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On sets of points of semicontinuity in fine topologies
generated by an ideal

by

Bernd Kirchheim (Prague)

Abstract. Let  be a fine topology generated by an ideal on a metric space X and lef fbe a real
function defined on X. We study connections between the set of points of metric continuity, the
set of points of fine continuity and the set of points of fine semicontinuity.

Let (X, 7) be a topological space. For a function f: X R and a point xe X
we define as usual

limﬂ;sxupf(y) = inf{re R, xeInt({ze X, f(D) <t}u{x})} and

li’r:l_j?ff(}') = sup{teR, xelnt({ze X,f(@)>1}u{x})};
here Int(4) denotes the interior of the set 4. Further, we put

Cc(f) = {x, limsup /() </ () < liminf £ ()},

Sy ={x lin}f:lpj W</},

T'(f) = {x, liillsxup f() <f(x) and x is not isolated} ,

() = {x, 1i§11ixnff (1N

T(f) = {x, ]iﬂiwpff(y) >f(x) and x is not isolated} and

CH(/f) = (C(), 8*(/), T*(f), §7(): T™(f)

Clearly, C(f) resp. S*(f), S§7(/f) is the set of points of continuity resp. upper,
lower semicontinuity of the function f.

In the present paper we deal with the question of which quintuples of subsets
of X are of the type CH(f) for some f: X~ R. For general topological spaces this
problem is far from being solved. Here we give a complete characterization of such
quintuples. for 7 belonging to a faixly large subclass of the class of all fine topologies
generated by ideals. Therefore we recall the notion of the fine topology generated
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by an ideal. Let (X, ¢) be a metric space. Tn the whole paper we denoie by 33 an
ideal of subsets of X satisfying the following (local-global) condition:

(LG): If 4 <X is such that for each x e A there exists a neighbourhood v,
satistying U,nA e 3 then 4 belongs to 3.

It is easy to show that in this case the family

(2, 3) = {G\A4, 4€3 and G is open)
forms a topology on X and that

(0, 3) = {d < X, if xed then UNd € 3 for some neighbourhood U of x}

Fundamental properties of these topologies may be found in [2], [4}, [5).

Our problem was studied for the first time in [I], where the triples
(C(F), S*(f), T*(f)) were considered. In [6] resp. [7] a complete characteriza-
tion of CH(f) for the cases © = t(R, {&)}) and 7 = =(R, {sets of first category})
was given using, however, a result of Sicrpiriski [10] which fails even for R?. The
papers [8], [9] contain contributions to the more general case where (X. @) is a Polish
space and 3 a o-ideal containing each finite and nonopen nonempty set. Our result
‘answers several problems stated in [8], [9] and includes all foregoing results as
special cases. After some technical preliminaries and definitions in Section I we
state our main result in Theorem 6. However, Corollary 10 contains the result most
interesting from the “purely fine topological™ point of view, Finally, in Section III
we show to which concrete fine topologies generated by an ideal our abstract result
may be applied.

I wish to express my sincere gratitude to L. ZajiCek for suggesting this problem
to me, for his continuous interest and for many stimulating discussions in the course
of my work.

Notations. In the sequel we will work on a space X equipped with a topology ¢
(induced by a metric ¢) and with the fine topology (g, 3). Topological notions re-
ferring to the fine topology = = (g, 3) will be qualified by the prefix « to distinguish
them from those pertaining to the initial topology g, for example Int, M resp. M* de-
notes the interior resp. closure of M in the topology © while 3¢ will be the E-lmuudary
of G.

By Der(M) we denote the set of all cluster points of M. A sct M < X is called
discrete iff M Der(M) = @ and isolated iff Der(M) = . Countable unions of
discrete resp. isolated sets arc called o-discrete resp. a-isolated. 16 M < X and
2>0 then UM, d = {yeX, dist(M,y)< e} und for xeX we put U(x, &)
= U({x}, &). Further, we define for given M« X and >0

DM) = (M M; o(x,p)> ¢ for all x, e, x # ¥}

Then by the Hausdorff maximal principle D,(M) contains a member maximal with
respect to set inclusion. To simplify the notations we use abbreviations like

