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One point extensions of trees and quadratic forms
by

Nikolaos Marmaridis (Ioannina)

Abstract. Let T beany tree with underlying graph one of the graphs D, Dy, n=4, En, Em,
m = 6,7,8.Let A be one point extension of the path-algebra kT by an indecomposable preinjective
kT-module M. Using methods of tilting theory and of vector space categories, we prove that 4 is
of (infinite) tame representation type if and only if the Tits-form 74 of 4 is weakly non-negative.

Introduction. Let 7" be an oriented tree with underlying graph one of the graphs.
D, D, n=4 E, E,, m=6,7,8. Let

kM
A‘[Okr]

be any one point extension of kT by an indecomposable preinjective k7-module M.
The aim of the present paper is to prove the following:

THEOREM A. The algebra A is of (infinite) tame representation type if and only
if the Tits-form t, of A is weakly non-negative.

In representation theory of finite dimensional algebras it is common to associate
to an algebra 4 a quadratic form in order to study the representation type of 4 or
other invariants of mod.4. We refer, for example, to [1] and also to the long list of
papers cited there, which are dealing with related questions. Moreover, we refer
to [11] for a detailed study of relations between quadratic forms and various module
categories. Finally, we like to mention [9] received during the preparation of the
present paper. In this work J. A. de la Pefia proves an analogue to Theorem A for
the so-called “hyperbolic algebras™.

The present paper is divided as follows: In the first section we recall preliminary
results. Any notion used in our paper and not defined in Section 1 can be found in [3]
or [11]. In the second section we introduce sequences of triangular matrix algebras A
induced by tilting functors. These sequences behave nicely in relation to the Tits-
form 1, and to the representation type of 4. In the third section using the above
mentioned sequences we reduce the proof of Theorem A to the study of the so-called
A’-maximal tame algebras. For any Tits-form associated to an 4'-maximal tame
algebra there is a convenient presentation such that one can see easily that the Tits-
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form is weakly non-negative. This presentation is achieved via a computer program
and can be obtained from the author upon request.

There is a connection between the present work and paper [7], where Theorem A.
was proved for one point extensions of path algebras with underlying graph the linear
quiver 4,. Here, the machinery introduced in [7] is simplified and it is applied directly
to triangular matrix algebras.

1. Preliminaries.

L.1. Algebras and quivers. Throughout this paper, all algebras R are considered
to be finite dimensional over a field %, associative, unitary and basic. The field k is
assumed to be algebraically closed. All R-modules are finitely generated right R-mo-
dules. The corresponding module category is denoted by modR. Let Q be a quiver
and kQ the path algebra of Q. Denote by I(n) the ideal generated by all paths of
length n. Any basic, finite dimensional algebra R is of the form kQ/J where Q is
a uniquely determined quiver and J is an ideal with I(n) =J < I(2). The ideal J is
always generated by a set of relations {ry/s} and mod R can be identified with the
category of the representations of Q° satisfying the set of relations {r{?/s} (cf. [51,
[11]). The pair (Q°%, {r?/s}) is called the bound quiver of R.

Any algebra R has exactly one of three possible representation types. It can
have finite representation type (F), tame infinite representation type (T°) or wild
representation type (W) (cf. [10]). We introduce an ordering on these types
F<T<W.

1.2. Triangular matrix algebras and vector space categories. Let C and B be two
finite-dimensional algebras and M a C-B-bimodule. Consider the triangular matrix

algebra
CM
4= [0 » ]

We will identify, as usual, the category modd with the corresponding comma
category (cf. [6], [10]). The 4-modules will be represented as triples (X, LY
with X' a C-module, ¥ a B-module and f a C-module homomorphism from X to
Homy(M, Y). Let D be the full subcategory of mod B consisting of the modules ¥
with Hom (M, ¥)) 5 0 for any indecomposable direct summand Y, of Y. The
representation type of 4 depends on the representation type of B and on the repre-
sentation type of the full subcategory C of mod A consisting of the triples (X, f, ¥)
with YeD.
If A4 is one point extension of B by a B-module M, i.e.

k M
s3]

then the representation type of C can be determined using vector space categories as
follows (cf. [10], [11]): Denote by |-| the functor Homy(M, —): mod B—modk
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and by K the vector space category (D, |~[). The category C is representation equi-
valent to the subspace category U(K). Consequently, in order to determine the
representation type of C, we have to find K and the representation type of U(K).
Usually, it is enough to determine the full subcategory Ind(D) of D with objects
the non-isomorphic indecomposable objects YeD and then the values dim,|Y].

