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DRUKARNIA UNIWERSYTETU JA‘GIBLLOI:XSKIEGO W KRAKOWIE

The Nielsen number product formula for coincidences
by

Jerzy Jezierski (Warszawa)

Ab;str‘nct. In [24] Cheng-Ye You gave a condition equivalent to the Nielsen number product
formula for fibre maps. In this paper we present a similar condition for coincidences of fibre maps.
As an application we generalize the Anosov theorem:

If f and g are self-maps of a nilmanifold then
N(f, 9= IL{S 90

Introduction. In [3] Robert Brown raised the problem when for a self fibre map
of a compact connected ANR the product formula for Nielsen pumbers
N(f) = N(f») N(F) holds. After a series of papers [3, 4, 8, 10, 15, 18] where only
sufficient conditions were given Cheng-Ye You [24] found a condition which is also
necessary (see also [14], Chapter 4, and [12]).

In this paper we present a similar condition for coincidences of fibre maps. We
consider the commutative diagram

()]

E—"E'

(*) pl . l}’:
s, 9

B——F

.where, (E,p, B) and (E’, p', B) are locally trivial bundles with total spaces, base

spaces and fibres compact connected closed oriented topological manifolds of re-
spectively equal dimensions. We find a necessary and sufficient condition for the
formula

N(f7g) = N(fh;gb)N(f:g)

to hold. It generalizes [24] in the case of manifolds. The method used here follows
that of You. As an application we generalize the Anosov theorem:
If f and.g are self-maps of a nilmanifold then N (f, 9) = |IL(S, 9)] (see 0], [9D)-
In §§1-3 some preliminary results are given. Then in § 4 we consider the dia-
1 — Fundamenta Mathematicae 134/3
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gram (x). Let by, b, be coincidence points of f,  and let ii be a path joining these
points and establishing the Nielsen relation between them. Then the diagram

. Ly y},,,
1’!!0 [ ’Eﬂlu
T,
“ ) ’7[}
(Lpyrtpy) \tr'
R kfh;

is homotopy commutative and we show that it gives rise to a bijective map T; between
the sets of Reidemeister classes Vi( /4y, g40) and Vi(fy,,95). In particular, for
by = by, = b this gives an action on the set Vi(f,. ¢,). This action turns out to be
the obstruction for the product formula of Nielsen numbers to hold (Theorem (6.5)).
More exactly, the product formula is equivalent to two conditions: one of them,
N(fy,9b) = Ng(fy, gp), 18 connected with the inclusion of the fibre into the total
‘space and the other says that the above action is trivial.

1. H-Nielsen number for coincidences. Let ¥ be a path-comnected space and
let u, v be two paths in ¥ such that u(1) = v(0). We denote by u+v the composition
of these paths and by ~u the path opposite to u.

Let H be a normal subgroup of /T, ¥ (this means that for each v € ¥ a normal
subgroup H(y) = MI,(Y, ») is given such that for any path w from » to ' and any
loop a based at y and representing an element of H(y) we have {—w+a+w)
EH(y') Two paths u, v are said to be H-homotopic if u(0) = v(O) u(l) = v(l)

.and (u —v>e H' (u(O)) We then write u~ v. It is easy to see that u~ v implies v~ u,

.—u~ -1, u+w~ v+ W, r +u~ r+vif u+w, r+uare well defined. H is an equivalence
crelation and the class of the path « will be denoted by <a),,. This relation confined
to the loops based at a point y € Y gives the quotient group I7,( ¥, y)/H(»).

Let X be another path-connected space and let f, g: X — Y be continuous maps.
We denote the set of coincidence: points of the. pair (/. g) by

o(f,g) =

Two points x, x' € &(f, ¢) are said to be H- Nielsen equivalent (brieBy H-equivalent)

. y . . )’
~if there is.a path ¢ in X from x to x’ such that fe~ ge in ¥. We denote the quotient
set by Bu(f, 9) and call its elements H-Niclsen classes of the pair (f,g).

Fix xe X and a path rin Y from fx to gx. Let-{(d e IT,(X, x) and

<a>u, eIl (Y, fx)/H(fx) .

{xe X: fr = gx} .

Thc‘n the f"ormula
S (/d> a‘>n)-+<fd+a+r gd—ryy

~defines a left actlon of 1. (X x) on IT. 1(Y fx)/H (). We denote the orbit space by
~Vu(f,g: x,.r)..and the orbit 'of a loop a: by [(a)H]

icm
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(1.1) Remark. The above definition of V,(f,g: x,r) is not symmetric with
the respect to f and g. Nevertheless one can check that the correspondence

Va(f,g: x,r)3 Kadgl = [{~r—a+rdgl e Vulg. [t x, —1)
is bijective.
(1.2) LemMA. For each x, € ®(f, g) the set {{ fe—gc—r)y: cis a path from x
to x,} is an orbit of the above action and so x, determines an element of Vy( f, g: %, 7).
Two coincidence points determine the same element iff they are H- Nielsen equivalent.

Proof. Let ¢, ¢’ be paths from x to x,. Then c¢—¢' is a loop based at x and so

{fe—ge—riy = {fle=€)+(fe'—gc' —r)+r—glc—c)~1y
lies in the same orbit as ¢ f¢'—gc¢' —r)y.
Let now ¢ be a path from x to x, and let (u>g lie in the same orbit as
{fe—ge—r>y. Then
yg = {fd+(fe—ge—r)+r—gd—r>y = {f(d+c)~g(d+c)~rdyg
for some loop d based at x. Thus we get the first conclusion.

Let x,, x; € (f, g) be H-equivalent. Take a path d from x, to x; such that
fd~gd. Then ¢+d is a path from x to x; and the equality

{Sflet+d)—g(c+d)—rdg = {fe+fd—gd—ge—r>g = { fe—ge—rdy

shows that x, and x; determine the same orbit.
Let now x4, x; € ®(f, g) determine the same orbit. Then according to the first
conclusion for any path ¢ from x to x, we can choose a path ¢’ from x to x; such that

{fe—ge—r1oy = {f'~—gc'—r)y.
H
This implies f (— ¢+ ¢)~ g(—c+¢’) and since —c+¢' connects the points x, and x,,
they are H-equivalent. B
The above lemma defines an injective map

Q(x,l'): Q'H(.ﬂg)“’vli(f’g' x’r)

which assigns to the class of x, € @ (f, g) the class [{ fe—ge—r)y] where ¢ is a path
from x to x,.

Let x, x’ € X and let r, r' be paths in ¥ from fx to gx and from fx' to gx" e~
spectively. The next lemma establishes a relationship between the sets VH( fag: x, 1)
and Vy(f,g: x',r').

(1.3) LemMA. Let u be a path from x to x’
(8) If [<adyl = [Ka'>pl e Vi(f, gt x, 1) then
[{—fut+a+r+gu—r'dg] = [K—futd +r+gu—r'igleVu(f,9: X', r').
Thus we may define a transformation v: Vg(f, 8. x,r)~>Vy(f,g9: x',r’) by
the formula

v[ady] = [{futa+r+gu—rg].
»
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(b) v is independent of the choice of the path u.
() If x = x" and r"¢' then v is the identity.
(d) If (x", r") is another reference pair then the diagram

Vulfig: x',r")
A
e ‘
/\', !
/ I
VulF gt x,r) ’
N

A
™,
"

A
1Y

v

AN
N

N v
Vullig: X", r")
commutes.
(&) The diagram

Vu(fig: x,r)
om
S

i/, 9) -

a(x"r')\
‘ AW 4
Vulfog: x,r)

commutes. B

It follows from (c) and (d) that v is bijective, so we may identify all sets
Vau(f,g: x,r) by means of v. We denote the obtaincd quotiént set by Val S, 9)-
We will call its elements H-Reidemeister classes of (f,g). ,

(14) Remark. Lemmasg (1.2) and (1.3) give us an injective map o: y(fr )~
-+ Vyu(f,g)- Thus each H-Niclsen class may be identified with an H -Reidclncister
class. O.n the other hand, we say that a class 4 & Vy(/, g) eguals A’ e (S, 9)
as a set if 0(4’) = A; and that 4 is empty if it does not lie in the image of 0.

We will omit the sign H if H = 0, ' |

Let (F, G): (fo,00) ~(f1,91): X—> Y be a homotopy, i.e. F is a homotopy
from f, to f, and G is a homotopy from go to g;. ’

(1.5) LemmA. Let (x;, 1) bea reference pair for (f;, ¢ (i = 0, 1) and let u be
a path from x, to x,. ‘

@) I [Kadp] = [Ka'dyle Vil forgo: Xo,ro) then

K=4F, ) ta+ro+AG, W—rdy) = [{~A(F, w)+d +ry+4(G, u)—-rlbﬁﬂl ‘
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Vel fi, 910 X4, 7). (A(F. 1) and A(G, v) stand for the diagonal paths: 4(F, w) ()
= F(u(t), 1)).