{f>a} = x,f(x)>a}.
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By yxu we denote the characteristic function of the set M. We define the support
of the ideal 3 by supp(3) = {x & X; U(x, &) ¢ 3 if &> 0}. Then supp(3) is closed
and [X~supp ()] € 3. Further, for the rest of this paper let us fix a sequence a,, n > 1,
0
of positive numbers satisiying Ela,, =1,
ne=

For a given functionf: X - R we define the upper and lower <-regularization by
) == e-limsup £(Y)  and  f7(x) = t-liminf £(p) .
’ yorw yox

Ohserve that fif resp. f,~ is upper resp. lower scmiconﬁ.nuous even in the weakgr
topology @, which. is, from our point of view, the most interesting property of the
T,

topogzﬁie lower and upper limits and also the fine topology © depend only on the
topology @, we may assume that our metric 0~i5 bounded I."rom above by one a.nd
define dist(x, @) = | for xe X, And finally, since therc exists an order preserving.
homebmorphism between [~1, 1] and [~co, co], we may restrict our consxderx%-
tions to functions mapping X into [—1, 1]. That enabl.es us t«? easily c.:onstruct uni-
formly convergent function series and to use their nice limit behaviour.

I

1. LemMma, Lot M be a subset of X,
(a) There exists a sequence My, n = 1, of mutually disjoint Borel subsets of M such

that Der(M,) = Der(M) for each nz 1 . o
m Ir /:'C"' X is a closed set, then there exists some Borel set M < M satisfying

FrDer(M) = Der(M). ) .
Proof. (a) Since M is an arbitrary subset of X, itis sufficient to show tlle t}a;usteﬁx}cc
of two disjoint Borel sets M,, M, e M fulfilling Der(M,) = Der(];lz? =1 :{(imii
By induction we construct a sequence Sy, n 1, such that each ,(,1 isa 1;; o
merhber of D, (AN L) 8)). Now assume that there are n>1 and xe€
: k=n

. 2 ; Sine 1 A ains at most n—1

such that (\ ;;>h.8,, = @ Since U(,\c, 2”) nkgn S, -cont

. A, | ‘,
points we can find some ye U(x, 2~>n(M\ U 8. But now

N k<n
S,w{rle bt/n(]"f(\h&)’| Si)
a contradiction. This shows that we can take
o

M, = kULSzk and My = k(;}lszkn .

£
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(b) Let My FnM be a Borel set satisfying Der(M,) = Der(FA M), For
1
each n2> 1 let M, be a maximal member of Dyyan (M N U(F, p and now define
M= UM,
n=0Q

2. CoROLLARY. Let F be a closed subset of X and let M= X satisfy FAM = @
and Der(M)=F. Then there exists a function o X=[~1,1] such that
() f is continuous on X\F,
(i) yor each x ¢ F we have liminf f(y) = —1 sJdimsup f(p) = 1.
ser ¥ ent
If in addition, a closed set F satisfying FAM = & is given then we may require that
moreover

(iii) f identically vanishes on F,

Proof. Clearly it is sufficient to deal with the case that all three sets F, Fand A
are given and moreover we need only define Jon X\F. By part (b) of Lemma. 1 there
exists some M < M such that Der (M) = F and the first statement of that Lemma
ensures the existence of two disjoint sets M 1 M, < M satisfying Der (M) = Der(M,)
= F. Therefore the function f = g, — X, is continuous on (M; UM, U(F\F), ),
which is a closed subspace of X\F. The proof can now be finished by an application
of Tietze’s extension theorem.

3. COROLLARY. Let F,, n2 1, be q sequence of closed subsets of X. If there are
w0 L]

given sets My, My (n> 1) belonging to 3 and satisfying ( UMHIN(UM) =g
= nw=

then there is a Borel measurable Junction f+ X—[~1,1] such that
() =-lim f(¥) =.0 for each xe Der, X,
yox

(i) {f>0} < UIM.T, {f<0lc UM,
n= nw=y
(iii) for each x e Der(X) we haye
0 0
limsupf(3) >0 iff xe U Der(M})n UE,,
X nee LED)

iminff () <0 xe U Der(M)A U F,.
Ix nw

A
Proof. Lemma I ensures, for all 7, j> 1, the existence of Borel sets M, < M}
and M;; = M; satisfying

Der(My})) = F,nDer(M}) and Der(Mi;) = FinDer(M7) .

