On some famous examples in dimension theory

by

Z. Karna (Białyce) and J. Krasinkiewicz (Warszawa)

Abstract. It was proved in [M-R] that for each $n \geq 2$ there exists an n-dimensional compactum X such that $d(X, R^n)$ is dense in $\mathcal{U}(X, R^n)$. In this note we prove that the classical examples of V. G. Boltyanski [B] and Y. Kodama [K], and their natural higher dimensional counterparts, have the same property.

In [M-R], D. McCullough and L. R. Rubin proved the following result:
For each $n \geq 2$ there exists an n-dimensional compactum X such that the space $d(X, R^n)$ of imbeddings from X into R^n is dense in the space $\mathcal{U}(X, R^n)$ of mappings to R^n.

The aim of this note is to show that some famous examples first studied by V. G. Boltyanski [B] (see also [K1], [K2], [W]) and their straightforward n-dimensional counterparts, $n \geq 2$, also have this property (see Th. 5.2 and Th. 5.3).

It was shown in [Kr] that this property implies $\dim X \times X < 2n$. This gives an elementary proof of the fundamental property of the examples in which only elementary algebraic topology is needed (all previous used the Kollmene formula).

Lately S. Spieβ [S] has proved that the latter property implies the property from the McCullough–Rubin theorem for $n \geq 3$. (*)

All spaces in this note are assumed to be metric with a metric denoted by d.

1. A lemma on imbeddings. Let \mathcal{U} be a cover of a space X. A mapping $f: X \to Y$ is said to be a \mathcal{U}-mapping provided for every $y \in f(X)$ there is a $U \in \mathcal{U}$ such that $f^{-1}(y) \subseteq U$. If \mathcal{V} is a collection of subsets of Y then we denote

$$f^{-1}(\mathcal{V}) = \{ f^{-1}(V) : V \in \mathcal{V} \}.$$

The following lemma is a slight generalization of Proposition 1.7 from [M-R].

1.1. Let $X = \{ X_1 \leftarrow X_2 \leftarrow \ldots \}$ be an inverse sequence of compacta satisfying the condition

(*) for each $i \geq 1$, for every mapping $f: X_i \to R^n$, for every open cover \mathcal{U} of X_i and every positive number $\delta > 0$ there exist an index $j \geq i$ and a $\mathcal{U}_j(\mathcal{V})$-mapping $g: X_j \to R^n$ such that $d(f(x), g) < \delta$.

Then $d(\lim X, R^n)$ is a dense \mathcal{U} in $\mathcal{U}(\lim X, R^n)$.

(*) Added in proof. Extended to $n = 2$ as well.
Proof. The idea is to show that for every open cover \(\mathcal{V} \) of \(\lim X \) and every \(\varepsilon > 0 \) the set of \(\mathcal{V} \)-mappings \(\mathcal{V}(\lim X, R^\varepsilon) \) is \(\varepsilon \)-dense in \(\mathcal{V}(\lim X, R) \). But the proof of this fact presents no difficulty and is left to the reader (comp. [M–R]).

2. Double mapping cylinders. By a mapping cylinder of two mappings

\[
X \leftarrow Y \rightarrow Z
\]

we mean the identification space

\[
M(f, g) = (X \sqcup Y \times [0, 1] \sqcup Z)/\sim
\]

with identifications \(f(y) = (y, 1) \) and \(g(y) = (y, 0) \) for \(y \in Y \).

As special cases we obtain two well-known objects. Namely, if \(X = Y \) and \(f = \) the identity mapping then \(M(f, g) \) is the mapping cylinder \(M(g) \) of \(g \). If \(Z \) is a one-point space then \(M(f, g) \) is the mapping cone \(C(f) \) of \(f \).

The spaces \(X \) and \(Z \) are naturally imbedded in \(M(f, g) \) as closed subsets and we identify them with the subsets. The mapping \(y \rightarrow [y, 1] \) is a natural imbedding of \(Y \) in \(M(f, g) \). Note that \(M(f, g) \) is a union of \(M(f) \) and \(M(g) \) identified along \(Y \).