We recall this procedure in case B is a hereditary algebra and M is a preinjective
indecomposable B-module, (cf. [3], [10]). Denote by I'(B) the Auslander—Reiten
quiver of B. Consider the well-determined slice Sy, of I'(B) with unique source the
vertex [M1e I'(B). Denote by I'(B), the set of vertices of I'(B). Let ¢: I'(B),~Z
be the function defined by ¢([X]) = dim,|X|, where X is the indecomposable
module corresponding to vertex [X] of I'(B). The function ¢ takes the value 1 on
any vertex of Sy . Now, using the additivity of ¢ we determine Ind(D) and dim, | Y|
at any object ¥ e Ind(D). Notice that D is usually identified with its image under |—|.

1.3. Tilting theory. (cf. [2], [4], [11]). Let R be an algebra and L a tilting
R-module. Let E be the endomorphism ring of L over R. Consider the functors:

F = Homg(L, —): modR—modE, F’' = Exti(L, —): modR—»modE,
G= —®zL: modE—~>modR, G’ = Torg(~, L): mod E—+modR.

1.3.1. (i) The functors F and G induce inverse equivalences between KerF’
and KerG'.

(ii) The functors F' and G’ induce inverse equivalences between KerF and
KerG.

(iif) The pair (Ker F’, KerF) forms a torsion theory in mod R, where Ker F’
is the torsion part and KerF is the torsion-free part. Similarly, the pair (KerG,
Ker G") forms a torsion theory in mod E, where KerG is the torsion part and KerG’

is the torsion-free part.
CM
4=[53]

Let
be a triangular matrix algebra and L a tilting B-module satisfying the condition
Homy(M, DTrL) = 0. Denote by # the unit of the adjunction corresponding to the
adjoint pair (—®cM, Homs(M, —)).

1.3.2. (i) The 4-module L = (C, ¢, C®M) & (0, 0, L) is a tilting module.

(i) If the induced by L torsion theory in mod B splits, then the induced by L
torsion theory in mod 4 splits too.

(i) The representation type of A is less than or equal to the representation type
of EndL (cf. [6]).

L4. Algebras and quadratic forms. Let g be an integral quadratic form. The
form ¢ is said to be weakly positive, if q(x) >0 for any positive integral vector x.
It is said to be weakly non-negative, if q(x) >/0_fo{any positive integral vector x and

2 — Fundamenta Mathematicae 134/1
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there is some positive integral vector z with ¢(z) = 0. The form ¢ is said to be strongly
indefinite if there is some positive integral vector z with g(z) <0 (cf. [7]).

Let R = kQ/J be a connected finite-dimensional algebra such that Q does not
have oriented cycles. Denote by Q(0) the set of vertices of Q and by Q(1) the set of
arrows of Q. Let o be the idempotent of kQ corresponding to the vertex a e Q(0).
Let W be a system of relations for the ideal J (cf. [1]). For any two vertices «, ff € 0(0),
denote by r(a, f, W) the cardinality of Wn(aJB). Let tx(x) be the quadratic form
given by the formula

t(x) = %

ae 0(0)
The form tg is called the Tits-form of R (cf. [1]).

XoXp+ Z
(=, B Q(0)

X2 —

(o, B, W)x.xg .
(a=peQ(l)) )

1.4.1. Let R be a connected finite dimensional k-algebra of the form kQ/J,
where Q is a quiver without oriented cycles. If the Auslander-Reiten quiver of R
contains a preprojective component, then the following are equivalent:

(i) The algebra R is representation finite.

(ii) The Tits-form #; is weakly positive (cf. [1], 3.3).

Given two integral quadratic forms g;: Q"— 0, i = 1, 2, we recall (cf. [7], 2.1.)
that g, is said to be of superior type to g5, if for any positive integral vector x there
is a natural number m > 1 and positive integral vectors ¥y, ¥z, ..., ¥ of Q" §uch

that g,(x) > .Zlﬂh(yt')-

1.4.2. We recall from [7] the following:
Let ¢, and g, be two quadratic forms such that g, is of superior type to ¢,.
(i) If g, is weakly positive, then ¢, is weakly positive too.
(ii) If g, is weakly non-negative, then g, is either weakly positive or weakly
non-negative.
(iii) If g, is strongly indefinite, then ¢, is strongly indefinite too.