© o
Now it is sufficient to define f=y 3 UI“J(XWJ" Xo)-
i=1 j= 5 )

4. LeMMA. (a) Each t-discrete set is a ©-F, set and therefore also a o-1-isolated
set. ' ‘

icm
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(b) Let M < X be a o-t-discrete set. Then there exists some f: X — [0, 1] such
that M = { >0} and ©-lim f(3) =0 for each x € Der_ X,
yrx

Proof. (a) Clearly it is enough to show that for a t-discrete set M and 2 >0
the set M, = {xe M, Mn(U(x, )\{x}) € 3} is t-closed. To do this, assume
xe M \M,. Then we have U(x,r)nM,¢3 if r>0; in particular two distinct

a v
points ¥y, v, € U(x, g)r\ M, exist. Since U(x, i)c Uly, &) (i = 1, 2) we obtain
M, U(y;, 8) ¢ 3. Now the definition of M, implies that {p,}, {1,} ¢ 3. But this
contracicts the fact that

{92} e MU, sN{»}) and
(b) By (a) the classes of o7 ~discrete and of -t -isolated sets coincide. Therefore

YEM,.

M = ) M, where the M, are r-isolated sets and we can define

LD}

h=

o .
f= Zla,.~xun~

5. DEFINITION. We say that the ideal 3 on (X, o) has the property SPL (splitting)
if the following is true. Whenever U < Der, X is open in supp(3) and 4, 4, = U
satisfy A, A; = @, Int, A, = Int,d, = & then there exists a sequence K, (1> 0)
of sets such that :
%
B UK, = U4, vdy) and K,nK, = @& for n % m,

o )

(ii) for each xe U and for each n>0 we have
xeDer (U Ky,wd) and xeDerf ) KppmsiU4y).
mwn m=h

After these preparations we formulate our main theorem.

11
6. THEOREM. Assume that the ideal 3 on (X, ¢) has the proper{ies LG anfi SPL.
For a given sixtuple (C,, C, S*.T*, 8™, T of subsets of X the following are equivalent:

(a) We have

(i) (X\Der, X) e C,

(i) C=S*nS™,

Gil) TT < §"\C, T" «S"\C and both T* and T" are o-t-discrete sets,

(iv) there exist disjoint sets G,, G supp(3) such that
C = [X\supp(BNV[GNT* LT,
G, Is a Gy-set, G is open and of first category in supp(3) and fulfils
G =[Int(S* Asupp(B)) U Int,(S ™ N supp (B)ING:,
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(v) Coe C and C, is of type Gy, ‘ ‘ ‘ . .
(vi) there are sets Dy, Dy (nz1) belonging to 3 such that Prool. Let ¢,, n:2 1, be an enwmeration of all rationals belonging to (-1, 1),
o w We define
Y orert, U= and Dl = {xeT", (x}e 3 and /(x)> ,> [ (9},

na=y Be=1

m Dy ={xeT", {x}e3 and f(x) <q,<fr(%)}.
C\C, = | Der(D,; U D;)yuDer(X\supp(3)) . ' T

nel Since for cach xe D, there is some 8 >0 such that the inclusion DY A U(x, §)
(b) There exists a function fi X -»[—1,1] such that efye U@, 8./ >q,} 3 is true we conclude that DY e 3 for each nz 1,

: - Analogously, D, ¢ 3 holds for each nz 1.
- oy b ek -
C()=C and CH{/)=(C.8"T" 87, T7). Now let xe ONC,, for example f(x) =g, > liminf () for some suitable

; ; ; : ed in the ¢ thic . yorx
First we will derive some lemmas used jn the proof of this theorem. n> | (the case f (x) < limsup f(y) is quite analogous). Then () > 4, and since £ is
7. LEMMA. Assume that a function f: X—{~1,1] is given. If ymx B
o e o lower semicontinuous there is some e > 0 such that we have both U(x, &) < { f7 > ¢,}

v (C, 8" T* 87, T") = CH(S) and {ye Ulx, oN\{x}.S () <¢,} €3. But for each such ¢ there exists some
then there exist sets G,, G satisfying the condition (a) (V) of Theorem 6. v Ulx, e)\{x} satisfying /(1)< gy. ”lher‘efore'{y,,} €3 and now exther'y e €Der. X
and then p,eD,, or p,¢Der, X and in this case y,¢supp(3). Since & can
be chosen arbitrarily small we have xeDer(D,," u(X\supp(S))) = Der(D, )u
wDer(XN\supp(3)), which finishes the proof.

