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Finite coverings of groups
by

Zhi-Wei Sun (Nanjing, China)

Abstract. In this paper we study finite coverings of groups by cosets. We mainly generalize
three known results: Tomkinson’s result which is an improvement to Neumann's theorem, Korec’s
result which is a generalization of Mycielski’s conjecture, and Simpson’s result which improves
a conjecture of Zndm. The main part of this paper is Section 4.

1. (M, S)-coverings of a group. A semigroup containing an identity element is
called a monoid. In the following commutative monoids are considered as additive
monoids while groups are considered as multiplicative groups.

DermviTION 1. Let M be a commutative monoid and S a set. A system

6] {XYiat

of subsets of X is called an (M, S)-covering of X if there exist my, ..., m e M such
that

k
{3 m:xeX}cS and { Y m:xeX}gsS
rety xety
for any I<{1,...,k} {( 3, m; is considered as the zero element 0 of M if x¢e X
iel

xeX;
for no iel).
Remark 1. Let (1) be an (M, S)-covering of X. Clearly each X, is non-empty.
Since
0}={ 3 m:xeX}s

ic@
xeXi

we have 0¢ S and hence

m,#O

A~

i
xeXy

for any x e X. This implies that (1) is a covering of X.

The set of all non-negative integers forms a commutative monoid under the
usual addition. We denote this monoid by Z* u{0}. Clearly, (1) isa (Z* u {0}, {1})-
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covering of X if and only if it partitions X, and (1) is a (Z* U {0}, Z*)-covering
of X if and only if X is irredundantly covered by (1).

Let G be a group and Gy, ..., G, its subgroups. If G is partitioned into cosets
a, Gy, ..., Gy, then
(2) {a; Gi}’i‘: 1
is called a (left) coset decomposition of G.

The following result is copstructive.

THEOREM 1. Let G be a group and H its subgroup of finite index. Let

Hy=HcHc..cH =G

be a chain of subgroups of G. Let ae G and

[Hiet: Hid—1
Hy=Hou U 8H, i=01,..,n-1.
i=t
Then
'€)) {aH,, abPH;: j=1, .., [H; 1 :H]-1;i=0,1,..,n—1}

is a coset decomposition of G, hence it is a (Z* U{0}, {1})-covering of G-

Proof. Let g € G and s be the smallest i such that a~'g € H, (a~* denotes the
inverse of a). Obviously we have

() geaH, if and only if s = 0,

(i1) geab(J“Hi for some j (i.e. a 'ge H;,,~H) if and only if i+1 = s,

(iti) abPH,, ..., abR,, . ga-1 are pairwise disjoint,

From the above, it follows that (3) is a partition of G. This completes the proof.

In the following the cardinality of a set S will be denoted by |.S|. If H is a sub-
group of G then [G:H] will denote the index of H in G. If H is a normal subgroup
of G then G/H will denote the factor group of G by H.

THEOREM 2. Let G be a group and G, ..., Gy its subgroups such that (2) is an
(M, 8)-covering of G for some commutative monoid M and some set 8. Let Gy = G
and H be a proper subgroup of G containing some G,. Then

@4 min({l<i<k:G,cH), [G:HD) > [{¢,H:G, S H,1<i<k}|

k k

= N G:Hn () GJ.
Ggﬂi;,lo?'*ll GI=E%(¢‘H
Proof. If H2G, for i = |, ..., k then by Remark 1 we have
k k

G= | oG, U a,H
i=1 i=1
and hence

k> {aH: 1<i<k}| = [G:H] = [Gy: HNG,]
which shows that (4) holds.
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We now suppose that I = {l <i<k: G;£H} # @. Since (2) is an (M, S)-
covering of G there exist my, ..., m € M such that

k
) { Y mixeGles
xl:ailGl
and
(6) { ¥ m:xeGigS forany I'c{l,...k}.
iel’
xeaiGy

Note that I {1, ..., k}. For some ae G we have
Yo omy= >, m¢S foranyge () G;.

iel iel iel
agemGy aecaGy

This together with (5) shows that for any ge () G,,
iel

m; # 0
ie{l,...k}—1I
ageaiGy

and hence there exists an s(g) (1 < s(g) <k) such that Gy, = H and ag € a,,;, Gy
If g,9'e N G; and g(Hn () G) # g'(HN | G, then g~*g’ ¢ H which implies
iel iel iel

that
aypnH = agH # ag'H = ayH .
Thus
Ha,H:G = H, 1<i<sk} 2 |{apH:ige N GH=[N G:HN eri] ,
iel iel ie

hence (4) holds.