1.4.3. Let R = kQ/J be a connected finite-dimensional algebra such that O
does not have oriented cycles and let L be a tilting R-module. If R and EndL have
global dimension less than or equal to 2 and the induced by L torsion theory splits,
then tz is of superior type to fgnqy (cf. [7], 2.3.).

1.4.4. Notice that the type of 75 is completely determined by its behaviour on
the set of the dimension vectors of the indecomposable R-modules (cf. [7], 2.4.%

2. Operations on preinjective components of path-algebras. A connected quiver 77
is said to be a (simple) tree if T does not have parallel edges or oriented cycles. Let kT
be the path algebra of a tree and I' (kT') be its Auslander-Reiten quiver. The quiver T
coincides with the full subquiver J of I'(kT) consisting of the injective vertices of
I'(kT). We call J the injective slice of I'(kT). For any vertex x € T denote by S(x)
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the corresponding simple kT-module, by I(x) its injective hull and by P(x) its
projective cover.

Any indecomposable preinjective kT-module M is uniquely determined by the
values dim, Homy(M, I(x)) as x runs through all vertices of T. Hence, M is uniquely
determined by the values ¢([Z(x)]) of the function ¢ as [I(x)] runs through all
vertices of J (cf. 1.2.).

DerINITION 2.1, A vertex [I(x)]e I'(kT), is said to be a right-extendable
one, or just r.e., if [/(x)] is a source of J. A vertex [I(x)] e I'(kT), is said to be
a right-deletable one, or just r.d., if [I(x)] is a sink of J.

DEFINITION 2.2, A pair ([M 1, H)D) of I'(kT)o x I'(kT), is said to be a z-right
extendable pair of I'(kT), or just t-r.e., if [I(x)] is an r.e. vertex of I'(kT) and M is
a preinjective k7-module which is not isomorphic to P(x).

A pair ([M], [I(x)]) of I'(kT)ox I'(kT), is said to be a t-right deletable pair
of I'(kT), or just t-r.d., if [I(x)] is an r.d. vertex of I'(kT) and M is a preinjective
kT-module which is not isomorphic to I(x).

Given a vertex x; € T, denote by s;T the tree formed from T by reversing the
direction of all arrows starting or ending at x;. Denote by tM the Auslander—Reiten
translate DTrM and by t™ M the translate TrDM.

Let 4 be the one point extension of kT by an indecomposable preinjective kT-mo-
dule M and ([M], [I(x)]) be a z-r.e. pair of I'(kT). The simple module S(x,)
coincides with its projective cover P(x,) since the vertex x; € T is a source of T.

Let P(x,), P(x;), ..., P(x,) be a full set of representatives of the isomorphism
classes of the indecomposable projective kT-modules. The module

L, =17 P(x)) ® P(x,)®...® P(x,)
is a tilting kT-module, the induced by L; torsion theory splits and the endomorphism
ring of L is isomorphic to k(s,T) (cf. [4], [10], [11]). Denote by F, the functor
Homy(L,, —) induced by L, (cf. 1.3.1.). Let L, be the corresponding A-module
and A(x,)* be the endomorphism ring EndL, (cf. 1.3.2.).

It is well known that
k F{M
+ o~ 1
Axy)” = [o k(slT):l'

Let ¢, and 7,+ be the Tits-forms of 4 and A(x,)*, respectively.

PROPOSITION 2.3. (i) The representation type of A is less than or equal to the
representation type of A(xy)*.

(ii) The quadratic form t, is of superior type to 14+,

Proof. Since ([M], [I(xy]) is a t-r.e. pair of I'(kT), it is true that
Hom(M, <L) = Hom(M, P(x,)) = 0. The first assertion is obtained by 1.3.2.
Since the global dimension of A(x,)* is less than or equal to 2, the second assertion
is obtained by 1.4.3.

We recall the description of the quiver I'(k(s;T)) for later reference. This
quiver can be formed from I'(kT) as follows: For any arrow a: [I(x;)]—y of
2
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I(kT) add to I'(kT) an arrow of the form ga: y -t~ [I(x,)]. Delete the vertex
[P(x,)] and also all arrows starting at it.