Proof. We already know that the function £ ~f is upper semicontinuous,
therefore G, = {fT <f7 Tosupp(3) is a Gy-setand it is not hard to show that
C = [X\supp(INUICNTH UT™)). Set §* = S* nsupp(B), §~ = S Asupp(3),

= flsupp (3. In the remainder of this proof we will work only in the subspace 9. LeMMA. Assurme that the ideal 3 on (X, ) has the properiy SPL. Let
» ‘ (C,S*, T, 8, T be a quintuple of subsets of X satisfying the statements
(@){) ... (a)(Av) of Theorem 6. If morcover T = T~ = @ then there exists a function
Jo X [—1,1] such that CH(f) = CH(f) = (C, S*,T", 8, T").

(supp(3), 0). We have G, = ) G, where the G, are open and we may require
ne=y

1 - D
G,cU <Gc, —); therefore G, = () G,. Cleatly 8§ = 8(f); we define
L

n ne Proof. First we assume additionally that the following is true:
U/ = Int,§*\G,. Since U;" is t-open therc exist P &3 and G open such that {(*) The set ¢ is open,
Uy’ = Gi\Py'. From the definition of supp(3) and from the inclusion Gy NG, After constructing the required function in this case, we will return to the general
<Py &3 it follows that Gy NG, = 0. case. By assumption 6 (a) (iv) there are closed sets F, (n>1) such that we have
Now assume that G, is of second category. Then by a well-known property - R .
of functions belongjng to the first Baire class, sce [3, § 27. X], there exists a point Ge gx F, < supp(3) and each F, is nowhere dense in supp(3). For n > 1 we denote
x€Gy such that f is continuous at x. Since /27 on U and GI\U ¢ 3 we by g: the function corresponding to the sets F,, supp(3)\F, in the sense of the first

easily obtain conclusion of Clorollary 2; moreover, we may define J, on F, as follows: for x € F, set
t-liminf J Lminf £ O 2700 = 1-lims (W . :
minf () > min FO 2T =1 hlkgpf » [ it reStnG,

‘ ’ yaUn g =<1 if xeS NG,
Since x ¢ G, the point x is not t-isolated and therefore t-lim F ) = o-lim £ () 0 else.
and consequently xe G, < G,, a contradiction, S bok v ,
The set G is therefore of first category. Analogously we find an open set G, of Then the function g,(x) = ,(x)-dist(x, (supp (3NG) v H"F ) satisfies
first category such that G,nG; = & and Int, S ~\G, = ¢, The required set G is
w N i ¥ + -
now defined to be | (G LUG)). CHg) = CHlgn) = ([(NFNO)] ujynFj’ Clw s, 2, Clo) S, 0)
LS .
8. LEMMA. Assume that a function f: X—[~1,1] is given. If we define since the continuity of g, on supp(3)\F, implies that for each x & F,
C‘f ‘C,(f), GC=C(f), T =THFH, T~ = T7(f) then there exist sets Dy, , : 5 1
Dy (n=1) satisfying the condition (a) (Vi) of Theorem 6. v-liminf Z,(») = ~1 and  c-limsup J,(¥) = 1.
v g

¥ ¥
Y asupp (3)Fy yesupp (3)\Fn
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o0
Since C(g,) v C(g.) = X if n 3 m we deduce that the functiong = 21 a,g, maps X
into [—1, 1] and fulfils "

CH() = CH(@) = ([} @), U (8" @GNCG) 2 C@), 2,

f} (S~ (@NClg)) v C(g), D) = (XNG, ST U(XNG), @, S~ U(X\G), D).
n=1

Further, also the set F = (G UG;)\(GUGQ is closed and nowhere dense in
supp(3); therefore F and supp(J)\F satisfy the assumptions of Corollary 2. We
denote by h the corresponding function; again we may define / additionally on F,
namely for xe F

1 ifxesS*t,
A(x) =<—1 ifxeS™,
0 else.