By the boundary of \(M(f, g) \) we mean the set \(\partial M(f, g) = X \).

If \(X, Y \) and \(Z \) are polyhedra and \(f, g \) are p.l. mappings then \(M(f, g) \) is a polyhedron containing \(X \) and \(Z \) as subpolyhedra. Moreover, if \(f, g \) is simplicial with respect to triangulations \(|K| = X \) and \(|L| = Y \) then there is a triangulation \(T \) of \(M(f, g) \) such that \(K \cup L \subset T \) (see [Wh], p. 244).

Consider the following diagram

\[
\begin{array}{ccc}
X & \xleftarrow{f} & Y \\
\uparrow h_x & & \uparrow h_y \\
Y' & \xrightarrow{g} & Z' \\
\downarrow h_x' & & \downarrow h_y' \\
X' & \xleftarrow{f'} & Y' \\
\end{array}
\]

The following proposition is a simple but important property of double mapping cylinders. The proof is left to the reader.

2.1. If the diagram (*) commutes up to homotopy then there is a mapping

\[f: M(f, g) \rightarrow M(f', g') \]

such that

\[
\begin{align*}
(1) & \quad h(x) = h_x(x) \quad \text{for } x \in X, \\
(2) & \quad h([x, 1]) = [h_x(x), 1] \quad \text{for } x \in Y.
\end{align*}
\]

If (*) strictly commutes then (2) can be strengthened to

\[
(2') \quad h([y, t]) = [h_y(y), t] \quad \text{for every } (y, t) \in Y \times [0, 1].
\]

In particular \(h \) agrees with \(h_x \) on the boundary of \(M(f, g) \). We call \(h \) an extension of \(h_x \).

Now we limit the general situation to a special case of mappings between spheres. Fix an integer \(n \geq 2 \). For each integer \(a \neq 0 \) let \(\mu_a: S^{n-1} \rightarrow S^{n-1} \) be a mapping of degree \(a \); \(\mu_a \) is assumed to be the identity mapping if \(S^{n-1} \) is regarded as oriented with a fixed orientation). By an \(n \)-dimensional Möbius band \(M(a, b) \) we mean either the mapping cylinder \(M(\mu_a, \mu_b) \) if \(b \neq 0 \), or the mapping cone \(C(\mu_a) \) if \(b = 0 \) (comp. [K–L]). Changing the mappings up to homotopy we obtain other mapping cylinders (cones); we distinguish them by subscripts. Below we list some mapping properties of such spaces which simply follow from 2.1.

2.2. (1) Every homeomorphism \(\partial M(a, b) \rightarrow \partial M(0, b) \) extends to a mapping \(M(a, b) \rightarrow M(0, b) \).

(2) Let \(a, b \neq 0 \). Then every homeomorphism \(\partial M(0, b) \rightarrow \partial M(0, a) \) extends to a mapping \(M(0, b) \rightarrow M(0, a) \), and every homeomorphism \(\partial M(0, b) \rightarrow \partial M(0, a) \) extends to a mapping \(M(0, b) \rightarrow M(0, a) \).

2.3. Let \(f: \partial M(a, b) \rightarrow S^{n-1} \). Then \(f \) can be extended to \(M(a, b) \) if and only if \(\deg f = k(b/a) \) for some integer \(k \).

Proof. \(\Rightarrow \). Let \(f: \partial M(a, b) \rightarrow S^{n-1} \) be an extension of \(f \). Let \(i_1: S^{n-1} \rightarrow M(a, b) \), \(i_2: S^{n-1} \rightarrow M(a, b) \), \(f = i_1 \circ f \circ i_2 \). Choose an integral cycle \(g \) determining the orientation of \(S^{n-1} \). Note that there is an n-chain \(c \) on \(M(a, b) \) such that \(d(c) = a(i_1(y) - b(i_2(y)) \). Applying \(f \) to this equality it follows that \(a(\deg f) \) is homologous to \(k(b/a) \) for some \(k \in Z \). The implication follows.

\(\Leftarrow \). Apply 2.1.

