results can be obtained by defining an embedding of F(z) or W()
into P(J,, {Uy: ie N}, D(v)), and an embedding of C(z), E(r) or F(z) into
P(K,, {U: ieN}, D()). 1t is easy to verify that the respective partial products
belong to the corresponding classes of spaces.

5.2. Remark. Let us consider the Baire space B(r) of weight v and the rela-
tion ~ on the set B(t), where (xy, X3, ...}~ (¥4, ¥2, ...) if x; = y; for each ie N
or else there is an i € NV such that x; = y; forj <i, x;4, = yyfork >l and y; . = x;
for k> 1. The quotient space L(r) = B(z)/~ is a 1-dimensional space of weight z.

The space L(r) was defined by S. L. Lipscomb, who also discovered its basic
properties. In particular, he proved in [8] that each n-dimensional space of weight
not larger than v is homeomorphic to a subspace of [L(r)]"**. By modifying the
Lipscomb proof of this result, it is possible to obtain proofs of universality of the
two spaces defined below.

Let dy, d,, ... be a sequence of distinct points of the discrete space D(7) of
weight ©2>,, and let 0 be the class of the point (dy, d;, ...) € B(z). For an arbi-
trary metric ¢ om L(z), the subspace of [L(1)]* consisting of all points
x = (Xg, X1, ..-) € L(t) X L(z) x ... which satisfy the conditions:

(1) there exists an ne N such that x, 5 0,

(2) there exists a k & N such that o(x,, 0) < l/kform<kand x,, = O form >k
is universal for locally finite-dimensional spaces of weight not larger than 7, and
the subspace of [L(7)]* consisting of all points x = (x,, X, ...) € L(1) x L(z) % ...
with only finitely many coordinates distinct from 0 is universal for strongly countable-
dimensional spaces of weight not larger than .

Added in proof. The author has been told by R. Pol that Theorem 2.12 was announced in
1. M. Kozlovskit’s paper Zee meopemss o memp ux npocmp , JI. A. H. CCCP 204
(1972), 784-787,
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