The proof is now complete.

Remark 2. Theorem 1 of [9] is the special case of Theorem 2 in which G is the
additive group of integers, M = Z*u{0} and S = Z*.

THEOREM 3. Let M be a commutative monoid and S a set. Let G be a group
and Gy, ..., G, its subgroups. If there exist ay,..,a,€ G such that (2) is an
(M, S)-covering of G, then for any I<{l, ..., k} we have

&) [N G (f) Gl <(k—1ID! (iﬂ G, refers to G).
ier  i=1 Y]

We can show the theorem as M. J. Tomkinson ([11]) proved his Theorem 2.2.
The only thing we need to remark is the following:

If my, ..., m, € M satisfy (5) and (6), then as in the proof of Theorem 2, for any
Ic{l, ..., k} there exists an ae G such that

> m#0 foranyge NG
Jj¢I iel
ag ea;Gj

which implies a () G; = U 4;G;.
iel JtI
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In the case M = Z* U {0}, S = {m,m+1, ..}, Theorem 3 gives
COROLLARY 1. Let G be a group and G, - G, its subgroups. If every element
of G belongs at least to m (= 1) members of system (2), which fails to hold if (2) is
replaced by one of its proper subsystems, then (1) holds for any 1< {1, ..., k}.
Remark 3. Inthe case m = 1, the corollary is similar to Lemma 2.1 and
Theorem 2.2 of [11]; we mention that it was B. H. Neumann ([5]) who first proved
k

[G: N G]< + . For m>1, as far as I know, no one else has shown even the

i=1 k
finiteness of [G: () Gi].

i=1

DerFmNITION 2. Let S be a set and M be a commutative monoid. S is said to be
M-connected if for any my,m,,mye M, myeS and m+my+m, e S implies
my+my e S.

Obviously, both {m} and {m, m+1, ...} are Z* U {0} -connected. In Section 4
we will deal with (M, S)-coverings where § is M-connected.

2. (M, S)-good classes of groups. In this section we study (M, S)-good classes
of groups which will be used in Section 4.

DEeFNITION 3. Let M be a commutative monoid and S be a set. A class I' of
groups is said to be (M, §)-good if it has the following property:

If 2) is an (M, S)-covering of G & I' with all the subgroups G, subnormal in G
then for any maximal normal subgroup H of G we have
®) {CeG/H: C24,G; for some i =1,..,k} = @ or G/H.

THEOREM 4. The class of all groups is (Z* v {0}, {1})-good.

) Proof. Let G be a group and Gy, ..., G its subnormal subgroups such that (2)
isa (Z*u {0}, {1})-covering of G (i.e. a partition of G). Let H be a maximal normal
subgroup of G such that

{CeG/H: C24,G, for some i} # .
Suppose that a;G; = aH for some a € Gand 1 <j < k. Since aeal, q;H = aH=a,G,;
and hence G; < H.
k
Denote _ D1 G, by F. Obviously F< H. By Theorem 3 (or Corollary N, [G:F]

is finite. Since G is subnormal and H is normal in G, by Lemma 7.19 of [7], G, H is
a subnormal subgroup of G. A maximal normal subgroup is also a maxima) subnormal
subgroup, so we have G,H = H or G for each i. Let x & G. If G & H, then G, H = G
bence ;' x = g,k for some g,e G, and he H, therefore

@ GinxH = a,GnaghH = af9,G,ng H) = a,9(G,n H)

c?nsists of [G;n H: F] left cosets of Fin G. Let I denote the set {I<igk: G¢H}.
Since a;Gy, ..., a,G; are pairwise disjoint, xH\\J ¢,G; = xH— U@, G, xH)
lel iel
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consists of [H:F]— Y, [G;n H:F] left cosets of Fin G. This number does not depend
on x. Note that ‘&7

a;Fsa;G; = a;G)\ I_L;JIaiGi Sa; H\ ikéJ’aiG,- .

Hence xH\ {J a,G; # @ for any xe€G.
iel

Suppose that C = xH e G/H does not contain any «;G;. Then
k k
xH =xHn(U a;,G) = U (@;G;nxH) = | (a,G;nxH)

i=1 i=1 iel

which shows that xH\ U @;G, = 9. This contradiction implies that

iel
{CeG/H: C2a;G, for some i} = G/H .

The theorem is therefore proved.