Thus we get a map
U@yt ValSorGot Xo, 7o) =V fr. g0t X4, 1)

which determines a transformation

1 6r° Valfos go) - Ve(fi,91) -

(b) tier, ¢y does not depend on the choice of (xg, ro)s (X1, 71) and the path u.

(©) Hr,cy Is bijective.

(d) Let x;e A;e Py(fi,9)) (i = 0,1). Then jir,gyA4o = Ay iff there is a path ¢
rom xu to xy such that

A(F, )~ 4(G, ©).

© If (F',GY: (fi,91) ~(f2 92): XY is another homotépy then H(F,:pr'g,gl)
= [l 6yl ). Here F % F' denotes the concatenation of the homotopies F and F':

F(x,2t) for 1<1/2,

FxFi(x, 1) = {F’(x,Zt—l) for t=12. ®

(1.6) Remark. If f, = £}, go = g, and the homotopies F, G are constant then
the maps

v, e, 6yt Valfo,90) = Valfo> go)
are equal.

Let M, N be compact connected oriented #-dimensional topological manifolds
without boundary. Let U = M be an open subsct and let f, g : U->Nbe a pair of
maps such that ¢(f, g) is compact. Now we recall the definition of the coincidence
index of such a pair [21].

Let z,, € H,M be the fundamental class and let pye H'(NxN, Nx N-—-AN)
be the Thom class corresponding to the chosen orientations. All homology and.
cohomology groups are taken with rational coefficients. We define the coincidence
index of (f, g) as the image of the fundamental class z,, in the sequence of homo-
morphisms

exc 3 [un, 1
H, M= H(M, M— ) H(U, U= &) "> H(Nx N, NxN—4N)——> Q

(exc denotes the excision isomorphism, [...] the Kronecker index and Q the field
of rational numbers). We denote it by ind(f,g: U). For its properties see [21];
we recall only that it is an integer and that ind(f, g: U) # 0 implies the existence
of coincidence points of (f,g) in U. If U= M thenind(f, g: M) equals the coin-
cidence Lefschetz number L(f,g) [21].

Let now again f,¢g: M— N and let H be a normal subgroup of II;N. Let
A e Vg(f, g). We define the index of the class A as

ind(f,g: A) =ind(f,g: U)
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where U is an arbitrary open subset of M containing 4 and disjoint from the other
classes of (f, g) (here we treat 4 as a subset of M; compare (1.4). Obviously, if 4 is
not the Nielsen class we may take U = @ so in this case ind(f,g: 4) = 0.

A class A e Vy(/f,g) is called essential if its index is not zero, otherwise it is
called wunessential. We define the H-Nielsen number of (f, g) as the number of its
essential classes and we denote it by N,(f, g). Notice that since the manifolds are
locally contractible and compact, the sct of all Nielsen classes is finite and hence
Ny(f,g) is a natural number or zero.

Let(F, &): (fo,90) ~ (f1.91): M— N be homotopies. One can modify [19] to get

(1.7) THEOREM. (s gy preserves index (more precisely, if A € Vy(fy, do) then
ind(fo, 900 4) = ind(f1, 91 fp.ayA). This implies the equality Nuy(fo, 90)
= NH(flvgl)' L

2. Homotopy commuting diagrams. In this section we define transformations
between the sets of Reidemeister (or Nielsen) classes ot pairs of maps appearing in
a homotopy commutative diagram. Later we will use the obtained formulae to com-
pare the Nielsen numbers of fibre maps restricted to different fibres.

Consider a commutative diagram of path-connected topological spaces

.0
M —s N
|

"l
Yoo
M’ ———

Z—

Let (x, r) be a reference pair for (f,g) and let H=II, N, H’ <II; N' be normal
subgroups such that Ky H = H’. Then the map x: Valfog: x,8)Y=>Vu(f, g’ hx, kr)
given by x[{apy] = [<kady] defines a transformation x: V,(f, )= Vu (F, 9"
which does not depend on the choice of (x. r).

Assume now that the above diagram is only homotopy commutative and fix
a homotopy (F, G): (kf, kg) ~ (f* h, g’ k). Moreover, assume that A and k are

homeomorphisms. Then our diagram may be considered as the composition of two
squares

MLy

IUI RN H

' l " l‘ k’
_______ ¥

where the upper square is homotopy commutative (with homotopy (k™' F, k™* G))
and the lower is commutative. In this way we get the composition

k= 1F, k- 16)
VH(f) g)

which will be denoted by N, 6)-

Valk™ f k" g B S Vel S g)

icm
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: - 7] -1,
Fix reference pairs (x , 7o) for (£, g), (x1, r;) for (k 1f'h ,‘k‘ g hyanda pa.th u
from x, to x;. Then we may represent e, gy a5 the composition

Val(f. g1 %o, "o)"’vn(k_lfl hokT g b x v > VS, g’ By, k),
xp-1r -1y [apnl = u[(—A4(k™'F, Wta+tro+A(kT G, 0)—ridyg)
= [(— kA F, 1) +ka+kro + kA G, u)=Kreog]
= (= A(F, ) +ka+kro+A(G, ) ~kri ] -

—1 . -1 .
In particular, if we choose xo = X; = X, 1o = 1, Iy = k™ F(x, ) +r+ kT G(x, 0)
and u a constant path based at x then .

ey Vallsg: %, )=Vl 9" hx, —F(x, -)+kr+q(x, ))

is represented by 7, ylavel = [{— F(x, Y+ka+ F(x, Vgl
We sum up the above formulae:
(2.1) TueoreMm. Consider the diagram of path-connected topological spaces
f:9) .

M ——>N
|

L
N b
M e N

Let HcII, N, H' <IN’ be normal subgroups such that kyHc H'.

(a) If our diagram is commutative then it determines a map %: Vy(f,9)—-
—Vu(f',g") given by

%: Vgl frg: x, 1)= Vel f g’ hx, kr),
where (x, 1) is a reference pair for (f,4). . -

(b) If the diagram is only homotopy commutative (with some hosztopzes
(F, G): (kf, kg) ~(f h,g' b)) but ky H=H " and k, h are homeomorphisins then
it determines a bijective transformation n: Vy(f, 9) -Vl f',g') which may be
represented by :

0 Valfog: 1)Vl g hx, —F(x, ) +kr+G(x, )P
nl<ady) = [{—F(x, )+ka+F(x, Vonl-

(c) If the assumptions of (a) and (b) hold and the considered homo}to;l;‘ies are
constant then x = 1. ,

(d) Let the diagram be homotopy commutative and let ky H= H'. Assume’ that
all spaces involved are compact closed connected oriented manifolds of the same dn_nen-
sion and let h, k be orientation-preserving homeomorphisms. Then the transformation n
preserves index, i.e. if AeVg(f,g) then ind(f,g: A) = ind(f",g": nd).

Proof. (d) follows from (1.7). ' i

The transformation #s,¢) depends on the choice of the l?omotoples (F, G).
Nevertheless the following lemma shows that it does not distinguish between homo-
topic homotopies,

x[Cadg] = [karpls
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(22) LemMA. Let hy: X X', k2 Y— Y' denote two continuous families of
maps and assume that the diagrams

(627}
X —=sy

l’lt ikg
e
X’ Y

are homotopy commutative (t€[0,1]), i.e. there exist maps F,G: XxXIxI—Y’
such that F(x,0,1) =k, fx, G(x,0,1) = kygx, F(x, 1, t)—f’h X, C(x 1,1
=g hx.
Then
Nk, Go) = (F1,G1)
there Fix,s) = F(x 5, 1) Gx.5) = G(x,s,1)).

