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On the generalization of the Nielsen number
. "

R. Dobrenko (Olsztyn) and Z. Kucharski (Gdafsk)

Abstract. In this paper we consider the following situation: f: X— ¥ is a continuous map
of topological spaces and B is a nonempty subset of ¥. If we make additional assumptions (see
part 1), we can define the nonnegative number N(f'; B) called the Nielsen number of f relative
to B. We prove that card (f-* (B)) > N(f; B). Moreover, if we assume that X, ¥; B are smooth,
-compact and orientable manitolds such that dim X = dim ¥ — dimB, then using the index theory
we oblain the Wecken type theorem: Every continuous map f: X'— Y is' homotopic to a map
fit X— Y such that card(f* (B)) = N(f; B).

0. Introduction. Let f/: X'— X be a continuous map of a space X into itself.
A fixed point of a map fis a solution of the equation x = f(x).

Let Fix(f) denote the set of all fixed points ot a map £ Fixed point theory
«deals with the properties of Fix(f) in relation to the properties of the space X and
the map f.

The question of existence of fixed points (i.e. whether or not Fix(f) # &)
is of interest here, as well as the problem of their number # Fix(f). (We denote by
4 S the cardinality of the set S.) Theorems on the existence of solutions of various
.equations are usually reduced to the problem of existence of a fixed point. As an
example we can mention theorems on the existence of solutions of elliptic partial
differential equations or theorems on the existence of closed orbits for dynamical
systems, etc.

In many technical problems a positive answer to the question of existence of
solution is not satisfactory. Sometimes we want to know the number of solutions or
any estimates of their number, and how it changes under continuous deformatlons
of the initial map.

Questions concerning the behaviour of the set Fix(f) under continuous defor-
mations of the map f are also important. These problems are the object of the Nielsen
theory of fixed points.

In 1927 Jacob Nielsen ([12]) showed how we can attribute to a continuous map
fi X— X a nonnegative integer N(f), called later the Nielsen number, which is
a lower estimate of the number of fixed points of /. He has also shown thatifg: X —» X
is a map homotopic to f then N(f) = N(g); that means, the Nielsen number is
2 lower estimate of the number of fixed points of every map homotopic to f.
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2 R. Dobrefiko and Z. Kucharski

In 1942 F. Wecken ([17]) proved that if X is a polyhedron such that, for every
subpolyhedron L of X of dimension le.s than two, X\L is connected, then in the
homotopy class of any continuous map f: X — X there exists a continuous map
g: X— X such that N(f) = N(g) = # Fix(g).

Some generalizations of the above result were obtained by F. Weier ([17])
in 1953, and by G. H. Shi ([14]) in 1966.

In this paper we introduce a new homotopy invariant for a map f: X— Y
from a compact locally path connected space X into a locally uniformly contractible
space Y, given a closed subset B of Y. In particular cases we obtain the classical
Nielsen number of fixed points, as well as the Nielsen number of coincidence of
two or more maps.

f py.p2s -, Pt X—2Z, then we consider

Y=2ZxZx..xZ,B={(z,2,..,2): ze Z}

and f: X— Y given by f(x) = (ps(x), p2(*), ..., p«(»)). In this case, f~1(B) is the
set of all coincidence points of the maps p;, p,, ..., ps, i.€. points x € X such that
Pi(x) = p;(x) = ... = p,(x)).

We call this invariant the Nielsen number of f with respect to B.

We will also investigate the set f~*(B). The following question may be posed:
how does the set £ ~*(B) change under continuous deformations of the map f? We
deal with this problem in section 3, where we prove new theorems analogous to the
Wecken theorem for fixed points.

If f: X—Y is a continuous map, X, ¥, Bc Y are smooth closed oriented
manifolds and dim X'+dim B = dim ¥, a local index with respect to B for a map fis
defined. This index is a modification of the smooth versions of the fixed point and
intersection indices. If it is nonzero then there is a point x € X such that f(x) € B.

1. Nielsen number relative to B. We make the following assumptions:
Z.1. X is a compact locally path connected space.

Z.2. Bis a closed subspace of Y such that there exists an open neighbourhood
W < Y of B which can be deformed to B in ¥, i.e. there exists a map D: WxI—Y
such that:

® D(w,0) = w,

(iiy D(w, l)e B,

(iil) D(w,t) = w for we B, tel, (I — the unit interval).

Z3. f: X— Y is a given continuous function.

(L.1) Remark. If (Z,d) is a uniformly locally contractible (u.l.c.) metric
space (e.g. a compact metric ANR, see [1], Chapter A, Th. 3) then a pair ¥ = ZxZ,
B = A where A = {(z,2): ze Z} is the diagonal in ZxZ, satisfies the assump-
tion Z.2.

