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choose A, = @. Else we .find 4 (x<w,) such that Alnd; =@ if a#p,
Al € G, M and 4} ¢ 3 whenever ¢ < ;. Obvxously, if G, M¢3 (m=1) then
there exists at most one & < w1 such that G,,,n(M\A,) € 3. Therefore we may find
o, < @, satisfying G (MNAL) ¢ 3 whenever G,,n M ¢ 3. Now we canput 4, = 4%
and construct 4, in a similar way, replacing M by M\4,.

Further, for each n>1 there exist disjoint sets A2, A2 c 4, such that
A}, A2 ¢ 3 if A, ¢ 3. Then it js easy to verify that the sets M, = U A (=1, 2)
have all required properties.
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Weak covering properties and the class MOBI
by

H. R, Bennott (Lubbock) and J. Chaber * (Warszawa)

Abstract, We construct a non-n-discrete zero-dimensional scattered space which is an open
and compact image of a o-discrete metacompact Moore space. This gives an example showing that
weak O-refinability is not preserved by open and compact mappings between regular spaces and
shows that there exist non~weakly f-refinable spaces in MOBY;. Moreover, our example is a non-
o-discrete space which is both right and left separated.

In 1966 A.V. Arhangel'skif [A2] defined the class MOBI and asked many .
questions concerning this class,

The investigation of the class MOBI led to a slight modification of the original
definition from [AZ2].

For a class 4 of topological spaces, let MOBI, () be the minimal class of
T-spaces containing all metric spaces from " and invariant under open and compact
mappings (sce [Ch1]).

Tt is casy to observe that a Ti-space is in MOBI, (") if and only if it can be.
obtained as an image of a metric space from ¥ under a mapping which is a com-~
position of a finite number of open and compact mappings with Ti-domains [BI].

If the class A contains the class of all metric spaces, we write MOBI; instead
of MOBI ().

Tt is well known that open and compact images of metric spaces are metacom-
pact developable 7', -spaces [H], [Al]. It is also known that all the elements of MOBI,
have a point-countuhle base and all the elements of MOBI; have, moreover, a base’
of countable order [WWT].

In [Chd] the first example of 4 non-weakly 0-refinable space S* in MOBI,
was given. The space S™ is the first absolute cxample of a non-weakly 0 -refinable
space with & point-countable base and, since it does not have base of countable
order, it cannot be in MOBI,.

In the present paper we shall modify the construction of spaces in MOBI,
rom [Ch4] and the construction of open and compact mappings from [B2] in order
0 obtmn a non-weakly 0-refinable space Y in MOBI;.

AMS Suchct Classification; 34C10, 54D 18, S4E30.
* This paper was written while the second author was visiting Toxas Tech University.
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The first section contains definitions and preliminary results, in the second
section we construct the space ¥ and show that it has the desired properties and the
third section gives some additional informations about the space Y.

1. Definitions and preliminary results. All mappings are assumed to be continuous
and onto. Open and compact mappings are the open mappings with compact fibers.
The term discrete (o-discrete) will mean relatively (¢)-discrete.

Most of the pathological spaces in MOBI; (i = 2, 3) constructed thus far are,
in fact, in the smaller class MOBI,(o-discrete). It turns out (see [Ch4]) that the
requirement that the counterexample be in the smaller class, instead of being an
additional obstacle in the construction, actually helps by restricting the field of
search. Since it is more difficult to find a non-weakly 0-refinable space in MOBI;
than in MOBI,, we shall start by adding some more restrictions. We shall look for
our counterexample in the class MOBI, (scattered). From [N, 3.13, 17, 20], it follows
that a metric space is scattered if and only if it is complete and ¢-discrete.

It will be convenient to use a non-standard definition of scattered spaces (see
[WW2] and [Ch2]).

DermioN 1.1, A well-ordered collection 2 = (P,: nev) of subsets of
a space Z will be called a primitive partition of Z of type vif {P,: n e v} is a partition
of Z and U {P,: 7€t} is open in Z for £ew.

DermNirioN 1.2, A space Z is called scattered if it has a primitive partition into
discrete subsets; the height of Z, denoted by sht(Z), is the smallest type of such
a partition.

Observe that the space of countable ordinals is a scattered space of height w,
{a}: wew,> is a primitive partition of w, of type w; and sht(w,) = w, follows
from the fact that discrete subsets of o, are not stationary, hence w, is not a-discrete).