Clearly now CH(h) = CH(h) = (X\F, S* U(X\F), D, S~ U(X\F), 9).

Finally, since the sets U = supp(3)IN(GUG,), 4; = ST AU and 4, = S~ nU
have all properties required in Definition. 5 we may find a sequence K, (1 0) of
sets fulfilling statements 5 (i) and 5 (if). We now define the function £: X —[~1, 1] by

1 if xed,,
..... if xeK,,,
k(x =1 0 if x¢U,
= if xeKgpy s
-1 ifxed,,

and then we put k(x) = k(x)-dist(x, GJ&,,). It is quite easy to show that
CH(k) = CH.(k) = (X\U, 4, U(X\U), @, 4,0 (X\U), @).

From the fact that at each point x & X at most one of the functions g, &, k is
discontinuous it follows immediately that the map J = % (g +/--k) has the required
properties, i.e. /i X—[~1,1] and

CH(f) = CH(f) = (X\N(GUFLU), ST uC(f), B, 8™ L C(S), )
= (C,S*,T*, 8", T").
We may now easily deal with the gencral case without assumption (x), We may
find open sets X = G;oG,> ... such that C = (X\supp(BNU G, = "61 G, It is
quite easy to verify that for each n 3> 1 the quintuple (G,, S* U G,, T*, $~UG,, T™)

icm°®
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satisfies the assumption of Lemma 9 and the condition (). Therefore we conclude
the existence of a function f,: X—[—1, 1] such that
CH(J) = CH(f) = (G,, S* UG,, T*, S~ UG, T7).
Now define f,(x) = f,(x)-dist(x, X\G,-,). Then
CH(f) = CH(/) = (G, u(XN\G,-,), S* U C(£), T*, S~ uC(L), T7)
and since again C(f)VC(f,) = X for n st m it follows immediately that the
function ' w"i a,fy has all required properties,

Now we have finished the necessary preparations and return to the

Proof of Theorem 6. We have to prove two implications. First assume that
the statement 6 (a) holds. By Lemma 9 there exists a function f: X—[—1, 1] such
that

CH(J) = CH(F) = (X\supp(B) U G, S* L C(]), B, S~ L C(]), 9).

L]
Further, we can find closed sets F,<F,.; (n>1) such that X\C,= U F,
n=1
and Lemma 4 (b) ensures, for each n 3> 1, the existence of functions gy , g5 : X— [0, 11

satisfying {gu >0} = F,nT*, {gy >0} = F,AT" and

v-limgy () = v-limg () = 0

o yox
for each xeDer,X. Now define, for xe X, g(x) = ¥ a,(g7 (¥)—gs (x). Then
nzl
{g>0} = T*, {g<0} =T, limg(p) = 0 for xeDer(X)nC,, and xeDer, X
implies t-limg(y) = 0. yE
y

Denote by h the function corresponding to the sets F, (n 2 1) and D}, Dy (a> 1)
in the sense of Corollary 3.

Next observe that Corollary 2 guarantees, for each n > 1, the existence of a func-
tion Ky X [~1, 1] such that & lupuc) = 0, K, is continuous on X\F, and for
arbitrary x ¢ F, we have

liminf K(y) = —1 and limsup k() =1
PrX yrx
P alySwipp (3) y&@CaN\supp (3)

where [, = £, nDer(Csupp(3)). Define k,(x) = k,(x)dist(x, ,ka),.F’) and k(x)
wy
= 3 a,k,(x). As before we derive that k is v-continuous on X and that
ney
Lminf k()< limsup k(y) if x e [Der(Csupp(3)HINC,,

yx yrx
yuCyN\anpp (3) yudyNeupp (3)

else k is continuous at x.
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" Finally, by Lemma 1 there exist two disjoint subsets M*, M~ of

X\(supp(3)u C,)

satisfying '
Der(M*) = Der(M ™) = Der [X\(supp(3) U C,)1.

Denote by I the function corresponding in the sense of Corollary 3 to the sets
F,(n=1) and M) = M*, M; =M™~ (nz1).