Proof. We have to show the commutativity of the diagram
v 0, Go)
g(f,g Xy 1) = —>Vul(f', g": hox, —Fo(x, )tk +Golx, ))

n(Fz, G1) v

Vul S ' hyx, = Fy(x, ')'{‘kl"f‘Gi(x )
To define v we will use the path #,X from kyx to h, x given b
t=h,x (see (1.3b)). Then © ’ e the formla

Ny, 6nl@dn] = vIK=Fy(x, ) +k,a+Fy(x, ).
On the other hand,
Yo, 60)[<aDn] = v[{=Fo(x, -) +koa+Fo(x, Pl

= [{=f"heyx—Fo(x, )+ koa+Fy(x, )
=Fo(x, *)+kor+Gy(x, V+g' oy x~Gy(x, ) -k, FEF(x, g ]
= [(:F(x, 1,)—F(x, -, 0)+koa+kyr

(1) . .
+€(x, S 0+6(k, 1, )~G(x, -, D=kyr+Fx, -, D)dgl
) . (2)
= [{=F(x,, )=F(x, 0, ) +koa+F(x,0, )

)

3)
—F . .
(x,0, )+k0r+G'(x(:;)0, ?—k1r+F(x, S DSl

—

4)
= [K=F(x,, )+kya+F(x, -, 1)dg]
: @)
= [{~Fy(x, +kia+Fylx, )g] = Nery, enl<ad gl
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(we apply the homotopies @,(s,t) = F(x,s,1), @,(5,1) =G(x,5,1), Pi(s,'t)
= ksa(t)s Dyls, 1) = ksr(l)).

3. Reduction to @(f,g) finite. In this section we prove the following

(3.1) THEOREM. Let M, N be compact connected closed topological manifolds
of the same dimension. Let d denote ametric on N and let ¢> 0. Then for any (f, g):
M — N there exists (f,,g.) such that d(f, f.) <e, d(g, ge) <& and Qi(fz, ,) zsﬁmte
(here d(f, 1) = ‘iupd(fx 12%)).

For the ﬁxed point:case of this theorem see [22, 23, 6] and for the coincidences

on triangulable manifolds see [5].
" The proof of the theorem is preceded by two lemmas. We follow the method

used in {6]. The first lemma is evident:

(3.2) LemMA. Let f,g: R"—R" be iwo continuous maps and let n> 0. Then
there exist f,§: R"— R" such that d(f, f)<n, d(g, §) <nand ®([, g) is discrete. B

The next lemma is an easy consequence of the Theorem (3.1), 103 of [1].

(3.3) LemMmaA. If Y is a compact ANR and >0 then thereis a 6> 0 such that
for every metric space X, its closed subspace A and maps ¢: XY, §: A=Y with.
d(@(x), Y(x)) < 5 there exists an extension §: X— Y of Y satisfying d(p, ¥) <e.

Proof of Theorem (3.1). Fix metrics on M and N. For any metric space
(X d) and a subset Ac X set B(A,n) = {xe X: d(x, A)<n},

U(A n) = {xeX: d(x, A)<r,}

For every x € #(f, g) we find euclidean neigbourhoods ¥, Wc M and U< N
satisfyingxe VeV W, fx = gxe U, f(Wyug(W) < U. Since &(f, g) is compact,
O(f,g)c Viu...uV,. Let ¥ = M—(Vyu..uV,). There is no coincidence point
of (f,g) in ¥. We will construct inductively two sequences of maps

. f=f0afla-“7ﬁ! andg:gﬂ)gl)-'-agrn
%uch that:

@) d(fi, fio )< slr, dlg1, Gim) < Elr.

(ii) fix = fx, g;x = gx for xe Y.

(iil) (fig;) has on ¥; = YUV u...u¥; only a finite number of coincidence
points, each of them isolated. : T

(iv) W, ug W, Uy, 6, j=1,.,7
We then obtain the desired maps by putting f, = f,. 4. = ¢:.

The maps f, = f, go = g are given. Suppose that ( f;, g;) satisfies (i)-(iv). Then
®(fi,g)N Y, is finite and all its points are isolated, hence there is no coincidence
point of (fi,g;) on B(Y,, &)~ Y; for some & >0. Choose n<¢'/2 such that
B(V;.1,0) © W,,,. Since W, ,, U4, are homeomorphic to R" and f(W,, 1) © Uiy,
giWis) = U;yy, by (3.2) the restrictions qu,w G 02D be approximated by
FiaGit Wier1> Uy, such that &(f, g) is discrete in Wi, hence #(F,d)n
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AB(Viey,n) is finite. We define Z = ¥y~ U(Y,, 8. Then ZaU(Y,, &) = &
and B(Z,n)nB(Y,, ¢ ~2n) = @.

i Now we apply (3.3) to X=M, Y=N, A= B(Z,n)uB(Y,, ¢ -2
E<min(e/r, f, o, ....00), @ = f; and

Yx = {]’tx for xe B(Z, 1),

y

Sfix for xe B(Y,, &' ~2n),
where o, = dist(f,W;ug,W,, N~ U),
B =4min{d(fix,9,X): xe B(Y,, &)~ U(Y,, &' ~21)}.

By (3.2) we can require d(fx, fix) < for all xe W,,, hence for x € B(Z, %)
= B(Viyy.m) < Wiy y. Thus the assurptions of (3.3) are satisfied and we get Jirts
an extension of v satisfying d(f,, fi4+{) <&

In the same way we can find g,,,: M~ N such that

Gre1 X = {gix for xe B(Y,,e~21),
. gix for xeB(Z,n),
and d(g;,g:4() <&
Now (fir1,@i+1) satisfies (i) since &< gfr, (if) since f,,x = Yix = fix for
xeYc ¥, and (iv) since &<o; (j =1, .., r).
As to (iii) we notice that:

@) (fi+1,9141) N B(Z,n) is finite so all coincidence points from Z are isolated.

(b) (fi+1: g141) coincides with (£, g;) on B(Y,, &' —21) and the latter has only
a finite number of coincidence points, each of them in Y.

(© If xe Y;,, and x lies neither in B(Y;, ¢ —2n) nor in Z then it belongs
to B(Y,, &)—U(Y,, o' ~21). Now, &< B implies Sre1X # gipqx. |

‘ 4. The transformation T5. Let p: E—B, p': E'—+B' be locally trivial bundles
such that the total spaces, base spaces and fibres are path-connected. We assume

that B and B’ are paracompact. Then the above bundles are Hurewicz fibrations;,

Flenote by it,_l’ their lifting functions [20]. Let E, = p~1b be the fibre over b € B.
For a path # in B we denote by r5: Eg0y— Eir) the map given by the formula

X = A(#, %) (1).

Since the considered bundles are locally trivial we may assume that the maps

Tt oy~ Eg1y (and the similar maps, for the secgnd bundle) are homeomorphisms.

For a path u we denote by «] the path given by the formula u(t) = u(r(l—1)+st)
Suppose we are given two fibre maps, i.e. a commutative diagram

.

[#7)]
E———>F'

b
)4 i

e B

icm

The Nielsent product formula 193

In this section we show how a path joining points from one Nielsen class of
&(J, 7) induces 2 map between the Nielsen classes on the corresponding fibres.
For b e B we denote by fy: Ey— Efy, 950 Ep— Ej, the restrictions of f and g.
For a fixed b' ¢ B' we denote by K the normal subgroup of II, E; given by the

formula
K(x") = ker(IT,(Ep, x) > IT(E', x")) .

Let be ®(F, 5. Then (fy,gs): Ey— Efp=jp, s0 we get the set Vi(fy,gs). Let
by, by € ®(F, §) be Nielsen equivalent and let it be a path joining them such that
fii ~gii. We are going to define a bijective transformation between the sets

Vel fro» 98) and Ve(fy,, g5,) induced by &.
Consider the diagram

(fbg>8hg) ,
’E; bo > Ef bo
“n % | ! é;
\l/ (FpyOg) ‘l/ ,
E by > Fbs
The diagrams
o , 8bo ;
E bo Efbo E bo —>E gbo
l - r — 1
P ©F ™ tgu
\L by ‘l', A by ’
be - Efb: Ebl - EEM

are homotopy commutative by means of

F(x,t) = t7t fawTas(®) and

’

Gy(x, 1) = Tt g Tat ()

respectively.
Let D, be a homotopy between the paths fii and gii. We define G,: Ep, X I E7,,

by Gs(x, t) = 75,gp,(x). One can check that the diagram (4.1) is homotopy com-

mutative with homotopies F and G = G,*G,.
Now we may apply Definition (2.1b) to (4.1) and we denote the obtained map by

Tat Vel S 950) = Vel Sor G5,) -
The formula from (2.1) representing this map takes the form
(42) Tt Vil(foor Gpot X5 7) = V(fors wa(x). (*)) s
%) = (—T:ﬁ(‘.)fﬁ(ﬂ;f,‘)(x)+T§*§’ +“5'D(_)gbo(x)+ T;ﬁ?,). E(.)TTIS')(x)) ,
(43)  Tilkadell<G»)ye] = (K=t ficyTab () +o7aa+ it fior T D Dxl -

Now we are going to simplify the above formulae. Recall first

(4.4) Lemma [24]. Let v be a path in E such that pv(0) = pv(l) = b and let pv
be contractible in B. Then there is a path I in Ey from v(0) fo v(1) such that I is homo-
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.. . . K
topic to v in E. For any other path I in E, the conditions I' ~v in E and I' ~ | are

equivalent.
In particular, any loop u in E based at x € E, such that pu is contractible deter-
mines an element of the set IT(E,, x)/K(x).