Note that there is a one-to-one correspondence between primitive partitions of
a space Z and increasing open covers of Z. Since open mappings preserve increasing
open covers, we get

Lemma 1.3, Suppose g: Z, »2Z,.

(a) If g is an open mapping and Z, is scattered, then Z, is also scatiered and
sht(Z,) < sht(Z,).

(b) If g is a mapping with discrete fibers and Z, is scattered, then Z 15 also scattered
and sht(Z,) < shi(Z,).

(c) If g is @ mapping with scattered fibers and Zy is scattered, then Zy is also
scattered. If, moreover, all the fibers of g are of height not greater than v, then
sht(Z,) < sht(Z,)v. ‘

In particular, from 1.3(a) it follows that all spaces in MOBI (scattored) are
scattered.

We now turn to the weak covering properties.

DgRNITION 1.4 [BL, Lemma 4]. A space Y is weakly 6-refinable if every open
cover of ¥ has a o-discrete refincment.
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Clearly o-discrete spaces are (hereditarily) weakly 0-refinable. Since scattered
spaces of countable height are o-discrete, it follows that a non-weakly 0-refinable
scattered space has to have height at least w,.

In [N, 3.4.1] it is shown implicitly, that a scattered space of height w, is weakly
§-refinable if and only if it is ¢-discrete. Since we shall use this fact in our con-
struction, we shall include, for the sake of completeness, a simple proof (of a slight
generaljzation) of this result. Notc that the condition characterizing hereditarily
weakly 0-refinable spaces, given in 1.5(b), is equivalent to condition (+) used in [Bu]
to show that perfect images of quasi-developable spaces are quasi-developable.

ProrostrioN 1.5, (@) If Y is a weakly O-refinable space, then any primitive
partition of Y of type wy has a o-discrete refinement.

(b) The space Y is hereditarily weakly 0-refinable if and only if any primitive
partition of 'YV has a o-diserete refinement.

Proof. We shall anly prove the first part. The second part (we shall not use it)
can be proved by induction and the inductive step is similar to the proof of part (a)
(see the proof of an analogous characterization of perfectly subparacompact spaces
in [J2]).

First observe that if # is a discrcte collection and cach Fe & has a cover
&(F) = | {#,(F): new} such that each &,(F) is a discrete collection of subsets
of F, then &, = ) {#(F): Fe &} is discrete for new and 6 = U {&,: new}
= | {#(F): Fe F} is a o-discrete cover of |J #.

Suppose that # = (P,: aew,> is a primitive partition of ¥. For few,
put Up= U {P,: e p} and let # = ) {#,: me o} be a refinement of {Uy: fewy}
such that each #,, is discrete. Fix me w and consider an F e #,,. Since 2 restricted
to F has countable type, it follows that # has a o-discrete (in fact, countable) re-
finement covering F. Using the observation above, we can obtain a ¢-discrete
collection &(m) refining @ and covering {J #,,. Clearly, U {#(m): mew} is a
o-discrete cover of Y refining #.

COROLLARY 1,6 [N, 3.41. () A scattered space of height , is weakly 6-refinable
if and only if' it is o-discrete.

(0) A scattered space is hereditarily weakly 0-refinable if and only if it is
a o-discrete.

Tn our construction of a non-weakly 0-refinable space in MOBI, we will make
a strong use of the notion of a neighbornet [J11.

Recall that o neighbornet for a space Y is a relation Ve I'x ¥ such that for
cach y & ¥, y e lnt ¥(3), where V(y) = {z& ¥: {y,z)> e V}. We shall only consider
neighbornets ¥ such that ¥(y) is open in ¥ for y & Y. The neighbornet V' is callf:d
co-countable (co-finite) if V=(y) = {z& ¥: ye V(2)} is countable (finite) for
each ye ¥ [J3]. .

It is easy to check that firsi-countable spaces with a co-countable neighbornet
have a point-countable base. In the class of first countable T;-spaces the property
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of having a co-finite neighbornet is equivalent to being a o-discrete metacompact
and developable space (see [J3]). ‘

The following lemma will be used to show that the space that we are going to
construct has co-finite neighbornets locally. This lemma is a part of the proof of the
equivalence mentioned above. We include its proof for the sake of completeness.