We put f = +(f+g+h-+k+1). Then f: X=[~1, l]and sincet-lim (g +k+I)= 0
whenever x e Der, X, and k is t-continuous on X, we obtain yo

CHL(f) = (CNT* uT™), CLNHUSH, TH, C(f)VS™, T7)
=(C,S"1%,87,T7).

Further, we note that ¢ -+#--k-+/ is continuous at each point x e C,.

show that g +h+k+1 is discontinuous at x whenever x & C\C,. If

x & Der(C,\supp(3))
this‘statement follows from the fact that g, 4,/ = 0 on C‘;\sup‘p (3). Else we have

It remains to

o0
-xe | Der(Dy u Dy)uDer[ X\(supp(3) L C,)] and k is continuous at x. Now it is
A=

-sufficient ‘to observe that g-h20, I=0 on T*uT > {g # 0}uw{h % 0} and
g,h =0 on [Xxsupp(3)]>{l # 0}, see Corollary 3 (iii). So the first implication
is proved.
Now assume that a function f: X—[~—1, 1] is given and write
(C,S*,T*, 87, T7) = CH{(f)

and C, = C(f). Then the statements 6 (a) (i), (i) and (v) are trivial or well known.
The conditions 6 (a) (iv) and (vi) are fulfilled because of Lemma 7 and Lemma 8.
Finally, the statement 6 (a) (iii) follows directly from the argument used in the
proof of Lemma 8, see also [1].
‘ 10. COROLLARY. Assume that the ideal 3 on (X, ¢) has the properties LG and
.SPL. For a given quintuple (C,S*,T*,S", T ) of subsets of X the following are
equivalent:
(2) The conditions 6 () (i), ..., (a) (iv) hold.
(b) There exists a function [+ X —={[-1,1] such that
CH(f) = (C,S*, T+, 8" T).
Proof. By Theorem 6 statement (b) implies (a). Now assume that a quintuple
,s*, 1", S ,T7) samfymg the condition 10 (a) is given. By Lemma 4 we may
U T, T = U T, where T,", Ty are t-isolated sets. The property LG
n=y -
implies that for each n>1 the sets
w = {xeT), {x}e3)

write 7%

and Dy = {xeT,

{x}e 3}

icm
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belong to 3. Morcover, the sets M," = T,'\D} and M; = T,\D; are isolated
and thercfore closed. Consequentily, the set

Co = [(ANsupp(@) UGN U (B} 0 M5t UD; UMy
n=1

satisfies conditions 6 (a) (v) (vi) and Theorem 6 may be applied to finish the proof.

However, the definition of the property SPL could easily give the impression
that its formulation was determined mainly by the requirements of our proof. This
impression js refuted by the following lemma, at least for a fairly large class of metric
spaces.

11, LeMMA.  dAssume  that for the ideal 3 on (X,0) the metric subspace
(supp(3), 0) is a Buire spuce. If the statement 10 (a) implies 10 (b) then 3 has the
property SPL.

Proof. Let A;, A; = U be arbitrary subsets of X such that @ # UcDer,X,
Uis open in supp(3)and 4, nd; = Int, 4, = Int. 4, = @. Define C = (X\U),
St = Cud;, 8" =Cud, and T* =T~ =@. It is easy to show that
(C, 8%, T", 87, T7) satisfies the statement 10 (a); therefore we can choose a func-
tion f: X—+[~1, 1] such that CH{f) = (C,S*, T*, 8™, T™). We consider again
the functions £, and f;". Obviously £;F(x) > £ (%) if xe U, f;F (x) = f(x) if x € 4y,
FrE>f) > 1) if xe UN(A Ud,) and f(x) = £7(x) if x e 4,. This implies
that

@ 1
v=0 {xe U.fH -1
nesl
Denote by M, (n 1) the interior of

{x eU, [T )=/ (%)= 71;}

w.r.t. the subspace (supp(3),¢). A well-known category argument ensures that
U< | M,. Finally, we define for each n >0 the sets
ng 1