Now we show that the path (%) from (4.2) is homotopic in E’ to —fu+r+gu
where u = A(#, x).

The homotopies ‘ ‘
' B H(t,5) = X(Jal, fioTe ()6,
Hy(t, 5) = X(Ja, r(t))(s),
H3(1= 3“) = ;Ll(Dn gho(x))(s) )
Hy(t,5) = }*’(gﬁr‘ , g';(,,’C,;E(X)) )
may be joined to get

H(1-4t,5), 0<t<l1/4,

Hy(4t—1,5), 1/4<t<2/4
H(t,s) =142 '
&) =g r2.s5), 2h<t<3ls,
| H 43,5, 3/4<e<l.
Then H(O,s) = Hy(1,s) = fu(l), H(l,s) = H,(l,s) = gu(l). Moreover,

Hl(t,())=fr;6(x) and since the paths u(s) = A(#§, x)(s) and r;(,)(x) = Ay, %))
are homotopic via H(t, 5) = A(f@y, x)(s), we get
Hy(, 0 ~fu, Hyt,0)=r(t), Hit 0)=g() and
Hy1,0) = gr;a(x), so as above Hy(",0) ~gu.
Thus H(-, 0) ~ —fu+r+gu.
On the other hand,
Hl(t ]) = Tfu f;:(t)ru‘(x) ’ Hz(t 1) = Tfur(t)s
Hy, 1) = th,95(x), Ha(t, 1) = Tﬁggim"?:;,(x)»
so the path () from (4.2) equals H(:
to —futr+gu.

A similar calculation shows that the path from (4.3) is homotopic in E'to
—futa+fu.

Thus the map Tj: Vi(Sfo0s 980t %5 1) = Vil fo,, gt X', 1') is given by
Tilkadg] = [Ka'>x]

where x" = u(1) and r', @’ are paths in Ef,,1 homotopic in E' to —fu+r+gu and
—fu+a+fu respectively.

"(4.5) Remark. It follows from the above that T; does not depend on the choice
of the homotopy D, used in its construction. Nor does it depend on the lifting func-

, 1) which homotopic in E’ to H(-, 0), hence
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tions 4, A". For suppose that 4,, 4} is another pair of lifting functions. Now 2 is homo-
topic to A, and A’ is homotopic to 43, so there exist. two families of lifting functions
between them. They give rise to a continuous family of diagrams of the form (4.1).
We apply Lemma (2.2) to them.

(4.6) DepniTioN. We denote by p: V(f, g)-+ V( 7, 5) the map induced by
the commutative diagram

f.9) )
E e EY

. { »
Voogn Y
ey B

with constant homotopies (see (2.1a)). Let be ®(f, §). Then (gt Vx(/s, 9w
-V (f,g) will stand for the map induced by thé commutative diagram

(S5, 90) ’
' —> EF

1 ‘ .;f,g) qll

-+ E

with constant homotopies. : :
(4.7) LeMMA. Let by, b, e &(F, 3) and let ii be a path jommg them such that
fu ~ gii. Then the diagram

= .
VK(fbu;\f] o) — > Ve for> 951)
N s
AN Aty

N
V(f.9)

is commutative.
Proof. Choose a reference pair (xo, ro) for (fyys gs,)- Then

(ibo)v[<a>l(] = [<a>] € V(fx g: Xo» rO) »
() Taldadg] = [KaP1e V( /. g2 x1,11),

(where x; = u(l), r; = —fu+ro+gu, @’ = —futa+fu and u= A(u Xo))
But the above elements represent the same element in V(f, g) since

v V(f29: %o, 1) > V(145 Xy, 1y)

vKay] = K—fu+a+ro+gu—rd) = [(=futatro+gu—gu—ro+tfio}
= [{~futa+fid] = [{a}]. B
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(4.8) Lemma. If the paths i, © joining the points by, b, € 9(J, §) are homo-
topic and so are fii and Gl then T; = Ts.

Proof. Let (x,, ro) be a reference pair for (fu,s Gro)» and let (xy, ry), (x5, r2)
be reference pairs for (/4. gs,) induced by (xo, ry) with # and by (x,, 7o) with &
respectively, i.e. if u = A@, xg), v = MB, xo) then xy = u(l), xp = v(l) and ry, 1,
are paths in Ej, homotopic in E' to —fu+ryg+gu and —fuo+rg--gv respectively.
We have to prove that the following diagram is commutative:

ﬂvx(fbn gnt X1 T)

75,/
/

Ve(fsos Gbo* Xo5 7o) Y

N
Ny
Vil S 60" %25 72)

Since p(—u-+v) is contractible in B, there exists a path / in E;, from u(l) = x,
to v(l) = x, homotopic in E to —u-+v.

Now T5[{ayy] = [Ka'dgl, Tiléady] = [<a'" ] where o' is homotopic in E’ to
—fu+a+fu and @’ is homotopic in £’ to —fo+a+fv, 50

VI = v[<a'pg] = [{—fl+d +ry+gl=rad .
But in E’
{—fl+a +ri+gl—r)
= (o (= fut o)+ (= fuk @ fu) + (= fu 1o +gu) + (—gu+gv)
—(=fotrot+gu)y = {~fotatfoy = <a">.

Thus vT5{<ayx] = [0 k] = Tal<ady]. W

(4.9) LeMMA. Let by, by, by e ®(F, §), let & and © be paths from by to b, and
from by 1o b, respectively satigfying fit ~ gt and fi~gb. Then Tiyy = T5T;.

Proof. This may be proved by calculations similar to those in (4.8). Notice
that the maps ;.3 and 7375 are homotopic. B

(4.10) LeMMA. Let by, by € &(J, §) and let & be a path from bo to b, such
that Jit ~ G Let 4,6 O'(fo,gy) (= 0,1). Then Tido = Ay iff for any points
x,€ A; (i = 0, 1) there is a path uy from X, to X, such that pu, ~% in B and fuy ~ guy
in E'.

Proof. Let x;¢ 4; € Vg(f3,, 0s) and let ey, denote the constant path at fix;
(i=0,1). Let u = Ail, xp), x1 = u(}). Then

T4, = [(efx;>x] € V(fogs Gus® X1, 71y)
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where r, denotes a path in the fibre homotopic to —fu+gu in E'.
= Let T;4, = A,. Then

[(efx1>K] € VK(fl»x vGIoy s X1 efx1) and [<efx;:l’l(] € Vk(jbx b gb1: x’l ’ 7'1)

represent the same element in Vx(fy,: gs,)> so for each path win E,, from x, to X
we have

v[¢esux) = [{—fwtgw—riox] = [Cernrxl € Vel 90,0 %1511 -
Hence for a loop d in E,, based at x|
{=fwrgw—rirx = {fd+r —gd—r g .
Now (4.4) implies that the above paths are homotopic in E', so —fwgw—ry
~ fd+r,—gd—r, ~fd—fu+gu—gd—r, Therefore f(u—d—w) ~g{u—d—w) and
we put uy, = u—d—w.

« Suppose that u,; exists. Then —u,+w is a path from x; to xj such that
p(—u, +1) is contractible. Hence there exists a path v in the fibre Ej, joining these
points which is homotopic to —u; +u. Then

vi VK(fbxa oyt Xy e[x;)"’VK(fbls ‘e xlls rl) El
v[<efxx>K] = [<—fD+gU—71:}’K] .
On the other hand, in E’ —fodgv—r;~ —fu+fu;—gu, +gu—gu+fiu~er,,
so v[{es,ox] = [esw0x]- W
(4.11) LeMMA. Let by, b, € ®(F, §) and let A,€ Vi(fs,185) (i = 0,1). Then

(fs)g Ao = (in)g 4y iff there exists a path W from by to b, such that fw~gw in B’
and T;;AQ = Al'

Proof. <« follows from the commutativity of the diagram (see (4.7))

Tw
V(foos 96 = Ve fo15 95,)
AN
\\
Upg)V /Uy
AN

g
V(/.9)

; Let now [{aDx] € Vil foer Gn: X3, 1) Tepresent 4; (¢ = 0,1) and suppose that
(isdg 4o = (in,)g 4. Xf now v’ is a path in £ from x, 10 Xy then’