Triangular right extendable sequences. Using ¢-1.s. pairs, we construct sequences
of one point extensions as follows: The first term of such a sequence is 4. If
(IM1, [I(x,))) is a t-r.e. pair of I'(kT), then the second term is 4(x,)™ as above.
If there is a ¢-1.e. vertex ([Fy M1, [I(x,)]) of I'(k(s,T)), then we consider a full set
{P.(xy), P1(x3), ..., Py(x,)} of representatives of the isomorphism classes of the
indecomposable projective k(s;T)-modules. Again, the module

L, = Pi(x;) ® 17 Py(x2)®...® Py(x,)

is a tilting k(s;T)-module, the induced by L, torsion theory splits and the endo-
morphism ring of L, is isomorphic to k(s,s;T). Denote by F, the functor induced
by L, and construct 4(x,)*(x)*.

It is allowed to continue inductively forming A(x,)*(x;)"...(x;—()* from
AQe)*(x2)" ... (x)*, as long as there is a z-r.e. vertex ([F;... Fy M1, [I(x;40)]) of
I(k(sq ... 4T)).

It is impossible to proceed further only if for some positive integer r there are
no f-r.e. vertices in I'(k(s, ... 5,T)) at all. This occurs if and only if the injective
slice of I'(k(s, ... s5;T)) contains exactly one source [/(x)] and this source has the
property that F,... F; M is isomorphic to the projective cover P(x) of the simple
k(s, ... s;T)-module S(x). In this case, the algebra Q@ = A(x)*(x2)* ... (x)* is
hereditary, because it is one point extension of a hereditary algebra by an indecompos-
able projective module. So, the representation type of @ as the type of the Tits-
form g, are easily determined.

A sequence of one point extensions formed using #-r.e. pairs as above will be
called a t-r.e. sequence.

ProrosiTiON 2.4. (i) If A(G) and A(j) are members of a t-r.e. sequence with
i<j, then the representation type of A(i) is less than or equal to the representation
1ype of A(j).

(i) The Tits-form t,qy is of superior type to tu-

(iti) If A(Y) is of infinite representation type and t,, is weakly non-negative,
then tuyy is weakly non-negative too.

(iv) If the Tits-form t,q, is strongly indefinite, then the Tits-form 1., is strongly
indefinite too.

Proof. The assertions (i) and (ii) are immediate consequences of 2.3.

(iii) The form 4y, cannot be weakly positive because A(f) is of infinite re-
presentation type (cf. 1.4.1). Since t,, is of superior type to 24, we get that
ta 18 weakly non-negative by 1.4.2.

(iv) Since 2, is of superior type to z,(;, the assertion follows again from 1.4.2.

Now, we define an ‘inverse procedure’. Let 4 be one point extension of kT by
an indecomposable kT-module M and let (M1, [I(x,)]) be a z-r.d. pair of I'(kT).
Denote by x, the corresponding sink of T and by P(x,) the projective cover of the
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simple kT-module S(x;). Moreover, denote by I,(x,) the injective hull of the simple

k(s;T)-module S,(x,) and by P,(x,) its projective cover. Let L, be the tilting

k(s;T)-module constructed as before by taking the direct sum of v~ P,(x,) and of

the remaining indecomposable projective k(s;T)-modules. The endomorphism

ring E of L, is isomorphic to kT. Denote by G, the functor —®zL, (cf. 1.3).
Consider the one point extension

. koM
AG)” = [o k(lslT):I'

Since M is not isomorphic to I(x,), the indecomposable k(s,T)-module G, M is
not isomorphic to Py(x;). Moreover, G; M remains a preinjective module. Hence,
the pair ([Gy M1, [I,(x,)]) is a t-r.e. pair of modk(s,T). So, using the tilting
k(s;T)-module L;, we may construct the tilting A(x,) -module L,. The endo-
morphism ring EndL, is isomorphic to A.

We recall the description of the quiver I'(k(s,T)) for later reference. This
quiver can be formed from I'(kT) as follows: For any arrow «: y— [P(x,)] of
I'(kT) add to I'(kT) an arrow of the form o~ a: T[P(x,)]—y. Delete the vertex
[I(x,)] and all arrows ending at it.