1 <f(a)—ﬁ(x) . }
D S 20+

| @ ] }

264 < T () 24D

Kln"’{xévl

Kopiy = {xe U,

‘Clearly, UN\(A4, uA 2) = U K, and the sets K, are mutually deomt Now assume that
for some x e U and somc n >0 we have for cxample x ¢ Der,( U K, U 4,). Then
‘there exist e>0 and m>0 satisfying (U Ky WA (U (x 8)\{?‘})‘53 and
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ye (U, \{x})nM,. Therefore the set [(U(x, )\{x})n M,,,]\.(kU Ky WAy

fulfils y € Int,S. Obviously, we have for each ze S the estimates

- (f@O-KT NS @-f @)1~

1
m

1
Fe-fo= 2(n ") )
and consequently
+ —f b ey s e
F@-f@ze 2n+2)m
This implies
L) = e-limsup £ (2) 2 o-limsup f (@) + ¢ = () +e,
z=y Ty

ze8 zas

a contradiction. Therefore the sets X, n >0, have indeed all required properties.

12. Remark. Our main results are formulated under quite general assumptions.
If we add further conditions concerning 3 then the statements (a) (iv), (a) (vi) can
be given a shorter formulation. This may be left to the reader; here we only mention
the interesting case supp(3) = X and 3 is a ¢-ideal. Then one may quite directly
derive from Corollary 10 the following (slight) generalization of Proposition 3 in [9]:
Denote by 9t the o-ideal of all sets of first category. If 9t < 3 resp. 3 < Nthen (a)(iv)
can be replaced by

(@ @v)': C=GNT UT"), G, Is a G, and Int(S*\C), Int(S"\C) are
both empty resp. first category sets.

m

After establishing our quite abstract Theorem 6 we have to deal with the question
which ideals 3 on metric spaces (X, g) do have the properties LG and SPL.

13, DeriNTioN. We say that the ideal 3 on (X, @) has the property SPL*
if the following holds. Whenever M < X then there are M,, M, < M such that
Mo M, = @ and Der, M = Der, M, = Der, M,.

Obviously, if 3 has the property SPL* then for any M < X there exists a se-
quence M, (»20) of mutually disjoint subsets of M satisfying Der, M, = Dexr,M
for each n3z 0. Consequently, SPL* implies SPL.

From Lemma I we already know that the ideal 3 = {@} has the property SPL*
on an arbitrary metric space; in this case we have ©(g, 3) = ¢ and LG is trivially
fulfilled. Because of the fundamental significance of this case we formulate explicitly

the “metric” variant of Corollary 10. Note that the case 2 = exp (X) is of particular
interest. '

14, CororLAry. Let (X, o) be an arbitrary metric space and % a o-algebra on X

containing all open subsets of X. For a given quintuple (C, S*,T*, § =, T™) of subsets
of X the following statements are equivalent:

iom°®
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() (0* Cis a Gyset containing all isolated points,
(i)* C=8*nS" and $*, 5" e,
(i) T* « S*NC, T~ < 8§7\C and both T*, T~ are o-discrete sets,
(iV)* Int(S*INC, Int(S™INC are first category sets.
(b) There exists an W-measurable function f: X —[—1, 11 such that CH(f)
= (C, 8%, T+, 8", T").

Proof, Assume (b) holds. From Lemma 4 we conclude that T+, T are
F, (6 (a) (iii)) and consequently C'is a Gy, see 6 (a) (iv). The use of condition (a) (iv)*
instead of 6 (a) (iv) is correct by Remark 12, The N -measurability of S*(f) and
§7(/) follows from the fact that both f*, £~ are Borel measurable.

Conversely, by conditions (a) (i)*, (a) (i) the sets C, T* and T~ always belong
to U, Further, one can immediately verify that in the “metric” case all functions or
sets occurring in the proofs of Theorem 6 and Corollary 10 could be chosen to be
W-measurable.

The second type of ideals having all required propertics are, under some set-
theoretic assumptions, o-ideals on separable metric spaces. The property LG is
then a consequence of the Lindeldf property of X. In [9] it is shown that a ¢-ideal 3
on a separable space (X, ¢) has the property SPL* provided that:

= 3 contains all sets of cardinality less than 2 (the cardinality of the con-
tinuum,),

- for cach 4 e there exists also a Borel superset Be 3.

The first condition is of course closely related to some set-theoretic assumptions
(Martin’s axiom, C'H). We present here a slightly different result.