[Kad]l = [(—fo'+ag+1o+gv" =131 € V(/os bt X1, 71)
so for a loop d based at x;
{ayy = (fdy+{—f' +ay+ry+gv' —rid+<ritgd—rd
= {f(d=v)+ag+ro—gd—v)—ry>.
We put v = v'—d, W = pv. Then the above equality implies /& ~ gw.
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It remains to show that T4y = A,. Let w = A(W, x;). Then
T5t Vil foor Goot Yoo To) = Vil iy 0oy X1, ),
Tyl gl = a1kl
where x; = w(l) and r{ ~ —fw-+ro+gw, ay ~ —fiw+ao+fwin E'. Since p(—w+v)
is contractible in B, there exists a path / in E,, from x} to x; homotopic to —w+w.
Then T34, = ['\}"f‘/+("1+’1’+gl“r1>xl] € Vi(fo» 9,0 X, ry)- But in £
~fltdi+ritgl=r ~ =f(=w+0)=fwtao+/w—fwtro+gwtg(—w-+v)-r,
~ ~fotaytrotgo—ry ~a;. ‘
| Thus Tydo = [0kl €V foyr 6,7 X1, 7). proving that Todo = A;. W
"(4.12) DeriniTion. Let f,g: X— Y be continuous maps and let x € (f, g).
Then we puf '
o Clfu>94)s = {eeIli(X, )t fau = gyaell;(Y, )}
This is a subgroup of II,(X, x). .
Lemma (4.9) says that for a fixed be &(F, §) the group C(fy, Ge), acts on
Vx(fy,g,) from the right.
It follows from (4.11) that if 4 e Vg(f,,d,) then its orbit (under the above
action) equals (i,)y "((is)v4). ‘

* (4.13) THEOREM. Suppose we are given a confinuous family of commutative
diagrams

(fe,80)
E—————=F'

(zel0, 1]).

Set -[:Cxi 1) :fv(x>: G(x, 1) = gt(x)5 F(x: 1) =fr(x)r G(X, 1) = g-t(x) Let
bie @(f:.)) (i = 0, 1).and letii be a path from by to b, such that A(F,i1) ~ A(G, ).
(a) The formula
75 VilSobor Gobet Xo» To) = Ve(S1imG1vt X1, 71),
Tilagyk] = [{ai>xl,
wlu:’re (%q, ro) is an arbitrary reference pair for ( foue, Gose)s # = A, Xo), x, = u(1),
ry is ap-atﬁ. in Ey,, homotopic in E' to —A(F, u)+ro+4(G,w), a, is a path in E}h
homotopic in E’ {o —A(F, wy+ay+A(F, u), gives a well-defined bijective map
Ti: Vi(fones go\bc)"*vK(flbn 915,) -

(b) The following diagram is commutative:

Ta ) '
- Vi(Sosar Gove) ™ V(f1b:5 9101)
(by)y Uesdy
B(F, G '
. V(.ﬂhg(}) > V(fligl) !
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Proof. Consider the diagram

(64 ,
Ex]-——E

Vpl F6) lp,
. BxI———>B
and the patﬁ iy (2) = (@), t) (bere Ple, 1) = (pe, ).

5. The indéx-product formula. In the mext two sections we will consider the
commutative diagram

E .0 P
(6.0)- 2| v
v a@w l

B— —~ B’

where p: E—~ B, p: E'— B" are locally- trivial fibre bundles whose total spaces,
base spaces and fibres are compact connected closed oriented topologjcal manifolds
Moreover, dimE = dimE’ dimB = dimB’ (hence the dimensions of all fibres
are equal) and the orientations of the base spaces, total spaces and fibres are com-
patible. We consider the coincidence indices of ([, g) €F> @)» (f2>90) with respect
to these orientations. .

Tn this section we prove that a Nielsen class Aed'(f, g) is essential iff
pyA e ®'(F, g) is essential and (ip)y 1 4 is the sum of essential classes in Vg(fy, g5)

- (5.1) Lemma. The transformation Tg (from the .diagram (5.0)) is an index-

preserving bijection. -

Proof. The maps 7:. By, — Epy» t7t Ef, = E5,, ate homeomorphisms pre-
serving orientations. We apply Theorem (2.1). B )

(52) Lmoia. Let Ade®(f,g), peAde®(f.5), bo,bieped and let
Ao € Vil fro» 50)s A1 € Ve(fors 05,) satisfy (ip)vdo = (ip )y Ay = A. Then
nA(frs Gne* Ao) = iNd(fos Gut ) and # (v 4 = # @y 4
(4 X here denotes the cardinality of the set X).

Proof. If (ip)y Ao = (is vy thén, by (4.11), ¢ = Tido for a path i from b,
to b, and T preserves index. On the other hand, T3 is bijective, 50 by (4.7)

To((ip)v ' A) = ()7 ' 4 . B
(5.3) DeriNiTioN. Let A4 € &'(f, g). We define the numbers
) = ind(fy 050 o); KA = # (v A .

(where be pyd, Ay € ()7 L4). It follows from Lemma (5.2) that the definitiont
is correct.
- (5.8) Remark.'If A e &'(f,g) and j(4) # 0 then

(a) k(4) is a natural number, o

(b) py4 = p4 as-sets., . -

2 — Fundamenta Mathematicae 184/3
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Proof. (a) Since 4 € #(f, ), pA # B; choose be pd. Then p™ b d # @,
hence k(A) > 0. On the other hand, the indices of all classes in (iho)v MA) are equal

and nonzero, so the compactness of the fibre implies that the number of classes
must be finite,

(b) It is obvious that p4 < py 4. Let now b, € py A. Fix by € pA. Then b, and 4,
are Nielsen equivalent, so there is a path @ from b, to by such that fii ~ gi.

Then T5: (iy,)¢ "4 = (ip,)7 ' 4 i5 @ bijective index-preserving map. In this way
we get, in E,,, k(A) essential classes contained in A. Thus b, e pd. o

Now we are in a position to formulate the main result of this section,

(5.5) TuroREM. Let A e ®'(f,g). Then

ind(f, g: 4) = k(d)ind(7, 7: py(4)) = ind(f,,g,: 4 Eyp)ind(J, 7: oy d)
(for any b e py A).
The proof of the theorem will be preceded by two lemmas:

' (5.6) Lemma. Suppose we are given a fibre homotopy (F, G) = (f,,g,), i.e. a con-
tinuous family of commutative diagrams

Forge)

S

ﬁl lp'
B Ferae)

———e B (te 0, 1])

Let Ao € ‘P’(ﬁ) g(,) and deﬁne AI =} A, eV s Al
R ' ? r,¢)2o (f » g ) Then ind vgo: A
- md(j,, g:: 4,), 1281 (.’0 go: 4o)

nd( fo,go: pyAy) = ind(fy, g;: pedy).
If moreover p_(4) e ¥'(J,, 7,) then
JAo) = j(4)),  k(Ag) = k(A,).

Proof. The first two equalities follow from

1.7) and from the ¢ ivi
of the g (1.7) m the commutativity

V(or00) =~ (7, g
Fv‘l o by
V(or 40~ 97, 5y)
Now assume that py(d,) € &'(J,, 7,). Fix by € py Ay, by € py Ay, Then (1.5d) gives

a path @ from b, to b, such that 4(F, 7)) ~ 4(G, 7). Now (4.13) yields a bijective

map T; such that Ti(i,)e'd, = (in)v*4,, thus k(o) = k(4,). On the other
hand, T; preserves index, so J(4g) = j(4,). m

(5.7) LEMMA. Let by e D(f, §) be an isolated coincidence point and let A be
closed and open in ®(f,,, g,.). Then '

ind(f,g: 4) = ind(F. §: bo)ind(fyy, gue: pA).
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Proof. Let m, n denote the dimensions of the base spaces and fibres respectively.
Fix trivializations over some neighbourhoods U, and U'(bpeUycB,fbye U’ <B'):

’

P Uy ———> Upx N §U > U'X N’
N S A
k.9 14 1
N e
(8]

We may assume that U, is homeomorphic to R"and that &(7, 5 Uy = {bo}.
We choose an open ball U< ¥, centred at b,. We may choose U so small that
FEU)ug(clU)= U’ (cl denotes closure). We get the commutative diagram

9 _ ’
pHAU) ————p U

i W
AUxN —2EED g
where Kfh™!, Wgh™* are of the form
B fi b, %) = (b, ok, ),
hgh~i(b, x) = (gb, ¥ (b, x).

Let by € 0U; then the formula

By s 1<s/2,
dA-Dbottby, ) =32=2, A=, oo,
2—s 25

defines a deformation of the closed ball clU. It gives rise to homotopies
(F,G): (lUxN)xI-»U"*xN’

given by F(b,x,t) = (fb,¢(d(®,1),x)), Gb,x,1)= (3, ¥(d(®, 1), x)). Then
®(F, G) =byx NxI, so ¢(F, G) is compact. Moreover,

FB,%,0) = (7, 00, %),  66,%0 =@, 6, for bedl,
PG, 5, 1) = (7b, 0B, ¥), GG, x,1) = (@b, by, %) for [b=ball<1/2.