Triangular right deletable sequences. Using ¢-r.d. pairs we copstruct sequences
of one point extensions as follows: The first term of such a sequence is 4. If
([M], U(xy)]) is a z-1.d. pair of mod kT, then the second term is 4(x,)” as above.
If there is a #-r.d. pair ([GyM], [I(x;)]) of I'(k(s,T)), then construct the tilting
k(s,s5,T)-module L,. Denote by L,(x,) the injective hull of the simple k(s,s5,T)-
module S(x,). The pair ([G,G; M1, [I,(x,)]) is a t-r.e. pair of I'(k(s,s,T)). Let
A(x1)"(x,)” be the one point extension of k(s,s,T) by G,G,M. The module L,
can be extended to a tilting 4 (x;)”(x,) -module L, whose endomorphism ring is
isomorphic to A(x,)~. It is allowed to continue inductively, forming

ACe)T06)" wen (X41)”

from A(x,)"(xz)"” ... (x;)”, as long as thereis a z-1.d. vertex ([G; ... Gy M, [I(%;:+1)])
of I'(k(s; ... s;T)). The algebra A(x;)"(x;)” ... (x)~ is isomorphic to the endo-
morphism ring of the tilting 4 (x,)™(x;)™ ... (x;4+,) -module L, ,, which is induced
by the tilting k(s;+q ... §,T)-module L, . It is impossible to continue further only
if for some positive integer r there are no ¢-r.d. vertices in modk(s, ... s;T") at all.
This happens if and only if the injective slice of I'(k (s, ... s,T)) has exactly one sink
[7(x)] and I(x) is isomorphic to G, ... G; M. A sequence of one point extensions form-
ed using -r.d. pairs as above will be called a #-r.d. sequence.

3. The classification. From now on, we assume that

kM
A‘[Okr]

is the one point extension of k7T by an indecomposable kT-module M and that the
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underlying graph of T is one of the graphs D,, D,nz4 E,, E,,m=6,7,8 The
case of the Dynkin diagram A, was studied in [7].

Let T, be the full subquiver of T with vertices the vertices x of T satisfying the
property that [I(x)] is a successor of [M] in I'(kT). Clearly, M is a kTy~module.
We attach to any algebra A the algebra

AQM) = [(’)‘ %MJ

The algebra 4 (M) will be called the m-siandard algebra attached to 4.

DerINITION 3.1. The algebra 4 is said to be m-standard if A coincides with,
A(M).

Let M be an indecomposable preinjective k7-module. Denote by S, the slice
of I'(kT') with unique source the vertex [M]. Let I(x) be the injective indecomposable
kT-module belonging to the t~-orbit of M. Let T, be a tree equal to Sy, and let
I'(x) be the indecomposable injective kT,-module corresponding to the vertex x
of T,. Consider the one point extensions:

[k m . 1k I'(x)
4 ‘[0 kT] and - A= [0 ka:I'
Observe that A’ is an m-standard algebra and that the injective slice of I'(kT.)
coincides with the slice Sy of I'(kT,) which has as unique source the vertex
Il

Using the above notation, we have:

ProPOSITION 3.2. If A is an m-standard algebra, then A belongs to a t-r.e.
sequence with starting term the algebra A'.

Proof. Since 4 is an m-standard algebra, the slice Sy, intersects the ¢-orbit
of any indecomposable preinjective k7-module. If M is injective, then A4 coincides
with 4'. If M is not injective, then one sees easily that there is always a ¢-r.d. pair
(IM1, [I(x,)]) of I'(kT) such that [I(x,)] does not belong to Sy . Using this pair,
we construct the algebra A4(x,)”. Let S} be the slice of I'(k(s{T)) having as unique
source the vertex [Gy M. If there is some z-r.d. pair ([G; M1, [I(x,)]) of I'(k(s,T))
with [T(x,)] ¢ S}, then we construct the algebra 4 (x,)~(x,)~. Continuing inductively,
we obtain finally an algebra

A ) )" = [ Frdeme e O |

with the property that the injective slice of I'(k(s, 5,1 ... 5yT)) coincides with the slice
Sy of T'(k(sy8,~y ... 5:T)) which has as unique source the vertex [G, G,y ... Gy M].
Hence, A(xy) (x)" ... (x,)” equals to 4’. Now, following exactly the opposite
procedure starting with 4’ and using the corresponding z-r.e. pairs, we obtain
a t-r.e. sequence satisfying the conclusion of the proposition.
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, _[ewm
4 “[OkT]f,

where M is an indecomposable preinjective kT-module.
DERINITION 3.3. The algebra 4’ is said to be a start algebra if A’ is m-standard

and M is an indecomposable injective kT-module.

Let A’ be a start algebra.

DEFINITION 3.4. The one point extension A is said to be A'-minimal wild if the
following conditions are satisfied:

(i) 4 belongs to a #-r.e. sequence with first term A4’

(i) 4 is of wild representation type.