LsMMA 1.7. Assume that a space Z has a countable cover {F,: ne w} by closed
discrete subspaces. If for each n € , there exists a pairwise disjoint (or, even weaker,
point-finite) collection {B,(z): ze F,} of open sets such that B(2)nF, = {z} for
zeF,, then Z has a co-finite neighbornet.

Proof. For each zeZ, define V(z) = B,(2\{) {F,: m<n}, where n is the
first natural number such that ze F,. It is easy 1o see that {V(2): ze 2} defines
a co-finite neighbornet in Z.

In [J3] first-countable T;-spaces with co-finite neighbornets have been character-
ized as open finite-to-one images of o-discrete metric spaces (another proof of this
characterization is given in [Ch.3, Proposition 1]). From 1.3(a) and 1.3(b) it follows
that first-countable scattered T -spaces with co-finite neighbornets can be charac-
terized as open finite-to-one images of scattered metric spaces.

The next lemma, together with the observation above, shows that any first-
countable zero-dimensional (scattered) space having a co-countable neighbornet
and, locally, co-finite neighbornets is in MOBI; (o -discrete) (MOBI; (scattered)),
In the second section we shall construct a non-weakly 0-refinable space having
these properties.

Lemma 1.8, If Y is a first-countable zero-dimensional (and scattered) space
having a co-countable neighbornet and, locally, co-finite neighbornets, then there
exists an open and compact mapping /2 X~ Y of a first-countable zero-dimensional
(and scattered) space X having a co-finite neighbornet onto Y.

Proof. First choose {V(»): ye Y} defining a co-countable néighbornet such
that each ¥ (y) is clopen in ¥ and each V() has a co-finite neighbornet given by
a clopen collection {W,(z): ze V(»)}. Next, note that, since Y is first-countable
and ¥7!(z) is countable, we can assume (by consecutively replacing {W,(2):
ye V"Y2)} with smaller clopen sets if necessary) that, for cach ze ¥, ifze U
open in ¥, then {ye V"'(z): W(z)d: U} is finite, In particular, if ¥~'(z) is
infinite, then {Wy(z): ye ¥~ !(z)} is a base at z.

We are now ready to construct £ and X, Our construction is a modification of
a construction from [B2] (see [Chd, 4.4]).

Put X' = {{p,2pe Yx ¥Y: ze V())} = V< ¥Yx ¥ and consider X' with the
topology of the subspace of D(¥)x Y, where D(Y) is ¥ with the discrete topology
(less formally, X' = @ {V(y): ye Y}).

Lete: X' — Y bethe projection onto the second factor. Clearly e~ (z) = ¥ ~(2).

Put X = X'U{ze ¥: ¢~'(z) is infinite} and consider X with a topology such
that X" is an open subspace of X while neighborhoods of a point z & X\X’ are
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of the form B(z, @) = {zVw U {y}x Wy2): yee '(z)\p}, where ¢ is a finite
subsct of ¢ '(z).

Clearly X is a first-countuble Hausdorff space with a co-finite neighbornet
and the natural function f: X'— Y is continuous, open, onto and the infinite fibers
of f are convergent sequences. I ¥'is a scattered space, then it follows from 1.3(c)
that X is also a scattered space. It remains to prove that the space X is zero-dimen-
sional, more precisely, it is enough to show that the sets of the form B(z, @) are
clopen in X.

Consider o set B(zy, ¢). T is clear that this set has no boundary points in X"
Pick a z % z; in XN\X'. Since Y i5 a Hausdorff space, there exist disjoint open
sets U, , U, in ¥ containing z; and z, respectively. Lot ¢, be a finite subset of e Yz
such that Wy(z) <= U, for y& e Yz)\p,, where i = 1,2, Tt is easy to see that for
Vo= pau(e” (z)nay) we have B(zg, )0 B(za. Y) = 0.

2. A non-weakly 0-refinable space in MOBI;. By Lemama 1.8, in order to con-
struct a non-weakly 0-refinable space in MOBI,, it is sufficient to construct
a first-countable zero-dimensional non-weakly 0-refinable space Y having a co-
-countable neighbornet and, locally, co-finite neighbornets.

The space ¥ will be a modification of the space w, of countable ordinals. Observe
that the space @, is first-countable, zero-dimensional, non-weakly 0 -refinable [BL]
(in fact, m; is a non-o-discrete scattered space of height o;, see 1.6.(2)) and has,
locally, co-finite neighbornets (in fact, is locally countable, see 1.7). In order to
construct the space ¥ having these properties and, in addition, a co-countable neigh-
bornet we shall apply to @, & modification similar to the one used in [Ch4, 31.