3. Cylinders and cones in cubes. Fix an integer \(n \geq 2 \) and let \(\mu: S^{n-1} \rightarrow S^{n-1} \) be any mapping. Denote by \(D^n \) the closed unit ball in \(\mathbb{R}^n \) so that \(S^{n-1} = \partial D^n \).

3.1 (comp. [M–R]). There exist imbeddings

\[\psi: M(\mu) \rightarrow \mathbf{D}^n \quad \text{and} \quad \psi: C(\mu) \rightarrow \mathbf{D}^n \]

such that

\[
\begin{align*}
(0) & \quad \text{im} \psi \cap \text{im} \mu = \emptyset, \\
(1) & \quad \psi \text{ carries } \partial M(\mu) \text{ homeomorphically onto } S^{n-1} \times \{0\}, \\
(2) & \quad \psi \text{ carries } C(\mu) \text{ homeomorphically onto } \{0\} \times S^{n-1}, \\
(3) & \quad \psi(M(\psi) \cup \partial M(\psi)) \cup \psi(C(\mu) \cup \partial C(\mu)) = \text{int}(D^n \times D^n).
\end{align*}
\]

The imbeddings are defined as follows.

Recall that \(M(\mu) = (S^{n-1} \times \{1\}, S^{n-1}/\sim) \) with \((x, 0) = \mu(x) \) for \(x \in S^{n-1} \). Define \(\psi \) to be the mapping induced by the following

\[
\begin{align*}
S^{n-1} \times I & \rightarrow I \times I, \quad (x, t) \rightarrow ((x, t(1-t)) \mu(x)) \in D^n \times D^n, \\
S^{n-1} & \rightarrow \{0, \frac{1}{2} \} \subset D^n \times D^n.
\end{align*}
\]

To define \(\psi \) we need a mapping \(a: I \rightarrow I \) given by

\[
a(t) = \begin{cases}
0 & \frac{1}{2} \leq t \leq 1, \\
1 & \frac{1}{2} \leq t \leq 1.
\end{cases}
\]
Note that \(C(\delta) = (S^{n-1} \times I \cup S^{n-1})/\sim \) with \((x, 0) = (y, 0)\) and \((x, 1) = \mu(x)\) for \(x, y \in S^{n-1}\). Define \(\psi\) to be the mapping induced by the following:

\[
S^{n-1} \times I \ni (y, t) \rightarrow (\phi(y), s(t)(\psi(y)) \in D^k \times D^k
\]

One easily verifies that \(\psi\) and \(\phi\) have the required properties.

3.2. Remark. Analogous imbeddings were constructed in [M-R], Lemma 2.2, generalizing the imbedding from Ex. 4.3 in [K-L]. In the same spirit we generalize the imbedding from Ex. 4.4 in [K-L]; we hope the new formulas are a little simpler.

Recall that a mapping \(f: X \rightarrow D^k\) is said to be essential provided there is no mapping \(g: X \rightarrow \partial D^k\) such that \(g(x) = f(x)\) for \(x \in f^{-1}(\partial D^k)\).

3.3. Corollary. For \(n \geq 2\) let \(M = M(ab, a^2b)\) be an \(n\)-dimensional Möbius band, with the integers \(a\) and \(b\) satisfying \(|a| > 1\) and \(b \neq 0\). Then for any two mappings \(f, g: M(ab, a^2b) \rightarrow D^k\), each carrying the boundary \(\partial M\) homeomorphically onto \(\partial D^k\) and \(M \setminus \partial M\) into \(\text{int} D^k\), their product

\[
f \times g: M(ab, a^2b) \times M(ab, a^2b) \rightarrow D^k \times D^k
\]

is inessential although both \(f\) and \(g\) are essential.

Proof. Since \(\text{deg}h = \pm 1\) for a homeomorphism \(h: S^{n-1} \rightarrow S^{n-1}\), both \(f\) and \(g\) are essential by 2.3.