(iii) Any z-t.e. sequence with first term 4’ and containing 4 = A() as member
has the property that 4(i—1) is not of wild representation type.

DEFINITION 3.5. The one point extension A is said to be A-maximal tame if

the following conditions are satisfied:

(i) 4 belongs to a t-r.e. sequence with first term 4.
(ii) 4 is of tame representation type.
(i) Either 4 is a hereditary algebra or any z-r.e. sequence with first term 4’
which contains 4 = A (i) as member has the property that 4(/41) is of wild repre-

seutation type.

In the following we determine all 4’-maximal tame or 4’-minimal wild algebras
which belong to t-r.e. sequences with starting term some start algebra A'.

Generally we proceed as follows: Let 4 be one of the diagrams D,, D,,n=>4,
E ,E, m=6,7,8 and let x be a fixed vertex of 4. Choose an orientation of 4
such that x is the unique source of the tree 7' obtained in this way. Consider the
path algebra k7 and the quiver I'(kT). The injective slice of I'(kT) has as unique
source the vertex [M]. Let A’ be the one point extension of kT by M. Clearly, 4" is

.a start algebra and any start algebra can be obtained in this way.

Since there are no projective-injective kT-modules, the pair ([M], [I(x1)])
with M = I(x,), is a t-r.e. pair. (It is actually the unique #-r.e. pair.) Using this

pair, we construct a f-r.e. sequence of one point extensions changing first the

algebra kT to k(s;T) and M to F; M. Now, choosing another f-r.e. vertex

([Fy MY, T (xz)]), we continue in the same manner until appears in our ¢-r.e. sequence

some one point extension 4 such that either any of the possible t-r.e. pairs gives
a wild algebra or there are no f-r.e. pairs at all. If A4 is tame, then this implies that 4
it an A’-maximal tame algebra. The procedure for the A'-minimal wild algebras
is similar.

We present in detail the above described procedure in case of the Dynkin
graph D,, n>4. The other cases are handled in the same way. Notice that we
describe the one point extensions rather implicitly from the following data: The
injective slice J of I'(kT) determines T and the values which takes the function ¢
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on. the vertices of J determine the indecomposable module M. In fact we write down
the part X of I'(kT) lying between Sy and J and calculate the values of ¢ at any
vertex of X. By F, T'and W we indicate the representation type of the corresponding
vector space category. In the special case of D, the representation type of this
vector space category coincides with the representation type of the corresponding
one point extension, since the path algebra kT has finite representation type. In
almost all cases, the representation type of the vector space category is determined
using the famous criteria of Kleiner (cf. [5], [10]) for finite and of Nazarova (cf. [8],
[10]) for tame representation type.

D, nz4

3

1—2—4 .. n—1-—n

D,. Any t-r.e. sequence with first term a start algebra A4’ is finite. The last
term is a hereditary algebra Q either of finite or tame representation type. If @ is of
tame representation type, then Q is an A4’-maximal tame algebra.

Ds. If A" is the start algebra formed using the indecomposable injective I(i),
i=1,3, 4,5, then we obtain finite z-r.e. sequences with ending term some hereditary
algebra Q of finite or tame representation type. If Q is of tame representation type,
then it is an 4'-maximal tame algebra.

If A is the start algebra formed using the indecomposable injective J (2), then the

unique f-r.e. pair ([[(2)], [I(2)]) gives an A’-minimal wild algebra as the second
term.

F w 1
2l 1/
1 ‘-/\:(-1 1.-/:}:‘@2

{A) 1 B

Dg. If A’ is the start algebra formed using the indecomposable injective I(i),
i=1,3,5,6, then we obtain finite ¢-r.e. sequences with end term some hereditary
algebra Q of finite or tame representation type. If 2 is of tame representation type,
then it is an 4’-maximal tame algebra.

If A’ is the start algebra formed vusing J (2), then the unique z-r.e. pair ([I(2)],
[7(2))) gives as second term an A'-minimal wild algebra.

F ! w é
/1/ 17
' o 1/.
10/1 1/1>Q
N oLopos —p19)2
(A) \.1 (B) \3
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If 4 is the start algebra formed using J(4), then the second term of any ¢-r.e.
sequence is term (B) below. The next term can be either (C) or (D), since there are
two z-r.e. pairs. Term (D) is an 4'-minimal wild algebra. In case where we con-
sider (C) as the term next to (B), there are again two possible next terms. One of
these is (E) which determines an 4'-maximal tame algebra.