Let ¥ be the set of all one-to-one functions from countable successor ordinals
into m,. For a function s Y, let |5 denote the ordinal which is the domain of s
and let e(s) = s({|s|~1}) be the last term of s. .

Fix a decreasing sequence <D;: k& ») of uncountable subsets of w, having
empty intersection and such that Dy = oy

For se ¥, k0 and a clopen neighborhood U of e(s) in o, define

B(s, k, U) = {shu{te ™\{s}: 125, t({}s]}) € D, and e(1) & Uy.

Observe that te B(s, k, U), 12k and e(f)e Ve U imply that B, 1, V)
< B(s, k, U). This shows that the sets B(s, k, U) forma base for a (first-countable)
topology on ¥, ,

We shall show that ¥ has the desired propertics.

To sitplify the notation, put B(s) = B(s, 0, w,) for s& Y.

2.1. The function ¢: Y-+ @y is continuous onfo and

e(B(s, k, U)) = UNs({ls|~D}= U5

morcover, the restriction of ¢ o the set Yy, = {se Y: s is finite} is an open map.»ping.
2.2, For each a w,, the fiber e '({a}) is closed, discrete and has a pairwise

digioint open expansion in Y.

(1]
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Proof. Consider {B(s): see” '({a})}. If 5,5 €™ '({z}) and te B(s)m B(y),
then st and & <t Since e(s) = a = e(s’), the fact that ¢ is one-to-one implies
[s] = |s’| and, consequenty, s = 5.

2.3. The space Y is a scattered space of height .

Proof. From 1.3(b), 2.1 and 2.2, it follows that ¥ is scattered and shi(¥)
< sht(w,). On the other hand, from 1.3(a) and 2.1, we obtain, sht(w,) < shi(¥,)
< sht(Y). Thus, shi(Y) = sht(wy) = o;.

2.4, The space Y is a Hausdorfl space.
Proof. This follows easily from 2.1 and 2.2.
2.5. The space Y is a zero-dimensional space.

Proof. We shall show that each basic apen set B = B(s, k, U) (with U clopen
in @,)is a clopen subsct of Y. Supposc that s"¢ B. By 2.1, il e(s") & U, then ¢ (w,\U)
is a neighborhood of s” disjoint from B. Assume now that ¢(s") € Uand B(s") " B % @,
which implies either s’ > sors= . If s>, then s'¢ Band e(s’) e Uimply 5'({|s1}) ¢ D,
and this contradicts B(s")n B # @. Thus we are left with the case & = 5. Choose
an / such that s({|v'|}) ¢ D;. Cleatly, B(s', I, w)nB = & and the proof of 2.5 is
finished.

2.6. The space Y has a co-countable neighbornet.

Proof. It is casy to see that {B(s): s€ ¥} defines a co-countable neighbornet
in Y.

2.7. The space Y has, locally, co-finite neighbornets.

Proof. This follows from 1.7, 2.1 and 2.2.

2.8. The space Y is not weakly 0-refinable.

Proof. Supposc that ¥ is weakly 0-refinable. From 2.3 and 1.6(a) it follows
that ¥ = |J {4,: new}, where each 4, is a disorete subset of Y. Before showing
that this gives a contradiction, we shall introduce some notation and indicate con-
nections between ¥ and the non-weakly 0-refinable space §* with a point-countable
base constructed in [Ch4]. Our proof can be viewed as a modification of the proof
that S* is not weakly 0-refinable,

For a function s € ¥ let p(s) be the restriction of 5 to s/ 1. Thus s can be iden-
tified with the pair (&, p}, where o = o(s) and p = p(s). Lot ¥* = {<els), p(s)>:
se Y} and define p'a = se ¥ for the pair («, pYy = {e(s), p(s)) € Y¥,

For p'oe ¥ put

C(p™0) = {g"ue ¥: gop and rg(g\p)na+1 = B},

thff’ r_g(q\p) denotes the range of the function ¢\p. Less formally, q «is in
C(pw) if g extends p through the ordinals greater than .