Let \(\mu: S^{n-1} \rightarrow S^{n-1}\) be a mapping with \(\text{deg}h = a\). Let \(\phi = (\phi_1, \phi_2): M(\mu) \rightarrow D^k \times D^k\) and \(\psi = (\psi_1, \psi_2): C(\mu) \rightarrow D^k \times D^k\) be the mappings from 3.1. By 2.2 of [K-L] and 3.1 (i) we infer that

\[
(1) \quad \phi_1 \times \phi_2: (\mu) \times C(\mu) \rightarrow D^k \times D^k
\]

is not essential although both \(\phi_1\) and \(\phi_2\) are essential.

Note that \(\phi_1^{-1} \cdot f\) maps \(\partial M\) homeomorphically onto \(\partial M(\mu)\). Since \(M(\mu) = M(1, \alpha)\) by 2.2 (2) this homeomorphism extends to a mapping \(f: M \rightarrow M(\mu)\). Thus \(f|\partial M = \phi_1 \cdot f|\partial M\). Since \(\partial M = f^{-1}(\partial D^k)\) it follows that

\[
(2) \quad f = \phi_1 \cdot f \cdot \text{rel} \cdot f^{-1}(\partial D^k).
\]

Since \(C(\mu) = M(\mu, 0)\) a similar argument shows that there is a mapping \(\delta: M \rightarrow C(\mu)\) such that

\[
g = \phi_2 \cdot \delta \cdot \text{rel} \cdot g^{-1}(\partial D^k).
\]

Put \(B = D^k \times D^k\). By (2) and (3) it follows that

\[
f \times g(f \times g)^{-1}(\partial B) = (\phi_1 \times \phi_2)(f \times g)(f \times g)^{-1}(\partial B) \quad \text{in} \quad \partial B.
\]

This, by (1), implies that \(f \times g\) is inessential (comp. 2.3 in [K-L]).

4. Modification of polyhedra. Let \(X\) be an \(n\)-dimensional polyhedron, \(n \geq 2\), with a given triangulation \(K\). Let \(a\) and \(b\) be two integers with \(a \neq 0\). By an \((a, b)\)-modification of \(K\) we mean a mapping

\[
\theta: Y \rightarrow X
\]

constructed as follows (comp. [K1], [K2] and [W]).

For each \(n\)-simplex \(s \in K\) choose a copy \(M_s\) of the \((n-1)\)-dimensional Möbius band \(M(a, b)\) such that \(\partial M_s\) is a subpolyhedron of \(M_s\) simplicially isomorphic to \(\partial s\) for some triangulation \(T_s\) of \(M_s\). Let \(h_s: \partial M_s \rightarrow \partial s\) be a simplicial isomorphism. Now attach \(M_s\) to \(K^{(n-1)}\) using \(h_s\) to obtain the space \(Y\), where \(s\) runs over the set of \(n\)-simplices of \(K\). We may identify \(M_s\) with a subset of \(Y\) so that \(\partial M_s = \partial s\). Then \(Y = [K^{(n-1)}] \cup \bigcup T_s\) and the interiors \(M_s \setminus \partial s\) are pairwise disjoint. Note that \(K^{(n-1)} \cup \bigcup T_s\) is a triangulation of \(Y\). We define \(\theta\) to be any mapping such that

\[
\theta(M_s \setminus \partial s) = \partial \delta s \quad \text{for each} \quad s \quad \text{and} \quad \theta(x) = x \quad \text{for each} \quad x \in [K^{(n-1)}].
\]

5. The Boltyanskii–Kodama examples. Fix an integer \(n \geq 2\). We are going to define \(n\)-dimensional counterparts of the Boltyanskii–Kodama examples (see [B] and [K2]) and to show that they have the property from the McCullough–Rubin theorem. The generalization is straightforward and we follow the description given by Y. Kodama in [K1] and [K2], p. 229, for the case \(n = 2\) (comp. also [W]).