D,, n>17. We study separately the vertices with one, two or three neighbours.

Vertices with one neighbor. It is enough to consider the start algebras formed
using the injective modules I(r) and I(3). Any t-r.e. sequence with first term the
start algebra 4’ corresponding to I(n) has as last term an algebra @ which is the path
algebra of a tree with underlying graph the graph D, , ;. There are no ¢-r.e. sequences
containing A4’-maximal tame or A’-minimal wild algebras.

If the start algebra A4’ is formed using I(3), we determine all 4'-maximal tame
or A’-minimal wild algebras following the same procedure as before. In the next list
the 4’-maximal tame algebras are denoted by (7') and the A'-minimal wild algebras
are denoted by (W).

v
1 1
1 gg/@
5 v
; ' '
1/ 1..' 19/ K
F 1 Foe w Y T 1/ :
VAN v 1./.\ 1\

1
NS AN NS NG
1 1/;7\1/ 11 1‘ ! 0\5_.__.4;1 L—-/—:-g}\».-.@1
N7V
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Vertices with two neighbours. Let A’ be a star: algebra formed using the injective
I(i), 4 < i< n~1. This algebra corresponds to Figure (A) below and it is of finite
representation type. For any i, 4 <7< n—3, the next term is the one point extension
corresponding to Figure (B). This algebra is A’-minimal wild.

For i = n—2, we obtain using 7-1.e. sequences, one 4'-maximal tame algebra
corresponding to Figure (C) below and one 4'-minimal wild algebra corresponding
to Figure (D) below.

14 ] -\. < 1\". 1\?‘.
™ " .,
o, Newot Noot
1\1._...1 \.—.@1 \}o ' 1
(A) N, B Nes ) 1)

For i = n—1, the last term of any f-r.e. sequence is a hereditary A4’-maximal
tame algebra.

Vertices with three neighbours. Let 4’ be the start algebra formed using the
injective I(2). This algebra corresponds to Figure (A) below and it is always of
finite representation type. Since there is a unique f-r.e. pair, the next ferm. corres-
ponds to Figure (B) below and it is always an A’-minimal wild algebra.

1
1,7 17°
1° oy
17 1,7
1/ N2

A\ | N7

In the following two lists we describe via their bound quivers all 4’-maximal
tame and all A’-minimal wild algebras which are non-hereditary and belong to
2 t-r.e. scquence with first term some start algebra A4’

The system of relations S of any bound quiver (@, S = {r/s}) in the two lists
below contains exactly the following linear relations: The difference of any two paths
between vertices of @ denoted by black squares, and any path between vertices
of Q denoted by stars. In list B below there are additional relations in S in the case
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where there are arrows of Q denoted by Greek letters. There are three such cases.
In the first case we have arrows denoted by y, ¥, @, x and 4. The system .S contains
the relations Ay, o, sy — A and any other relation which can be defined using
squares or stars. In the second case (B, 44), S consists of the relations Agy, %@y — Agy,
xpo and the two zero relations defined by the vertices denoted by stars. In the third
case (B, 45) S consists of the relations A, ue, %y, (Y s, M, xw— Aw and Ao - po.

LIST A (4'-maximal tame algebras)
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LIST A (continued)
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LIST A (continued)
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LIST B (4'-minimal wild algebras)
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LIST B (continued)
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LIST B (continued)

*
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LeMMA 3.6. The Tits-form of any algebra with bound quiver one of the bound
quivers of list C below is strongly indefinite.

.y i
2 4 | " 7
S S M N A
NN N W
BN
t: !2 12 1
1e z* Ii L f: ] 2_’
oo\ 1

Proof. The assertion of the lemma is well known for all algebras of list C whose
bound quiver does not have any relation at all. The Tits-form of the algebra with
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bound quiver that of (x) can be written as follows:
ty = 12071(30 (37 2xg)% -+ 10 (2x6 — 3x7)% 4+ 5 (3x5 — 4x5)>
+3 (450~ 5x5)% +2(5x; — x;0)* +10 (305 ~ 2% o — 2x,)?
+30 (2 — X5 — X40)% +30 (2%, — x3)% + 120 (g — Xg) Xg) -

The form t, evaluated at the positive integral vector (6, 2, 8,4, 8, 6, 4,2, 1, 10)
takes the value —1.

ProrosiTioN 3.7. (i) The Tits-form of any A'-maximal tame algebra of list A is
weakly non-negative.