- ©
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Note that it wew, is fixed, then @, = [C(pa): pue ¥} is a base of
a T,-topology in ¢ *({a}). Since the intersection of any decreasing sequence of sets
from %, is also in @, it Tollows that ¢™'({r}) with this topology satisfies the Baire
Theorvem. In particular, since each open set C(p o) is covered by

LC(p" 0N A, ne o},

the Baire Theorem implies that for a certain 7 ¢ w and an open subset C(g"w) of
C(p"x), A, has to interscct any open subset C'(#'w) of C(¢"«). This means that

(+) for each p e e ¥, there exists un new and 4 ¢'ue C(p"w) such that if
Fae C(g ), then CU o)A A, # &,

Using (x), we can construct, by induction on n e wy, transfinite sequences
(e, n & wy of countable ordinals, {n,: new;) of natural numbers, {g,: n ew;>
of functions such that q,,"oc,, € Y and a transfinite sequence {B,: n € w;) of neigh-
borhoods of g, ®, in ¥ such that for all n € o, the following conditions are satisfied:

©) py == U {qe: Een} is a function,

(1) a, = min {o: r8(py) ca, qun“n € C(Pu”“n)\{Pn”“n} ’
Q) if o€ Cg, o) then C(ra)n4,, # 9,

3) q"mu" € A,,,’,. .

@) B, = Blq, oy, ky, (v, %)) and B, 4, = {q, o,}.

To sec that such a construction is possible, note that (0) gives p, = &, Assume
that p, is given by (0) after all the sequences have been defined up o the level n € w;.
Condition (1) then gives a, and forces rg(g,)\(o, 1) # & (this assures that o, 4 > oty
and, in fact, that the set {&,: o} will be a closed unbounded subset of w,).
Now, we can use (+) to extend, if necessary, ¢, (without destroying the second part
of (1)) and find an n, so that (2) is satisfied. Furthermore, we can use (2) with r = g,
in order to extend, if necessary, ¢, (without destroying (1), (2)) so that (3) is satisfied
and we can find a basic neighborhood B, of q,,"oc,, in ¥ as in (4) by using the fact
that A4, is discrete in V.

This completes the inductive construction. As we have observed, (1) implies
that the set C = {x,: # € w,} is 2 closed and unbounded subset of ey. Since y, < ¢y
(sce (4)), we can find & y € wy, #1320 and a stationary subset § < C such that y, =y
and n, = n for a, & S. Pick ay<a, in § and & @ Dy \ey..,. Conditions (0) and (1)
imply that for rs= g, 0,0, ruyeC(ga) and from (2), it follows that
C(f'mdq) A, # O, Since, on the other hand, C( o) < By, we obtain a contradiction
with (4).

3. Additional propexties of the example. In further investigations of ¥, we shall
need some new notation. We shall identify & function b: - w, With the sequence

B(): Len.

For two sequences bo, b, i - ;, let by # by: 12—, be a sequence whose
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“gyen™ terms are the consecutive terms of b, and “odd” terms are the consecutive
terms of &,. More precisely, b, * b {t(¢, i)) = by(¢), where i = 0,1 and 7 is the
identification of #x2 with 52 inducing the lexicographic order on 5 x 2.

Let / denote the set of limit ordinals in w; and let X = c,\/.

3.1. The space Y is neither normal nor peifect. Moreover, there exists a countable
discrete in Y collection {E,: ne o} of closed subsets of Y contained in e"Y(A) such
that if E, < U, is open in ¥ for ne o, then Y {U,: ne a}rne () # 0.

Proof. Since the sequence {D;: ke ) is decreasing and its intersection is
empty, there exists an e w such that 7 = E\D; is uncountable.

Let C, be the set of limit points of D, in wy and put C = () {Cy: & € w}. Clemly,
C is a closed unbounded subset of w, and, for cach k € w, Dy = D, DNC is an
uncountable subset of D, disjoint from < 2 and Ced.

Fix a partition {S,: ne o} of C such that each S, is a stationary subset of w,
(see [K, 2.6.12]). For ne w put

E, = {see”!(5): Cnrgls\e(s) = S,} .

Suppose that s is in e™*(C), e(s) = « & S,, and the neighborhood B(s, 0, [0, «])
of s in Y contains a 7€ E,. Since s <1 and e(t) € [0, «], we get

a e Corglne(s) crg(e(?) .

Thus, from ¢ ¢ E, and a € S,,, it follows that # = m and s & E,. This shows that the
collection {E,: new} is closed and discrete in e*(C) and, consequently, in Y.