The above homotopies allow us to replace U by the ball of radius 1/2 and tq assume
that ¢ and ¢ do not depend on b. So it remains to study the coincidence index of

(X fog> GXGp): UXN—B'xN".
The diagram (5.8) is commutative, so that the index equals
ind(F, §: U) ind(foos Guo: 4)-

Proof of Theofem (5.5). We consider two cases:
(a) @(f, §) finite. Let pyAd = {by, ..., b}. Then (5.7) implies
2#
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7 X, =

? /j T \\ S
37 & N

e x AN

7/ 2 <

/ 1 AN
L} AN

> H, (B X< N')x (B'xN'), (B'x Ny < (B'x N')— 4(B' x N")) \_

(7% L0300 % Gus)y

H,1,(BXN)

o Hy (UX N, Ux N—bgx A)

1._

Hm+,,(B'xE’xN’><N', B'xB xN'xN'—(4B' x AN")) —

J:
|

(F19: Fbes Goode

e Hyon (U, U=bg) x (N, N— A)
‘ !
{
{

4
b
|

e

H(B'xB,B'xB —AB)QH(N' xN', N'x N'— AN")

>

(7,00 % (Svy: Gvo)e

o Hy(U, U~b)@H,(N, N—4)

Hm+n(BXN)

H,BRH,N

) and the lower vertical lines denote Kiinneth homomorphisms

1 7 s
1> Mo, N

y=1(.5

T
o+ Mg, by, 1y

I

Diagram (5.8). Here T(b
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5

ind(f,g: 4) =~_Z ind(f,9: AnE,) = _Zl ind(fyr 95,0 A0 Ep)ind(F, 55 b))

= 5. (AIAYIR(. 3+ B) = KAAYA(S, g3 ped).

(b) ®(J, §) arbitrary. Then by (3.1), (7, ) is homotopic to a map (f;, g{)
such that #(f,, g,) is finite. Let (F, G) denote this homotopy. It lifts to a homoétopy
(F, G):(f. ) ~(f1,9,) where (f;, g,) covers ([, g,). Set 4; = ur )4 € V(f1,91)-

If ped,e®(f,§,) then by Lemma (5.6) and part (2) ind(f,g: 4)
= ind(f1. 91 41) = k(4)j(4)ind(f;, G1: pyds) = k(A)j(A)ind (], 7: py A).

If pyd; ¢ ®'(f1,3,) then 4, ¢ @'(fi,g4), so by (5.6)

ind(f,g9: 4) =ind(f1.9,: 49 =10,
ind(f, g: py4) = ind(fy, 1 pyds) = 0.
Thus the both sides of the desired equality are zero. H

Now we are going to find conditions under which the product formula for
Lefschetz numbers holds. Notice first that this formula makes no sepse if
®(f, ) = O. But in this case or more generally if N(f, §) = 0 then by (5.5) also
N(f,9) = 0 and hence L(f,g) = 0 = L(f, §). Therefore, we will assume that
N(f,g) # 0. Notice that the formula makes no sense either if L( f;, g,) is not the
same for all points b e &'(7, g).

(5.9) Lemma. Consider the fibre homotopy from Lemma (5.6). Let by Ay
€ ®'(Jo. Go) and let by € A, = p(4o) € ¥'(f1, §1). Then

L( fores Jose) = L(S1p1s g_uu) .

In particular, if (fy, go) = (f1,91) = (f,9) then the Lefschetz numbers over the
Nielsen equivalent points are the same.

Proof. There is a path #f from b, to b; such that Fi ~ Gii ((1 5d)). Then the
induced transformation T; carries 4, to A; and preserves index. M

(5.10) THEOREM.  Suppose “that. N(f, §) # 0 and that L( f,,,g,,) zs the same
for all be &(J, §). Then

L(f,9) = L(f. 9)L( S5, 95) -

Proof. (f, g) is homotopic to (fi, g,) such that (I)(f'1 , ) is finite, Let 4 denotc
the sum of all essential Nielsen classes of (f,, §() and let 4, ..., 4, be its unessential
classes. Then Lemma (5.9) implies that for any b e &(f, §) and by € 4 the Lefschetz
numbers L(f,,dg,) and L(fip,, d1s,) are equal. So

L{f,9)= L(f1.99)= Z_ ind(f1,91: En)= Z L(fxb,gn)md(fngl b)

be®(f1,41) be'l’(fun)

= ZL(fu:gu)md(fh!h by+ Z ZL(fxb»gu)md(fpg; b

i=1bed;
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k
= L(fnoggbo)bZAind(fugx: b+ 21 L(fm,gw.)bZA ind(fy,3y: b)
e = €A

= L(fbagb)L(fn G1) = L(fs> g)L(f.5). &
(5.11) DernvrTioN. A fibre bundle is called orientable if for any loop # based
at.b ¢ B the induced map t; is homotopic to the identity map of the fibre Ej.
(5.12) CorOLLARY. If either (E'.p', B') is orientable or [~ then for any
bo, by e 2(].9)
L fror Gng) = L(fh,’.th) ’
Nl fo0+ 950) = Ne( o 902) s N(foor G) = N(fois @ny)-

Proof. Notice that in both cases for any bye ®(J,§) and a path @
joining them the maps T, Tor: Ejp,— Es, arc homotopic. Then the diagram

(b Fby) ,
Ey,———>Ef,
’
¥ (£py298) .
Ebz T - E:fb1

is homotopy commutative. We apply Theorem (2.1) to it.

6. The Nielsen number product formula. Let A, ..., 4, denote all essential
classes of (J, g). It follows from (5.5) that if 4eV(f,g) is essential then so is
pod e V(JF, 7), hence pyd = A; for some i = 7, ..., 5. Define

Ci= #{de®(f9): ind(f,g: 4) # Opyd = 4} .
Then N(f,g) = Cy+...+C, and N(f, §) = 5.

Let be ®(f, §) and let 4 €im(iy)y. Then i)y * A4 is an orbit of the action of
the group C(Fs, Gu)s o0 Vg(fy, g5) and every orbit is of the above form ((4.11)).
All elements of one orbit have the same index. We call an orbit essential iff it contains
essential classes.

(6.1) Lemma. Let be A, for some i =1,..,s. Then the number of essential
orbits in Vi( fy, 95) equals C;.

Proof. Each clement 4 &im(iy)y determines an orbit in Vi(f,.g). This is
a bijection under which cssential classes correspond to essential orbits (5.5). On
the other hand, by (4.11), im(i,)y = py "4, and the number of essential classes in
pe i, equals C;.

The next two corollaries follow from (4.10).

(6.2) COROLLARY. Let be &(F, §). A ®y(fygs) € C(Fa.Gu)y. Then the
Sfollowing conditions are equivalent:

(a) T, 4 = A.

() xepa(C(f4:94)s) Sor any x e 4.

(©) aepa(C(fs.94)s) for some xe A.
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(6.3) CorOLLARY. Let be ®(F, §), 4 € Px(fs: gs). Then the length of the orbit
containing A is equal to the index of the subgroup Pa(C(f2.04)) in C(Fe Gads
(written [C(Fu, Ga)s: P+ C(fe,gu)c)) where xe 4, b = px.

Now we are ready to discuss the product formula

N(fsg)= N(fsg)N(fbsgb)'

This formula makes sense only if N(f,.gs) is independent of be &(f, §). By Co-
rollary (5.12) this is satisfied if the fibre bundle (E', p’, B') is orientable. But even
without this assumption we have the following:
(6.4) TaroreM. (2) If N(f,§) = 0 then N(f,g)=0.
(®) If N(fs.gs) = O for all b lying in an essential class then N(f,g)= 0.
©) If N(Jo, Gs) = 1 for all b lying in an essential class then N(f, g) = N(J, 8).
Proof. If the assumption of (a) of (b) is satisfied then (5.5) implies that every
class of (f,g) is unessential. The assumption of (c) implies that C; = 1 for all
i=1,..,s W

(6.5) THEOREM. Suppose we are given a commutative diagram

where E, E', B, B’ and all fibres are manifolds of respectively equal dimensions. Suppose
that the bundle (E', p', B') is orientable and N(f,g) # 0.

Then the formula N(f, g) = N(F, ) N(fs. 95 holds if and only if the following
two conditions hold:

(a) Nx(fy>9s) = N(Jfss gs)
(b) For any xe &(f,g) in an essential class Pe(C(fa,04)s) = C(Tu. Tads

b = px).