Remark 4. The proof of Theorem 4 is similar to that of Lemma 6 of [3],

THEOREM 5. Let M be a commutative monoid and S a set. Then the class of all
cyclic groups is (M, S)-good.

Proof. Let G = (a) be a cyclic group and Gy = (d"), ..., Gy = (a™) its sub-
groups such that (2) is an (M, §)-covering of G. Let H be a maximal subgroup
of G. If H = @ then (8) holds trivially. We now suppose that H 3 G. Obviously
H = (a°) for some prime p. Let G, = G, ny =1 and

I={0<i<k: G¢H}.
Note that 0e ] and G, = ("). If ie I then (a™)&(¢F), and hence n; is relatively
prime to p since p is a prime. Clearly (| G; = (a") where n is the least common multiple
iel
of those n; for which ie I. Since n is relatively prime to p we have
Hna NG = @)@ = (@".
iel

Suppose that the left side of (8) is non-empty. That is, aH=24; G, for some a e G
and 1<j<k. Clearly, H=G;. By Theorem 2,

{aH: G, H,1<i<k}| > [_ﬂlGaiHﬁiq Gl = [(a"): (@] =p = [G:H].

This shows that every element of G/H contains a member of (2). We are done.

3. Two functions meeded. In this section we study two functions which will be
needed in Section 4.

DervTION 4. The (Mycielski) function f: Z* —Z* U {0} is defined as follows.
If the canonical prime factorization of n is

) n =‘_T; J 2
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then

o) = 3 atpi-1).
Remark 5. f(1) =0, f(mn) = f(m)+f(®n).

We mention that the function f first appeared in J. Mycielski’s conjecture
{cf. [4]).
DerFINITION 5. For an arbitrary group G and its subnormal subgroup H define
[G:H] if [G:H] is infinite ,
d(G, H) =< ¢ . . .
( ) Y ((Hi:Hi—(]-1) if [G:H] is finite,
i=1

where H, = H, H,, ..., H, = G is a maximal chain of subgroups of G such that
H;_,is normal in H; for all i=1,...,n.

. Remark 6. Let H be a subnormal subgroup of G. If the index of H in G is
ﬁmt.e, then by Theorem 8.4.4 of [2] d(G, H) does not depend on the choice of the
chain Hy, Hy, ..., H,. If [G: H] is infinite and there exists a (finite) maximal chain
Hy=H,..., H,= Gof subgroups of Gsuch that H;.., isnormalin H;foralli=1,..,n,

n
hen at least one of the indices [H;:H;_,] is infinite since [G:H] = [] [H,:H,..],
=1

and hence by the absorption law of cardinal arithmetic (cf. [1], p. 164) we have
S UHH =1 = 3 (HiHyd=n = Y [H: -]
i= i= i=1

= max [H;:H; ] = 11;11 [Hi:H;_,]1=[G:H].

1Kign

We mention that d(G, H) = 0 if and only if H = G. And if X is a subnormal sub-
group of H then

d(G, H)+d(H, K) = d(G, K) .

_ In the case where H is a normal subgroup of finite index in G, d(G, H) was
introduced by I. Korec [3]. We will define in another paper d(H, K) for any two
subgroups H, K of a group G.

” THEOREM 6. Let G be a group and H its subnormal subgroup of finite index.
hen
(10) [G:H]-12d(G, H) 2 f([G: H]) > log,[G: H] .

Proof. We first note that

k k
‘l_!(l+xi)>1+ Yox; for Xy, ., %=0.
= i=1
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If (9) is the standard form of 7, then
S = L olpi=1)< L et=D< [TU+p=D~1 =n—1

=1 =1
and

r r
oI H(Z’““W"; HP? =n.
=1 i=1

By the last inequality we have
F(G:H)) =1og,[G:H].
Let H, = H, Hy, ..., H, = G be a maximal chain of subgroups of G such that
H,_; is normal in H, for all i=1, ..., n. Then

[6:H1~1 = (B, Hol—1 = [T [H: Hio]-1
> d(G, H) = z ([H;: i1 1) >i§1f<[Hi:Hi-11)

=f(f1[ [Hi:H,_()) = f([H,: Hp)) = f(G:H]) .

The proof is now complete.