Let \(a = (a_1, a_2, \ldots)\) be a sequence of integers such that \(a_i \neq 0\) and \(a_{i+1}\) is divisible by \(a_i\) for each \(i \geq 1\). We associate with such a sequence an inverse sequence of polyhedra

\[
X = \{X_i \rightarrow X_j \rightarrow \cdots \}
\]

in the following way. Let \(X_i\) be an \(n\)-simplex and let \(K_i\) be the standard triangulation of \(X_i\). Having defined \(X_i, i \geq 1\), and a triangulation \(K_i\) of \(X_i\), we define \(g_{i+1}: X_{i+1} \rightarrow X_i\) to be an \((a_i, a_i, a_i)\)-modification of \(K_i\). Define \(K_{i+1}\) to be any triangulation of \(X_{i+1}\) such that \(K_{i+1}^{(n-1)}\) is a subpolyhedron of \([K_i^{(n-1)}]\). This completes an inductive description of \(X\). Note a homogeneity of the construction with respect to every \(n\)-simplex of every complex \(K_i\).

Let \(s \in K_i, i \geq 1\), be an \(n\)-simplex. Consider the inverse image \(s(j) = \alpha_i^{-1}(s)\) for \(j \geq i\). Note that \(s(j) = s\). Also note that the \((n-1)\)-sphere \(\partial s\) is a subset of \(s(j)\), denote \(\partial s(j) = \partial s\). For a special case \((i = 1, s = X_1)\) this defines a subset \(X_1 \subset X_2\).

5.1. If a mapping \(f: \partial s(j) \rightarrow S^{n-1}\) extends to \(s(j)\) then \(\text{deg}f\) is divisible by \(a_j\).

In particular, if \(f: \partial X_j \rightarrow S^{n-1}\) extends to \(X_j\), then \(a_j\text{deg}f\).

Proof (by induction on \(m = j-i\)). If \(m = 0\) then \(s(j) = s\). Hence \(a_j\text{deg}f\) since \(\text{deg}f = 0\) in this case.

Suppose \(m > 0\), i.e. \(j > i+1\). Let \(f: s(j) \rightarrow S^{n-1}\) be an extension of \(f\). Let \(K\) be the restriction of \(K_{i+1}\) to \(s(i+1)\). Give each \(n\)-simplex \(s_i\) of \(K\) an orientation \(\sigma_i\).
such that

\[(*) \quad \sum \partial \sigma_i = (a_{i+1}/a_i) \gamma_i - a_i \gamma_i,\]

where \(\gamma_i, \gamma_i\) are cycles in \([K^{n-1}]\) and \(\gamma_i\) represents a generator of \(H_{n-1}(\partial \sigma_i)\) (see proof of 2.3). Since \([K^{n-1}] = s(j)\) (by construction) we may apply \(\partial\) to both sides of (*) and we get

\[\sum f(\partial \sigma_i) = (a_{i+1}/a_i) f(\gamma_i) - a_i f(\gamma_i).\]

By an inductive assumption applied to \(f - (i+1) \in m\) and \(f(\partial \sigma_i)\) (since \(\partial_s(j) \subseteq s(j)\) this mapping has an extension to \(s(j)\), e.g. \(f(\partial \sigma_i) \sim a_{i+1} h(g)\), where \(h \in Z\) and \(g\) represents the orientation of \(S^{n-1}\). Passing to homology classes, with identification \(H_{n-1}(S^{n-1}) = Z\), we get

\[a_{i+1} l = \pm (a_{i+1}/a_i) \deg f - a_i l, \quad l, r \in Z.\]

Thus \(a_{i+1} l\) and the proof is completed.

The spaces of interest are defined to be the inverse limits

\[\mathcal{X}(a) = \lim_{\to} X(a).\]

5.2. Theorem. If \(|a| > 1\) then \(\dim \mathcal{X}(a) = n\).

Proof. It is clear that \(\dim X(a) \leq n\). In order to prove the other inequality note that the mapping \(g_{ij}: X_j \to X_i\) is essential for each \(j \geq 1\). Indeed, the restriction \(\partial X_j \to \partial X_i\) of \(g_{ij}\) is a homeomorphism, hence its degree is equal to \(\pm 1\). Thus \(g_{ij}\) is essential by 5.1. It follows that the projection \(X(a) \to X_i\) is essential and therefore \(\dim X(a) \geq n\).