Proof. By (6.3), (b) is equivalent to the condition that for each be &(F, 7
in an essential class the length of each essential orbit in V( f}, g4) equals 1. Soby(6.1),
C, = Ng(fi» ) i=1, ..., 5. Thus (b) is equivalent to the formula

N(f.9) = N(F, 9)Nx(fs,9%) -

The conclusion of the theorem now follows since N(f,g) # 0. B
Now let us consider the case N(f, g) = 0. Recall that for a space X and a point
%, € X the Jiang subgroup J (X, xo) I, (X, x,) is given by
J(X, xg) = {#eII (X, x,): there is a cyclic homotopy H:id, ~idy
such that (H(xp, ")) =&}
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-(6.6) Lamma. Let (f;g): M— N be maps between manifolds of the same di-
mension, and let H cII, N be a normal subgroup such that H<J(N). Suppose that
Ag, A, € VS, g) satisfy idy 4, = idydy where idy: V(f,9)—=Vu(f,9) is induced
by (idy, idy). Then ind(f,g: Ao) = ind(f,g: 4;).

Proof. Fix a reference pair (x,.7). Let <aod, {a;> e II,(N. fxy) satisfy
Ay = [{apd], 4y = [Ka,>]. Since idvAo = idyd4, we have [{aorn] = [{a;74].
so we may assumc that {@dy = {a;},. Hence {a;} = {~u+tayy for a (u)
EH(fAU)CJ(N fxo). Select a cyclic homotopy F: idy ~ idy satislying F(fxg, Y~
~u. Then F'(x, t) = F(fx, t)is a cyclic homotopy F': f~ [ satisfying F'(x,, )~
~u. Thus letting G be the constant homotopy at g we get

=.[<a; )] = 4,

Since p is index-preé,érving‘(( 1.7)), the indices ‘of Ao and A4, are 'equalf’

6.7y CorROLLARY. Lét a commutative diagram (5.0) ‘be given. Let b e @(J, §),
A e Vi(fs, gy) and letidg: V{fy, g5)— Vx([f3, 95) be the map induced by (idg, , 1d13,,,)
(see (2.1)). Then all the classes from (idy)~ 14 have the same index.

Proof. It foltows from [11] that Kc:J(Ef,,) Now apply (6.6). &'

(6.8) TueoreM. If (E',p', B') is orientable (md N(f,g) =0 then the product
Jormula also holds.

Proof. We have to prove that either N(F, §) = 0 or N(f3,g,) = 0. By (3.1)
and (1.7) we may assume that ¢(f, §) is. finite. Suppose that N(f, ) # 0 and take
bed(f, g) from an essential class. Let A e ¢'(f,,g,) and let 4, = (idV)A.. Then
the assumption N(f,g g) = 0 and Theorem (5.5) imply that md(f,,,g;, 1) =0,
s0' by (6.7), ind(f,,g,: 4) = 0. Hence A4 is unesvcntlal Thus N(fb,q,,) =0 W

If (E,p,B) is orientable then Cy,...,C,< N,\(f,,, gp) < N(f,,,‘g,,),
N(f,g)<N(f Q)Nx(fb:qb)<1\'(fQ)N(fb»f/b ‘ o

For N(f,g) # 0 we define rational numbers (Pak, numbers [24])

Plf.0) = N, DNl s 0N, 9)
P(f,g) N(f DN(fo- 9)IN(fr9)
(6 9) THEOREM. Let (E’, s B) be  orientable, N( f @ #0 and let TILE' be
abelian. Then
B(.) = [CUs s 300 pu(Csg))] for any xe(F,0), b = pr.
Moreover, Pg(f,g) divides 'NK( Jor dn)-

Proof. First of all-we prove that [C( 7y, Gu)s: P#(C(fu»g4)s)] is independent
of xe ®(f, g). Let xy, xy € B(f,g)and let u be a path from x, to x,. We will show
that the isomorphism h,y - IT,(E, Xo) = IT,(E, x,) given by Jig,y<ad = {—u+a+ud
maps C(f# ’ g#)xu llltO C(f‘“‘ 3 J#).\u

Let <ad> e C(f4, g%),m Then since I, E’ is abelian f{~— u+a+u) is homotopxc
to g(~u-+a+1y); which, proves that henla> € C(fys Gade-

Eaey Ao = Ha,al{ao>] = [(~u+ay)]
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Similarly we prove that hg,: C(fesGu)oo— C(J4» G4)p, is an isomorphism
(where # = pu, by = px,, by = px,). Thus we get the commutative diagram which

)@

C(fesG8)x — > C(f#v, Fudno
R !"&)
4
C(f#vgﬂ:)xl »C(f-ﬂxy g#)b:

implies the equality -
[C(Js-G8)b0: 24 (C(f 8)a)] = [C(Tss G adss p#(C(f*,g#)x‘)]

Then for any b e ®(J, §) in an essential class and for x & &(f;, g;) the length of
each essential- orbit in Ve(fy.gs) equals [C(Fe, Fo)s: Pe(C(f3,g4)x)] (see the
remark after (4.12)). Denote it by m. Then C; = ... = C, = C. Hence Ne(fs.93)
= mC and m divides Nx(fy, g5). Then mN(f, g} = mCN( [, §) = Nx(f5» g5) N(F, @)-
Dividing by N(f.g) we obtain Pg(f,g) = m.

(6.10) Turorem. Let (E',p’, E') be orientable, N(f,g) # 0 and let I, E',
11, Ey, be abelian. Then P(f, g) is equal to the order of the kernel of the homomorphism

(ip)y: UI(E},,,ﬁc)/im (Fos —Gos) —I1,(E’, fx)fim (fy —gu)

induced by the inclusion E},,C» E'.
- Proof. Take xe ®(f.g) and the constant path ry at fx = gx as referen ces
Consider the diagram

i)y
V(fusgot X, 7o) ~"’V(.Efg: x, 7o)
}7\ /(/"b/)v
/

V(fo G5t X, 7o)
Since IT, E' and I, E, are abelian, the quotients

V{f.g: x,1r0) = IL(E", f)fim(fe—g4)»
V(fo: 00t H (B, fim(fos ~gs4) »
VilJfs g5t X, 10) = (Hl(El:"fx)/K)/iln((fn#)K"'(gb#)k‘)

are also abelian groups, idy, (iy)ys (ip)y are homomorphisms and (ip)y 1s the homo-
morphism specified in the theorem.

Since idy is an epimorphism # (idy)~ 1 4 is the same for all 4.€ Ve(f5. F5° X, 7o)
and by (6.7) all classes in (idy)”'4 have the same index. Thus N(fs, g»)
= Ne(fs: g)(# ker(idy)).  Then  #ker(h)yN(f.9) = (3 ker (idy)) (4 ker (is)y)

.\',I’O) =
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N(f,g) = (s ker(ide)) Pe(f,9) N(f,g) (by Theorem (6.9)) = (4 ker(idy))
Ne(fy, a)N(F, 9) = N(fo, gN(F, 3)- .

Dividing by N(f.g) we obtain $ker(i)y = P(f,9). W

(6.11) COROLLARY. Under the above assumptions:

P(f,g) = (% keridg) Px(f, 9),

Pr(f, 9) divides Nx(fy. gs),

P(f,g) divides N([y.g5)
and

Ne(fi, 8)/Pe(F19) = NCfo. gn)P(f. g) = N(f, 9)N(F, §).

7. The Anosov theorem. In this section we apply the above theory to prove
the following

(7.1) THEOREM. For any iwo self-maps of a nilmanifold M the formula N(f, g)
= {L(f, g)| holds.

This generalizes [0] and [9]. We will follow the method used in [9].

(7.2) LemmA. Let M, N be compact connected smooth closed oriented n-dimen-
sional manifolds and let f,g: M— N be C' maps such that for some xq € D(f, g)
the difference of tangent maps (Df )yo—(Dg)s, Is an isomorphism. Then x, is an
isolated coincidence point and ind(f,g: x) = +1(=1) if (Df )y~ (Dg)s, preserves
(reverses) the local orientation.

Proof. We choose euclidean neighbourhoods U« M, ¥ < N such that x, € U,
fxo = gxa eV, fUugUc V. We identify U and ¥V with R". Then we have the com-
mutative diagram

)y ' .
H,(U, U-x,) = *‘H,(NXN,NXN—AN)*W&PL————-»Q

\\ \'\\ T’o //
N TFaT Hy(V x V,l/'x V—~AN)
I, ks &
» / (%, .1
\\ H’,,((V’_, V"fxo) X V) /"’"

\ ] oo /!
e H(V, V~fxo)

where a(z, z') = (z, ), Bz, 2) = (2’+Z‘ ~[fxo, Z’), 7(2) = (29 g%o), (f“g)x
= fxo + fx—gx and s* is a generator of H"(V, V—fx,) corresponding to the chosen
onen?atxon. Let now Zy € H (U, U~xy), Zy e H(V, V—fx,) be generators corres-
- ponding to the chosen orientations of M and N. Then

(FeglaEay =4 TN if (Df ) —(Dg)s, preserves orientation,
—Zy  otherwise.