TuaeoreM 7. Let G be a locally nilpotent group (i.e., each finite subset of G is
contained in a nilpotent subgroup of G) and let H be a subgroup of finite index in G.
Then H is subnormal in G and

d(G, H) = £ (G:HD -

Proof. Let H, = Hc H,c...c H, = G be a maximal chain of subgroups
of G. (The case H = G is trivial.) By [6] (pp. 342-345), for a locally nilpotent group
its subgroups are locally nilpotent and maximal subgroups are normal (the latter
is due to Baer and McLain). Since H,_, is maximal in H;, H;_, must be normal
in H;, and hence H,/H,_ is a cyclic group of prime order since it contains no proper
subgroup. Thus H is subnormal in G and

d(G, H) = ,Z (B H =) = 37 (HiiHims)
=f(i11 (Hy: i) = £ (G:H) -

4. Our main results. We first give a basic fact which will be often used.
FAcT. Let G be a group and H, K its subgroups.

(a) If x€ G then [G:x™'Hx] = [G:H].

(b) If [G:H] is finite then [K:Hn K] is also finite and [K:HnK]1<[G:H].
(¢) If H is subnormal in G then Hn K is subnormal in K.
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(d) If H and K are both subnormal in G then HN K is subnormal in G,

(e) If g € G and H is subnormal in G then g~ Hy is subnormal in g~ 1Gg = G.

Proof. By [10] (p. 23), G = HxG contains exactly [G:Gnx™"' Hx] right
cosets of H, thus part (a) holds. Parts (b)-(e) can be found in [10] (p. 25, p. 124).

The following theorem is our central result.

THEOREM 8. Let M be a commutative monoid and S an M-connected set.
Let I' be an (M, 8)-good class of groups such that if a group belongs to I then so do
its normal subgroups of finite indices. Suppose that G € I' and (2) is an (M, 8)-covering
of G with all the subgroups G, subnormal in G. Then for any subgroup K of G, either
IK) = {I1<i<k: KEG} is empty or there exist an rel(K) and x e K\G,
(ie I(K)—{r}) such that

k
1) min((K)-1, [K:Kn () G1-1)
k k
= [{x(Kn N G): ieI(K)—-{r}} = d(K, Kﬁinl G).
i=1 =

k
(Note that by Fact Kn () G; is subnormal in K.)
i=1

k k k
Proof. If x;€ KE\G, then x,(Kn (| G)) # Kn () G; is a left coset of Kn ) G,
i=1 j=] Toa}

in K. So it is sufficient to prove that for any subgroup K of G either J(K) = @ or
there exist an r € I(K) and x; € K\G, (i e I(K)~—{r}) such that

12 {x(Kn (’3 Gy ie I(K)—{r}} =d(K, Kn (k) G) .
i=1 =1

We now prove this by induction with respect to [G:'(,% G]. (Note that by Theorem 3
the index [G:_{% G} is finite.) -

If [G: {% gi]1= 1 then ({‘] G;= G and hence I(K) =@ for any subgroup
K of G. - -

Let [G:if)l Gi]>1 and K be a subgroup of G such that I(K) is non-empty.

Suppose that G; # G. (Note that such a G exists.) Since G, is a proper subpormal
subgroup of finite index, there exists a proper maximal normal subgroup H of ¢
containing G;. Let {g; H, ..., g, H} = G/H where h = [G:H] < [G: 6] < 0. Since (2)
is an (M, §)-covering of G, there exist m,, ..., m, € M, such that (5) and (6) hold,

We now introduce some notation. For each s (I €s<h), let I, be a minimal
subset of {1, ..., k} such that

13) { Y mi xeg,H}S.
K Tel,

xemGi
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It is clear that I, exists. By Remark 1, 0 ¢ .S and hence I, is non-empty. We then set

H,= ((HnG), K,=KnH, K, =K._,0H,,
tala
i, J-{i(@l.,’ Kv--ﬂ;HﬁGl} if Kv—l # Ks:

T WIgigk: aGisg,H and KEGY  if Koy = K,

for s =1, .., h
We remark that:

K k
M K, = Krwllmlﬂ‘(llr\G,) = KleLG,.

I
This is because I == |} I, is exactly the set {1, ..., k}, which follows from (5),
ym |

(6), (13), the M-connectivity of § and the fact

]
(Y mrxeG= U { Y m+ 3
al =1 faly lal—1Iy
xaaiGiy xamy

(i) My, ..., M, are pairwise disjoint. Clearly, i € M, implies that &,G;ng, H # &-
(Note that if 7 & 7, then «, G, ng, H 5 @ by the choice of I,.) Suppose that i e M, M,
and s < ¢. Since ¢, Hrg Il = &, we must have K., # K, and K,_; # K. Hence
iel,nl, Ko, EHAG, and K. (EHNG. Since s<t, we have K-y cK,c H,
< HA Gy, contrary to the fact K., EHAG, Thus M,nM, = @ if s<t.