15, LaMMA. Assume that the following condition (€) is satisfied.
(€): There exists no weakly unaccessible cardinal less than or equal to 2°.
Then each o-ideal on an arbitrary separable metric space has the property SPL*.

Proaf. We will only outline the proof. For a given o-ideal 3 on (X, @) sef
D(3) = {xe X, {x} ¢ 3} Then 3 is a o-ideal on X\D(3). Since M = (M D(B)v
WM D(3) and Der M = Der(#) for cach M < D(3) we may by Lemma 1 (a)
restrict our attention to the case M o X\D(3).

In [11]. [12] the Tollowing was shown: Let M be a set such that card(¥) is
less than the first weakly unaccessible cardinal and let 908 be a family of subsets of M

o
such that for each sequence {5 & W the set M\ {) 4, is uncountable, Then
ns

there exists an uncountable system of pairwise disjoint subsets of 8 not belonging
to M. Consequently, condition (€) ensures that for each set # = X\D(3) such
that 5 ¢ 3 mutually disjoint subsets My, a < w,, of M satisfying M, ¢ 3 for each
a<w; may be found; here w, denotes the first uncountable cardinal.

Let B = {G,}1., be an open base of (X, ¢). Then we may by induction con-
struct a sequence 4, (13 1) of mutually disjoint subsets of M such that 4, <G,
for each n 31 and A, ¢ 3 provided that MG, ¢ 3. Indeed, if Gy M €3 then


Artur


170 B. Kirchheim

choose A, = @. Else we .find 4 (x<w,) such that Alnd; =@ if a#p,
Al € G, M and 4} ¢ 3 whenever ¢ < ;. Obvxously, if G, M¢3 (m=1) then
there exists at most one & < w1 such that G,,,n(M\A,) € 3. Therefore we may find
o, < @, satisfying G (MNAL) ¢ 3 whenever G,,n M ¢ 3. Now we canput 4, = 4%
and construct 4, in a similar way, replacing M by M\4,.

Further, for each n>1 there exist disjoint sets A2, A2 c 4, such that
A}, A2 ¢ 3 if A, ¢ 3. Then it js easy to verify that the sets M, = U A (=1, 2)
have all required properties.
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Weak covering properties and the class MOBI
by

H. R, Bennott (Lubbock) and J. Chaber * (Warszawa)

Abstract, We construct a non-n-discrete zero-dimensional scattered space which is an open
and compact image of a o-discrete metacompact Moore space. This gives an example showing that
weak O-refinability is not preserved by open and compact mappings between regular spaces and
shows that there exist non~weakly f-refinable spaces in MOBY;. Moreover, our example is a non-
o-discrete space which is both right and left separated.

In 1966 A.V. Arhangel'skif [A2] defined the class MOBI and asked many .
questions concerning this class,

The investigation of the class MOBI led to a slight modification of the original
definition from [AZ2].

For a class 4 of topological spaces, let MOBI, () be the minimal class of
T-spaces containing all metric spaces from " and invariant under open and compact
mappings (sce [Ch1]).

Tt is casy to observe that a Ti-space is in MOBI, (") if and only if it can be.
obtained as an image of a metric space from ¥ under a mapping which is a com-~
position of a finite number of open and compact mappings with Ti-domains [BI].

If the class A contains the class of all metric spaces, we write MOBI; instead
of MOBI ().

Tt is well known that open and compact images of metric spaces are metacom-
pact developable 7', -spaces [H], [Al]. It is also known that all the elements of MOBI,
have a point-countuhle base and all the elements of MOBI; have, moreover, a base’
of countable order [WWT].

In [Chd] the first example of 4 non-weakly 0-refinable space S* in MOBI,
was given. The space S™ is the first absolute cxample of a non-weakly 0 -refinable
space with & point-countable base and, since it does not have base of countable
order, it cannot be in MOBI,.

In the present paper we shall modify the construction of spaces in MOBI,
rom [Ch4] and the construction of open and compact mappings from [B2] in order
0 obtmn a non-weakly 0-refinable space Y in MOBI;.

AMS Suchct Classification; 34C10, 54D 18, S4E30.
* This paper was written while the second author was visiting Toxas Tech University.
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