(i) The Tits-form of each A'-minimal wild algebra of list B is strongly indefinite.

Proof. (i) The assertion is obtained checking case by case that any algebra of
list A has weakly non-negative Tits-form. A convenient presentation of these forms,
constructed using a computer program, can be obtained from the author upon
request.

(ii) The bound quiver of each A’~-minimal wild algebra contains as full subquiver
one of the bound quivers of list C. Hence, the Tits-form of any 4'-minimal wild
algebra is strongly indefinite.

ProrostTION 3.8, Let 4 be an m-standard algebra.

() If A is of tame representation type, then the Tits-form t, of A is weakly non-
-negative. .

(i) If A is of wild representation type, then the form t, is strongly indefinite.

Proof. By 3.2, there is a ¢-r.e. sequence having as member the algebra 4 = A (i)
and with first term some start algebra A'. If 4 is an A’-maximal tame algebra there
is nothing to prove. Otherwise there is some z-r.e. pair which determines an algebra
A(i+1) of tame representation type. Continuing inductively, we obtain after finitely
many steps an A’~-maximal tame algebra because either the preinjective component
of kT is finite or the additive function ¢ is unbounded on the preinjective component
of I'(kT).

(ii) There are t-r.e. sequences having as member 4 and with first term a start
algebra A’. Any such ¢-r.e. sequence can be constructed using first some z-r.d.
sequence with starting term 4 and ending term A’ and taking then the opposite
direction as in 3.2. Notice that any 7-r.d. sequence with last term A4’ is finite since
we are using vertices of preinjective components. We construct a special f-r.d.
sequence as follows: The first term is 4. If 4 is 4’-minimal wild, then the remaining
2-r.d. pairs are chosen arbitrarily until we obtain A’. If 4 is not 4’-minimal, then
there is a #-r.d. pair ([M1, [I(x,)]) such that 4(x,)” is again of wild representatjon
type. If A(x,)” is A’-minimal wild, then the remaining #-r.d. pairs are chosen
again arbitrarily until 4’ is obtained, otherwise there is some ¢-r.d. pair
(IGy M1, [I(x,)]) of I'(k(s,T)) such that 4(x,)~(¥,)” has again wild representation
type. Since A’ is of finite or tame representation type and any ¢-r.d. sequence is
finite, we obtain finally an algebra A" which is 4’-minimal wild. The remaining

3 — Fundamenta Mathematicae 134/1


Artur


34 N. Marmaridis

t-r.d. pairs are chosen arbitrarily until we obtain A’'. Hence, there is some t-r.e.
sequence with members A (k) and A() = 4, with k< and such that A(k) is
A'-minimal wild. Now, the second claim of our proposition follows from 2.4 (iv).

k M
A= [o kT}
be a one point extension of a path algebra kT, where the underlying graph of T is one
of the graphs D,, D,,n=4, E,, E,, m = 6,7, 8 and where M is an indecomposable

preinjective kT-module. The Tits-form of A is weakly non-negative if and only if A is
of tame representation type.

THEOREM 3.9. Let

Proof. According to 1.4.4, it is enough to study the behaviour of z4 on the
dimension vectors of the indecomposable A-modules. Let 4 (M) be the m-standard
algebra attached to 4. Any indecomposable 4-module U can be considered as an
indecomposable module over kT or as an indecomposable module over A(M).
Hence, either

t(AimU) = ,,(dimU) or t(dimU) = ty(dimU).

Case 1. The algebra A is of tame representation type. If 4(M) is of finite repre-
sentation type, then g,g(dimU)>0 for any indecomposable A (M)-module U,
by 1.4.1. Since 4 is of tame representation. type, the representation type of kT has
to be tame. But in this case it is well known that for any indecomposable kT-module U
we have #,(dimU) > 0 and there is some U with f7(dimU) = 0. So, £, is weakly
non-negative.

If A(M) is of tame tepresentation type, then by 3.8 the form z,¢y, is weakly
non-negative. The representation type of kT is either finite or tame, hence % is
either weakly positive or weakly non-negative. So, f, is weakly non-negative,

Case 2. The algebra A is of wild representation type. Because kT is always of

finite or tame representation type, the algebra 4(M) has to be of wild representation
type. Since A(M) is m-standard, #,4y, is strongly indefinite by 3.8. Hence #, is
strongly indefinite too. This closes the proof of our theorem.
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