(i) M, < I(K). If K,.. = K, then it is obvious. Let K,., # K, and ie M.
Since K,. S K, and K,.,£HnG,, we have HnK = K, HnG; and hence
K&£G,.

g (i‘v) K, is subnormal and has finite index in K-, because H, is subnormal and
has finite index in G (cf. Fact).

By the choice of I, {g; *a;G, M} i1, is an(M, S)-covering of H. By Remark 1
foreach ie I, gy 'a G, n H is non-empty, and hence it is a left coset of G;nHin H.
Note that HeI', G;n H is subnormal in H and

m: xeg,H}sS.

xamGy

k k k
[H: () (GnHD]< [I;I;er'n1 Gy = [H:in]L G< [G:i _Q GjJ.
lély v | -

We also note that K., is a subgroup of H. If K., # K,. (= K- 1n1?,) then
M, = {iel: K. #HNG} % @, and hence by the inductive hypothesis there
exist i, € M, and x, € K, \HNG, for ie M,~{i,} such that

(K A H): e My~ (1,1 2 d(Kim1, Kims O HL) 5
i.e.,
l{xiK,v: ie M.u"" {13}}1 Z d(Kx-‘-l s K-;) .

Suppose that K., # K,. If ie M,—~{i,} then
X € K, ul\I{ﬁG; S HnE\Hn G; < K\G,.


Artur


46 Zhi-Wei Sun

If i,i'e M,~{i} and x,K, # %, K, then x;'x;¢K,, and hence x;'x,¢K,,
XKy # x, K, I K-y # K, t>s, ieM~{i} and i'eM,~{i} then
xeK,_\HNG,;, x,eK,_\HNG,, and hence

x¢ HnGy, xp KK sKcH,cHNG,

which implies that x; ¢ x. K}, i.e., x; K, # x, K,. From these we have

i

| k:)l {x:K,: ie M—{i}}| [{x:K,: ie M-{i}}|

s §=
Ky—1#Ks Ks- 1*1(,

A\

Kx K, ie M~ {i}}
K,,iﬂ‘-lu

h

= ) A&y, K)

s=1
Ka-1FKs

h
Z d(Ka—-ia Ks) = ll(Kl): K.h)

I

I

d(HnK, K ﬂ ).

i=1
(Note that d(K,_,, K) =0 if K,_, = K,.)
Case 1. Kc H. ¥ K,_| = K, for each s = 1, ..., & then

k k
K=KO=K1=...=I<},==K('\nGgg nGi
i=1 i=1
and hence I(X) is empty. We now suppose K,_, s K,. For
ie I(K)~ U (M~ {i})
P

we let x; be an element of K\G,. Note that i, ¢ M, SI(K) and x,& K\G, for ie
I(K)~—{i}. We have

]{xi(Kn‘QIG,.): te IK)~{i}}] > | U {x.Ky: ie My~ o

K, ﬂFK.
k k
> d(HN K, Kn () G) = d(K, Kn () G)
= ism ]

which shows that (12) holds for r = i,.
Case 2. K£ H. In this case, | = [K:HNK]>1. By Fact we have I<h. Let

{HﬂK, bl(Hr\K), ey bl_l(H('\K)}
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partition K. If 1 <5</, Kooy # K and b(HNK) S G,,, then be G, HNK =G,
and hence K. S K, = HnKeHnG,, contrary to the fact i,e M, So if
K, # K, and 1 « s <[ then there exists an x,, & b(HNKNG,,. If K,.., = K, then

= {lgighk oG gl and KEG} = {1<i<k: 0,G,cg,H},

for if 4,6, &5 g, H then G 6oy Ya, i e GIH, henee G e H and it follows that K&£G,.
(Note that K¢IL) Since «GycaHeGIH and I' is (M, S)-good, the set
f1 givk: q,Gysg, s nmx_unpty for each s e 1,...h Hence |M|x1 if
Ko = Ky In the case K,y = K, i, is defined to bc an clement of M. We put
X, = b~ it K. = K,and 1<5s </ So far we have defined i, for every s = 1, ..., It
and x;, for all 1< 52/ We choose vy to be an clement of KNG, if