Assume now that E, < U, and U, is open in Y for ne . For euch new and
all se E, fix open sets B, = B(s, k(s), (y(s), e(s)]) contained in U,. We shall
construct a tee”'(J) and a sequence {s,: ne w) such that 5, e £, and te ) {B,,:
newjc N {U,: new).

Let C = {&,: # € w;} be an increasing enumeration of C and, for each 5 & w,,
choose the m, € ® such that o, €S, .

By induction on 5 € w,;, we can define scquences (§,: new> of countable
ordinals and <s,: ne€w,> of clements of Y such that, for ne w,,

(¢3] sy= g Eend x By Lenda, e K, ,
(2) (5,1 € ch(,")\rg(s,,') v

For each ne o, let y, € @, be an ordinal such that T, = {«, &S, y(sy) = ¥}
is stationary.

Choose an ordinal § & I\sup{y,: ne w} and, for each n € w, find », such that
B<dty,eT, Put s,=uy, ek, and let n = sup{n,: new} Since s,cs and
Yo <B<e(s,) = a,,€T,, (2) implies that t = 5,"f &) {B,,: ne ).

The second part of 3.1 shows that the space ¥ is very far from being normal or
countably metacompact (hence perfect). In fact, by partitioning  into infinitely
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many infinite subsets und grouping the corresponding sets E,, one obtains a discrete
in Y collection # of closed subsets of e™'(4) such that any expansion of & by
Gysubsets of Y has a common point in e™*(Z).

Another consequence of the second part of 3.1 is given by

3.2, The space Y does not have a Gydiagonal and is not a p-space (see [G]);
in particular, Y is not Cech complete.

Proof. Suppose that, for each ne w and s & ¥, B,(s) is a basic open neighbor-
hood of 5. Put U, = | {B(: se E,}. From 3.1, it follows that there exist a se-
quence <s,: newy of clements of ¢”'(d) and a ¢ = p"/)‘ ge”!(Z) such that
te() {Bfs): new} Choose a §e Drg(t), where k = max{l: fe D).

It is easy to check that the large closed and discrete set C(p"6"f) is contained
in() {B,(x): new} (we use p’é instead of p in order to assure that C (7"8"P) = B,(s,)
for n such that s, = p).

In order to jnvestigate the local properties ot ¥, we define the notion of height
of a point in a scattered space. This is usually done by using the derived sets of the
space to construct a standard primitive partition of the space into discrete sets (these
sets are called levels in [N, 2]). Our definition of scattered spaces leads to a different
approach.

For a point z of a scattered space Z, the height of z in Z denoted by sht(z, Z)
(or sht(z) if it does not lead to a misunderstanding) will be the ordinal
min{sht(¥): V is a neighborhood of z in Z}, where sht(V) is given by 1.2.

Observe that, according to the above definition, the height of a point is always
a non-limit ordinal and {z & Z: she(z) = 1} is the set of the isolated points of Z.

Note that every point z € Z has a neighborhood ¥V such that sht(z) = sht(V)
> sht(V)\{z}. This, in particular, implies that the sets L, = {z € Z: sht(2) = n+1},
where. 4 € sht(Z), form a primitive partition of Z into discrete sets (see [N, 2]).

We shall show that a point s € ¥ has a metrizable neighborhood if and only if
its height is not greater that 3.

First, we shall give a description of the levels of Y.

3.3. For a point s = pac ¥, sht(s, ¥) = sht(a, 0 \1g(p)).

Proof. For a clopen neighborhood U of a in w; and a neighborhood
B = B(s,k, U) of s in ¥ the restriction of e to B maps B onto e(B) = UNig(p)
(sce 2.1). Moreover, the restriction of e to B, = {#eB: f\s is finite} is an open
mapping from B, onto e(B8). Thus 1.3(a) and (b) imply (as in the proof of 2.3)
that sh1(B) = sht(UNrg(p)). Since the sets B (the sets U\rg(p)) as above form a base
of neighborhoods of sin ¥ (of &1 e, \1g(p)), we obtain sht(s, ¥} =sht(«, w,\rg(p)).

We are now ready to prove
3.4, If se Y and shi(s) <3, then s has a metrizable neighborhood in Y.
Proof, Let s = p "4 and put Z = w,\rg(p). Since sht(1, Z) <3, we can find

a y< 1 such that sht((y, HnZ)<2. . .
In order to show that the clopen neighborhood B = B(s,0, (, 2]) of s has
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4 base which is o~ discrete in Y, it suffices to show that for cach @ & e(B), e '({eP) n B
has an open discrete in ¥ expansion. if & = 4, then e”'({a}) "B = {5}, so we can
assume that o # 4 and since @ € e(BIN{A} = (v, N2, sht(y, Z)<2.