5.3. Theorem. If the following conditions are satisfied:

(i) \(a_{i+1}\) is divisible by \(a_i\) for each \(i \geq 1\),

(ii) for each \(i \geq 1\) and every open cover \(U\) of \(X_i\) there exists an index \(j \geq i\) such that \(g_{ij}\) refines \(g_{a_{i+1}}(U)\),

then \(\phi(U, \mathcal{R}^{n})\) is dense in \(\mathcal{X}(a, \mathcal{R}^{n})\). In particular \(\dim (\mathcal{X}(a) \times \mathcal{X}(a)) \leq 2n\).

5.4. Remark. The conclusion of 5.3 still holds if condition (i) is relaxed as follows:

(i') for each \(i\) there exists \(j > i\) such that \(a_j\) is divisible by \(a_i\).

Proof of 5.3. In order to prove the first assertion fix an index \(j \geq 1\), a mapping \(f: X_j \to \mathcal{R}^{n}\), an open cover \(U\) of \(X_i\), and a real number \(\delta > 0\). According to 1.1 it suffices to find an index \(j \geq i\) and a mapping \(g: X_j \to \mathcal{R}^{n}\) such that

\[d(f, g) < \delta \quad \text{and} \quad g \text{ is a } g^{-1}_{a_{i+1}}(U)\text{-mapping.}\]

There exist a subdivision \(L\) of \(K_i\) and a mapping \(v: X_i \to \mathcal{R}^{n}\) linear on each simplex of \(L\) such that

\[d(f, v) < \delta/3,\]

\[\diam(v) < \delta/3 \quad \text{for each } s \in L.\]
Sur le prolongement des fonctions continues dans les complexes simpliciaux infinis

par

Robert Canty (Paris)

Abstract. Let X be a simplicial complex which does not contain a strictly increasing infinite sequence of simplices. It is known that, if its geometric realization $|X|$ is provided with the metric topology, it becomes an absolute neighborhood extensor for collectionwise normal spaces. This is definitely false if $|X|$ is provided with the weak topology. We study here this phenomenon in detail, and show that its only origin is the non-preservation of extension properties under formation of infinite wedges of cones.

1. Introduction et notations. Soit Q une classe d'espaces topologiques. Nous dirons qu'un espace Y a la propriété d'extension (locale) par rapport à Q si, pour tout espace X appartenant à Q et tout fermé A de X, toute fonction continue de A dans Y peut se prolonger à X (resp. à un voisinage de A dans X). Lorsque Q se réduit à un espace X, nous parlerons de propriété d'extension (locale) par rapport à X.

Nous dirons que Y est un rétracte absolu de voisinage pour la classe Q (ou RAV(Q)) si Y appartient à Q et si, pour tout espace X appartenant à Q, tout fermé de X homéomorphe à Y est un rétracte de voisinage de X.

Si K est un complexe simplicial, nous noterons $|K|$ sa réalisation géométrique munie de la topologie faible, et $|K|_m$ cette même réalisation géométrique munie de la topologie métrique. Par un complexe infini, nous entendrons un complexe simplicial infini dont tout ensemble fini de sommets détermine un simplexe.

Il est connu que, si K est un complexe simplicial, $|K|_m$ a la propriété d'extension locale par rapport aux espaces collectivement normaux si, et seulement si, K ne contient aucun simplexe infini. Ceci découle des trois résultats suivants:

(a) $|K|_m$ est un RAV(métrique) (voir [11], p. 106).
(b) un RAV(métrique) a la propriété d'extension locale par rapport aux espaces collectivement normaux si, et seulement si, c'est un G_4 absolu [7].
(c) $|K|_m$ est un G_4 absolu si, et seulement si, K ne contient aucun simplexe infini ([11], p. 107).

Avec la topologie faible, la situation change complètement. Un exemple de van Douwen et Pol ([6], exemple 2; voir la note finale) montre l'existence d'un complexe K de dimension un, d'un espace régulier dénombrable T_1, d'un fermé A