i I(K)~ ( L (M~ Lidyu{iy, ...ﬂi,»,]})
PR
Note that M, s @ for each s, r = e M, & I(K). If K., = K, and 1 <5< then
we have G, & H and hence x;, = b,e K—HnK< K\G,,. From the above it is
casy to see that x;e KNG, for cach ie /(K)~{r}. If K ., # K, and ie M,—{i,}
then x &Ky NHNG G Ky &Ky = HNK, hence x,¢x,K <b(HnK) and
x, Ky # x Ky for t==1,..,0[=1L I lgs<t<l then x, K, =b(HnK),
%, Ky, & b(HK) and hcnu., x,,K,, # X, K. Thus

|{x,(1{ni91(’r',): ieJ(K)~{r}}
B
2 l{leh: i 91 (Ms'f‘{ix})u{il., ey il-—l}},

Ky ¥ Ky

k
= | U {w Ky ie M—{i}}|+1-1> d(HnK,KnlﬁlGi)-}«[K:HnK]—l
Knu-l*l\.

k k
> d(HNAK, Kn () G)+d(K, HOK) = d(K, K0 () Gy).
im ] =

By the above, Theorem 8 is proved by induction.

Tanorem 8. Let M be a commutative monoid and S be a non-empty M-connected
set not containing the zero clement of M. Let I' be an (M, S)~good class of groups
such that if a group belongs to I' then so do its normal subgroups of finite indices.
Let Gel and I its subnormal subgroup of finite index. Then 14+d(G, H) is the
smallest positive integer k such that there exist ay, ..., ay & G and stibnarmal subgroups

Gyy oy Gy of G such that (2) is an (M, S)-covering of G and lOIG, =

Proof. In the case H = G the result holds trivially. o
We now suppose that H % G. Let Hy = HeHyc...cH,= Gbea ma')umal
chain of subgroups of G such that H,.., is normalin H; for alli = L, ..., n. Obviously
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each H; (0 < i< n) is subnormal in G. It is clear that every (Z* U {0}, {1})-covering
is an (M, S)-covering. Hence by Theorem 1 there exists an (M, S)-covering
k

{a;G Y=, of G such that all the subgroups G, are subnormal in G, () G, = H,
i=]
= H and

n—1

k=1+ 3 (Hiy:H]-1) = 1+d(G, H).
=0

k
If (2) is an (M, S)-covering of G such that each G, is subnormalin Gand ) G, = H,
k i=1

then I(G) = {1 <i<k: G £Gy} is non-empty since () G; = H % G, and hence by
Theorem 8 we have i=1

k
k>1+I(G)|=1>1+d(G, () G) = 1 +d(G, H) .
i=1

This completes the proof.
From Theorem 4 and Theorem 8, we immediately have

THEOREM 9. Let G be a group and Gy, ..., G, its subnormal subgroups such
that for some ay,..,a e G (2) is a coset decomposition of G. (Hence (2) is
a (27 u{0}, {1})-covering of G.) Then for any subgroup K of G not contained in

k

N Gi, there exist a proper I-subset {i,, ..., i} of {I<i<k: K£G,} and ! distinct
i=1 k
left cosets Cy, ..., C; of Kn [\ G, in K such that C,nG,, = @ forall s = 1, ..., 1,
k i=1
where = d(K, Kn () G). (By I-subset we mean a subset of | elements.)
i=1

Remark 7. Let G be a group and (2) its coset decomposition. J. Mycielski and

W. Sierpiriski [4] made a conjecture that k > 1+ ([G:G,]) if G is abelian and [G:G})

is fipite. S. Zndm (1 3]) conjectured for the infinite cyclic group G that
k

kz1+1([G: 1”1 G;]). In [3] Korec confirmed these two conjectures by further
= k
proving that if all the G, are normal in G then k > 1+d(G, ) G,) holds. We remark
i=1

that Korec’s result follows from Theorem 9 if we put X = G.
Combining Theorem 4 with Theorem 8 we obtain

THEOREM 9'. Let G be a group and H its subnormal subgroup of finite index.
Then 1+d(G, H) is the smallest positive integer k such that there exists a left coset
k

decomposition (2) of G in which all the G, are subnormal in G and NG = H.