If sht(x, Z) = 1, then e~ Y{a})n B is closed, discrete in ¥ and consists of
isolated points of Y. If sht(x,Z) = 2, then there exists a neighborhood (', «]nZ
of & in Z such that sht((y', dnZ) = L. Put B’ = Bn e~ Y((y', «]). Since B¢ ({z})
consists of isolated points of ¥, the restriction to B’ of the pairwise disjoint open
expansion of e™'({a})n B’ given by 2.2 is, in fact, discrete in B’ and hence in Y,

3.5. If a point of Y has height greater than 3, then it has no metrizable neigh-
borhood. Moreover, no neighborhood of this point is cven o~ paralindeldf.

Proof. In order to simplify the notation, we shall only prove that if we w,
‘and sht(a, ) > 2, then no open expansion of e~ 1{«}) in Y is o-locally countable.
After the proof of 3.4, it should be clear that the same reasoning gives 3.5,

Fix aew, of height greater than 2 and an increasing to e sequence
b= (f,: neo)y of limit ordinals. Suppose that # = {B,: p ae Y}, where
B, = B(p"a, k,, (7,, 0]) is an open expansion of e~ *({u}) in Y. We shall find an
s€ Y such that every neighborhood of s intersects continuum many elements of #
and it will be easy to see how to modify our reasoning if # is partitioned into
countably many subcollections.

For each 7 € o fix a one-to-one function 4,: @ -+ w;\(e-+1) such that 4,()e D,
for 1e w and rg(4,)nrg(d,) = @ if m # n.

Define D = [I{rg(4,): new} and put p; = bwd:i w2 = w-a, forﬁde D,

For cach de D, p,ae ¥ and we can use the Baire property in C(pa o) (see
the proof of 2.8) to find a y(d) <« and 8 g(d)=>p, such that ¢(d) o & C(p, ) and

(x) for each r"ae C(g(d)#) there exists a p'we C( o) such that y, = y(d).

Consider the set D with the Baire metric. The Baire Theorem for D implies that
therc exists a y <o such that D(y) = {de D: y(d) = y} is dense in an open subset
of D.

Choose an new such that B,>y and D(y) is dense in a ball G = {de D:
d> {0, m<nd).

Let se ¥ be the extension of {f,: m<n) * (5t m<n) by fj, and suppose
that B= B(s, I, V) is a neighborhood of s in Y. Since f, = e(s) & Visa limit ordinal
and f,>7v, we can find an ordinal & V such that y <f< B, Furthermore, put
5, = A,()e D and consider H = {de D: d={: mnd}. Since HexG and H
is open in D, there exists a de Hn D(y). Our construction assures that y(d) =1
and, since q(d)>py= s, any 1 e ¥ such that 12g(d) and e(f) = [ is an clement of B.
We shall show that continuum many different elements of B contain points ¢ satisfy-
ing the above two conditions.

For the de D(y) and any r"a & C(g(d)«), wo can use (+) to find p"o & C(r"0)
such that y, = y(d) = 7. It is easy to sec that if de D \(rg(p) v (a+1)), then
t=p"a"6 feB,nB. Since there are continuum many pairwise incomparable

Weak covering propertics 181

tunctions r such that r’u e C(q(d)"oc), this gives continuum many different elements
of & intersecting the neighborhood B of s.

Since the pairwise disjoint open expansions given by 2.2 cannot be shrunk to
open and discrete in ¥ ¢xpansions, we obtain another proof of the fact that ¥ is
not a normal space (sce 3.1).

3.6. If a point of Y has height greater than 3, then it has no normal neighborhood.

In [R}, & non-o-discrete right and left separated space was constructed with the
use of the continuum hypothesis. The space Y is an absolute example having the
same properties (see [GI]).

3.7. The space Y is both right and left separated.

Proof. Since Y is scattered, it is right scparated (see [GJ] for the definitions).

The natural lexicographic order on ¥ shows that Y is left separated. In fact,
by [¥3] and the proof of (¢)=>(a) in Theorem 2.2 of [F], all T'y-spaces with co-countable
neighbornets are left separated.
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