Finally, ind(f, g: x0) = [, (fs 9)aZul = [s*, (f~@hZu] = [s*, £Zy] = +1(~1).
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(7.3) LEMMA. Let T" denote the n-dimensional torus and let f,g: T"—=T"
be continuous maps. Let A, B denote the n X n matrices representing the endomorphisms
Furgyt I T >IET" Then

N(f.g) = |L(f, 9)| = |det(4~ B)|.

Proof. We represcnt T as the quotient space R"/Z" and denote by n: R"—=T"
the natural projection. We write n(x) = X. We may assume that fand g are induced
by linear maps represented by 4 and B. We consider two cases:

(2) det(4—B) = 0. Then im(4—B)%R" For a v¢im(4d—B)+Z" we put
A'(%) = A(~v. Then the map /" induced by A’ is homotopic to fand &(f, 9) = @.
Thus N(f.g) = L(f,9) = 0.

(b) det(4—B) # 0. Consider %, e (S, 9)- Take xpen”
r = Axo,—Bx,eZ" Let B'(x) = B(x)+r. Then the diagram

¥, and set

(4,8)
i

- R*

|

B
v .9 ¥
™ ™

commutes and x, e (4, B). Since D4 = D; f= 4 and D.,B' = Dy,g = B,
it follows that Ds f— Dsg is an isomorphism. Therefore (7.2), %, is an isolated coin-
cidence point and ind(f.g: %) = sgn(4—B). Thus #&(f,g) = lind(f, 9)|
= |L{f.g)l.

It remains to show that no two distinct points X,, %, € #(f, g) eve Nielsen
equivalent. Suppose the contrary: then %, X; € ad(f,g') for some B’ (B'(x) =
= B(x)+r.reZ". Then A(x) = B'(x;) for some x;& 7~ %,(i = 05 1). This
implies A4 (x; —xo) = B(x;—Xp), $0 x;—~xpcker(4—B) =0 since 4—B is an
isomorphism. Thus x, = x;. On the other hand, #®@(f, g) equals the order of
the quotient group Z"/im(4—B) and the latter is |det(4-B)| ([2]). &

(7.4) LuMMA. If in the diagram (5.0), B = B' = T" and (E', p's B') is orientable
then the product formula N(f.g) = N(J,3) N(f,gs) holds for any (f, g).

Proof. If N(J, ) = 0 then the formula follows from (6.4a). Suppose that
N(f. @) # 0. We will show that the conditions (a) and (b) of Theorem (6.5) are
satisfied. Since IT(T") = 0 the homotopy exact sequence of (E'.p', B') implies
K = 0, hence (a) holds. Now we show (b) by proving that C(Ff4sTu)s is the zero
subgroup of IT; B. Suppose that fy & = gy o for some e 11y B. Let n % n matrices 4, B
and an element x € Z" represent fy, g4 and a respectively. Then Ax = Bx, hence
(A—B)x = 0 and the assumption 0 # N(f, g) = |det(4—B)| implies x = 0. ®

Recall that a nilmanifold is a quotient space of a nilpotent simply-connected
Lie group by its discrete subgroup. We consider only compact nilmanifolds. We
base on the following.
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(7.5) THEOREM [9]. Lef M be a nilmanifold. If M is not a torus then M is a total
space of a T-principal fibre bundle over another nilmanifold B (T is a torus). Moreover,
for any continuous map f': M — M there exists a map f: M — M homotopic to f such
that the diagram

!
M= M
|

?| Ip
¥ 7 v
B ———-> B

commutes.

(7.6).LEMMA. Let M be a nilmanifold and let (f. g): M- M satisfy L(f, g) # 0.
Then C(fs,g4) = 0.

Proof. The proof is by induction on the dimension. The case of M = torus
is contained m the proof of Lemma (7.4). Now assume that the lemma holds for
a nilmanifold B and let (M, p, B, T) be a principal torus bundle. We prove the
lemma for M.

Let (f.g): M— M satisfy L(f,g) # 0. We may assume that f, gy are fibre
maps. Then we have the diagram

g Py
0 T > IT, M m,B 0
(fos.008) [(f#,w) |(3’«.64¢)
|
27 ‘L D ‘}/
0> I, T - oo JT | Mmoo [T B =

Since the principal bundle is orientable and L(f, g) # 0 the equality L(f, g)
= L{fo.90)L(J, §) implies L f,, go) # 0 and L(f, §) # 0, hence by the inductive
assumption C(fy, G+) = 0 and C(fou, gos) = 0. Suppose that fiy v = ggu. Then
FePov =py ot =pugat = Gupst, 50 pyu=0. Thus u= igv for some
vell;T. But then iyfouv =/[pfyv = [t =gyu=gy4i,v=1,g0,0. But i, is
injective, $0 fou¥ = gouv and hence ve C(fy,,goy) = 0. Thus u = iwv=0 M

Proof of Theorem (7.1). The proof is by induction (as for (7.6)). The case of
M = torus is Lemma (7.3). Suppose now that the thecorem holds for a nilmanifold B
and let (M, p, B, T) be a principal torus bundle from (7.5). Let (f*,¢'): M—»M
be continuous. Then (7.5) gives rise to a commutative diagram

T — (fb,ﬂ:ﬂ)_“»>
3
l
¥ [677)] v

[ - M
o [

.0 ¥ .

B —————=p with (f,g) homotopic to (f*,g’).
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If L(J, §) = 0 then by the inductive assumption N(f, §) = 0 and (F, §) is homo-
topic to a coincidence free pair (if dim B = 3 we apply the Wecken type theorem [5],
for B = T, T? see the proof of (7.3a)). This homotopy may be lifted giving rise to
a deformation of (f,¢) to a coincidence free pair. Thus N(f,g) =0, so
L{f.g9) = 0.

Now assume that L(f,g) # 0. Then the assumptions of Theorem (6.5) are
satisfied: I7, M = 0 implies (a) and Lemma (7.6) implies C(f4.G4) = 0, so (b) is
also satisfied. Thus the product formula N(f.g) = N(J, §)N(fs. 9 holds, so
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On some famous examples in dimension theory
by

Z. Karno (Biatystok) and J. Krasinkiewicz (Warszawa)

Abstract. It was proved in [M-R] that for each 3= 2 there exists an n-dimensional compac-
tum X such that & (X, R)™ is dense in ¥ (X, B*). In this note we prove that the classical examples
of V. G. Boltyanskii [B] and Y. Kodama {K 2], and their natural higher dimensional counterparts,
have the same property.

In [M-R], D. McCullough and L.R. Rubin proved the following result:

For each n > 2 there exists an n-dimensjonal compactum X such that the space
&(X, R*) of imbeddings from X into R*”is dense in the space % (X, R*") of mappings
to R,

The aim of this note is to show that some famous examples first studied by
V. G. Boltyanskii [B] (see also [K1], [K2], [Wi]) and their straightforward n-dimen-
sional counterparts, n > 2, also have this property (see Th. 5.2 and Th. 5.3).

It was shown in [Kr] that this property implies dim X x X < 2n. This gives
an elementary proof of the fundamental property of the examples in which only
elementary algebraic topology is needed (all previous used the Kiinneth formula).

Lately S. Spiez [S] has proved that the latter property implies the property
from the McCullough-Rubin theorem for n > 3. (")

All spaces in. this note are assumed to be metric with a metric denoted by 4,

1. A lemma on imbeddings. Let % be a cover of a space X. A mapping f: ¥= Y
is said to be a %-mapping provided for every y € f (X) there is a Ue % such that
fY») e U If ¥ is a collection of subsets of Y then we denote

FHY = {fY(V): Vey ).

The following lemma is 2 slight generalization of Proposition 1.7 from [M~R].

132 Q23
1.1. Let X = {X, « X, ...} be an inverse sequence of compacta satisfying

the condition

(#) for each i\, for every mapping f: X~ R", for every open cover % of X, and
every positive number >0 there exist an index j= i and a g{,‘(@/)-mapping
g: X;— R such that d(fo,.9)<?é.

Then &(Lm X, R") is a dense G; in €(lim X, R").

(*) Added in proof. Extended to n= 2 as well.
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