Remark 8. If (2) is a left coset decomposition of G with all tli: IG; subnormal
in G, then by Theorem 3 and Theorem 9’ (or Theorem 9)we have k 2 1+d(G, lﬁl G),
and hence by Theorem 6

k
[G: N Gl< 2 <kl
i=1
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COROLLARY 2. Let G be a group. Suppose that it can be partitioned into k cosets (o8
of subnormal subgroups Gy Then all the indices [G:G,) are finite and

(14) kZ1+f([ng, .., )
where n; = [G:G|} and [ny, ..., n] denotes the least common multiple of ny, ..., n,.
Proof. If C;is a left coset of G; then we suppose that C, = ¢;G; and put
G¥ = G, If C,is aright coset we then suppose that C; = Gya;and put Gf = a7 * G,a,.
By Fact, GI' is subnormal in G and [G:Gf] = [G:G|]. Note that C, = 4,G* for
k

je1,..,k By Corollary 1, the index of H = () Gf is finite. Since
1=l

[G:G1[G*: H] = [G:G*|[G*: H] = [G:H],

n; = [G:G] is finite for each / and [n,, ..., m] divides [G: H]. Hence by Theorém 9’
and Theorem 6 we have

k2 14+d(G, H)Z21+f(G:H) 2 1+ ({ng, or ) .
COROLLARY 3. Let G be a group and H its subgroup of finite index. Let Hy denote

the core of H in G (i.e. the largest normal subgroup of G contained in H). If H is
subnormal in G then

(15 261 5 G Hg] 2 [G:H] 2 14+d(G, Hp) .
Proof. Assume that A is subnormal in G. Let s = [G:H] and {Ha}!-, be

a partition of G. Since H is subnormal in G, a; ' Ha, is also subnormal in G (cf. Fact),
By Fact,
h h ]
[G: N a'Ha]<]IG: af *Hay) = inl [G:H] = h'<oo .
i=m1 i=1 =
Note that {a(a] {Ha;)}!., is a left coset decomposition of G. Applying Theorem 9,
we get

h
hz14+d(G, {ﬂ a7 ‘Ha) .
=]
We note that
h h b B
Ho= (\g™'Hy = () () (a) " Hisa) = (1 () a7 HYa = () o Hay.
gad

im) xall =] xall
Thus
[G:H] = h | +d(G, H) .

Hence by Theorem 6 we have
QLI o 9lGT0) » (G2 H ) 2 [G H] 2 1 +d(G, He) -
Remark 9. As far as I know, the only known result concerning the. co‘re of
a subgroup is the following (Theorem 1.6.9 of [6]): If H is a subgroup of finite index
in a group G then [G:Hj] divides [G:H]!.
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Combining Corollary 1, Theorem 7, Theorem 9 and Theorem 9, we obtain
THEOREM 10. Let G be a locally nilpotent group.

(@) If (2) is a left coset decomposition of G and K is a subgroup of G not contained
k

in () Gy, then
i=1

k k
[K:Kn N GI<[G: NGl<w
i=1 i=1
and

k
(16) l=f([K:KhiDIGi])<|I(K)I =|{I<i<k: KELG},

k
moreover there exist I distinct left cosets Cy, ..., C,of K () G, in K and an I-subset
=1
{ig, .., it} of I(K) such that C;nG, = & for every s =1, ..., 1.
(b) If His a subgroup of finite index in G then 1 +f ([G: HY) is the smallest positive
integer k such that there exists a left coset decomposition {a,G Y=, of G satisfying
k

NG =H
i=1

As a consequence of Theorem 5, Theorem 8 and Theorem 8 we have

THEOREM 11. Let M be a commutative monoid and S a non-empty M-connected
set not containing the zero element of M.
(a) Ler

amn {di(mOdni)}:; 1

be an \M, S)-covering system of residue classes on Z, and let [ny, ..., n,] denote the
least common multiple of ny, ..., m. If d< N = [ny, ...,m] is a divisor of N then

as) = f(Nd) <|I(d)| = [{1 <i<k: nyd}|

and moreover there exist an I-subset {i,,..., 4} of I(d) and | distinct integers
my, ..., my such that 0< m; < Nfd and n; ydm, for every s =1, ..., l.

(b) For any positive integer N, 1+f(N) is the smallest positive integer k such
that there exists an (M, S)-covering {amodn)ee, of Z with the property that N is
the least common muiltiple of ny, ..., n,.

Remark 10. In [15] Zndm conjectured that if (17) is an irredundant covering
(.e.a(ZU{0}, Z")-covering of Z) then k = 1 +/ (g, s me]). In [8] R, J. Simpson
proved this conjecture, in fact he proved more, his result states that (18) holds
if d<N = [ny,..,n]is a divisor of N provided that (17) is an irredundant co-
vering of Z.

;. . . g N,
If p* is the highest power of a prime p which divides N, then for d = w4 Pt
p
where 0 < <o, (18) is equivalent to the following:

{I<i<k: Pl =14+ @—B+1D)(p-1).
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5. Some open problems. In this section we will pose several unsolved problems.
It is known that k! is the maximum value of the index [G: F\ Gilin a group G
with an irredundant covering (2) (cf. [11]). What about s(k), ‘:}Tel maximum value
of [G: ‘(k\lG,] in a group G with a partjtion into & left cosets of subnormal sub-

groups Gy, ..., G,7 By Remark 8, s(k)<2*"!. On the other hand, s(k)>2*"!
since for k>1

{0(mod 24~ 1), 1(mod2), 2(mod2?), ..., 2¢"*(mod 2"~ 1)}

is a coset decomposition of the additive group Z. So we have s(k) = 2*~1,

The above discussion, together with Theorem 1, Theorem 3, Theorem 8&’,
Theorem 9', the latter parts of Theorem 10 and Theorem 11, suggests

ProeLEM 1. Let G be a group and H its subgroup of finite index. Let 1 +¢,(G, H)
(1+¢5(G, H )) be the smallest positive integer k such that there exist: an irredyndant

covering (a left coset decomposition) (2) of G with the property iQIGr‘i = H. Does
e(G, H) = ¢,(G, H) hold? If we denote by 1-+cyy, (G, H) t’:he smallest ke Z™*
such that there exists an (M, S)-covering (2) of G which satisfies i 91 G; = H(where M
is & commutative monoid and S is a non-empty set not containing the zero ele-
ment of M), then

(G, H) = c(Z*u(O],Z"‘)(G’ H), (G, H) = ¢roo),un(@, H)

and (14 ¢, 5(G, H) 2 [G:H] (¢f. Theorem 3). What is the precise value of
cor, (G, H)? Is ihe following conjecture true?

Let (2) be an (M, §)-covering of a group G. Then. for any subgroup K of G,
either I(K) = {l < i< k: Gy K} is empty or there exist an r € I(K) and x; € K\G;
(ie I(K)~{r}) such that

k
I{Jc,(Kr\‘("%l G): te I(K)~{r}} = e, (K, Kmho1 G) .

k k
(Note that [K:Ke lﬂl(}‘,]é. [G: ‘ﬂl Glgkl<w)

The following problem seems casier than the firsi one.

ProbLEM 2. Let M be a commutative monoid and S, X two arbitrary sets. Is
it true that for any (M, §)-covering & of X there exists an M-connected set S’ such
that of is an (M, §')-covering of X? Is the condition that S is M-connected unne-
cessary for Theorem 8 to hold? '

Let H be a subgroup of G with finite index. If H is not subnormal in G, d(G, H)
is defined to be d(G, Hg)~d(H, Hg). (Notice that [G:Hg] < [G:H]! <.)

‘l
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ProBLeEM 3. Is it true that if H is a subgroup of finite index in a group G then
d(G, H) > d(K, Hn K) for any subgroup K of G?

1 conjecture that this problem has a positive answer.

ProsLEM 4. Prove or disprove the following conjecture:

Let G be a finite group and G, ..., Gy, its subgroups. If a,, ..., q, € G then

k k
[UaGl=UGy.
i=1 =1

ProBrEM 5. If we replace (2) by {a,G b} (a), by € G), will Theorem 8 still
hold? Can we omit the word “subnormal” from Corollary 27

We give one more problem.

ProBLEM 6. Does the following conjecture hold?

Let (17) be an irredundant covering of Z with 1 <n; <n, <... <n,. Suppose
that [n,,...,m] has the standard form pf'...pJ" (p; <..<p,). Let ny =1 and

{a: pillm; for some i =0, 1, ..., k} = {t5q, thyy, -on» Oy, }

where oo = 0 < 0ty < ... <, = 0, §= 1,..., 7. (By p°||n we mean p%|n and p*** fn).
Then for any s (1 <s<r) and ¢t (1<)

[{1<i<k: n;is of the form pf* ... pPi'p? (0< B, < )l
2(“,\'!_“5(!— 1))(1).3‘— l) .

(We remark that f([ny, ..., n]) = ;1 231 (— - 1) (s — 1)),

Acknowledgements. I am indebted to Professor J. Martinet, my brother Zhi-
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