Proof. Given 0> 0let W = Wy(Z) = {(z,2) e Zx Z: d(z, 2’y < 6}. It follows
from the assumptions of Z being u.l:c. that for every ¢ >0 there exists 6> 0 and
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a map y: WxI—Z satisfying the following conditions:
?((z, 2),0) = z,
y(z,2), ) =2,
Wz, 2),1) =z,
diam y[(z,z)YxIl< .

Fix 6> 0. A set W is of course an open neighbourhood of the diagonal 4.
It is easy to see that a map D: WxI—ZxZ defined by

D((Z, Z')9 t) = ’}I([(Z, Z'), t, Z)

satisfies Z.2.

(1.2) DermNITION. Let f: X— Y be a continuous map and let x,, x; e f "1(B).
We say that x, and x, are in Nielsen relation with respect to the subset B if there
exists a path «: I— X such that «(0) = x,, ¢(l) = x; and the path foa: I> Y
is homotopic rel{0, 1} to some path #: I— Y such that n(I) = B. Obviously, this
is an equivalence relation in the set £ ~*(B). We call this relation the Nielsen relation
of the map f with respect to the set B. Equivalence classes of this relation are called
Nielsen classes of f with respect to B.

(1.3) TeeoREM. The set of Nielsen classes of f with respect to B is finite.

Proof. First we notice that f~'(B) is a closed subset of a compact space X,
and hence is compact. So it suffices to show that every Nielsen class is an open set
inf~*(B). Let us fix a point x, € f~1(B). Then there exists an open neighbourhood U
of x, in X such that f(U) is contained in an open set W B. Because of local path
connectedness of the space X we may assume that U is path connected. Consider
a point x; 6f " '(B)nU. There exists a path a: I- U such that a(0) = x,
a(l) = x,.

Define a homotopy

H: IxI->Y, H(ts)=D(foa(),s) fort,sel.

It is easy to check that the homotopy joins rel{0, 1} the path foa to
n=H(-,1) = D(foof-),1): I- Y. Regarding assumption Z.2(ii) we obtain
that ()= B. B

Let now F: Xx J—Y be a homotopy and N an arbitrary Nielsen class of F
with respect to B.

For any 0<t, <, <1 we denote:

No" = NaXx[ty, 4], Fo": Xx[t,, ,]1- Y,

where F™" = F|X'x [t,, #,] is the restriction of F to the set X x[t,, ;1.

(1.4) LEMMA. The set N is a Nielsen class of the map F'** with respect
to B or is empty.
1%
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Proof. We have to show that:

[points (g, So), (%1, 51) € F~X(B)n X% [t5, t,] are in Nielsen relation of the
map F with respect to B] < [points (Xg, 5), (%1, §;) are in Nielsen relation of the
map F" with respect to B].

<« is obvious.

We prove =>. Assume that there is a path a = (o, ay): I—Xx I (where
o;: I-X, oy I—I) joining points (x,,8) and (x,,s;) such that the path
Foa: I Y is homotopic rel{0, 1} to some path n: I'— ¥ lying in B (i.e. n(I) = B).
Yor teI we define a map r,: I-1I as follows:

(1—1)-s+tt, for s<t,
r(s) = <8 for to<s<ty,
(1—t)-s+t-¢ fort;<s.

Now we define a homotopy H: I'xI— Y putting:
H(ta S) = F(ul(t)r Igo OC2(1)) .
Define H;: I- Y by H, = H(-,s) = Feo (0, ;0 ay).
Then for s =0
Hy = Fo(ay,ryoa,) = Fo(ay,n,) = Foua, because ry = idy ;

for s =1
Hy=Fo(ay,ryoa)=F"o(t,rion).

H is a homotopy rel{0, 1}.
Since the path 7 is homotopic to F o arel {0, 1} and since the relation of homotopy
is transitive, n is homotopic to the path F'™ o (ay, r, o ap)rel{0, 1}. W
(1.5) CoroLLARY. Let f,: X— Y, tel, be the map defined by
fix)=F(x,t), tel xeX.

Let N, = {xe X: (x, t) € N} denote the t-section of the set N. Then N, is a Niel-
sen class of the map f; with respect to B or is empty.

(1.6) DeFNiTION. Let F: X'x I— ¥ be a homotopy joining maps fy, f: X~ Y.

Let Ny, N, be Nielsen classes of maps f;, and f; with respect to B, respectively.
We say that the classes Ny, Ny are in F-Nielsen relation provided there is a Nielsen
class N of the map F with respect to B such that Ny and N are 0-section and 1-section
of the class N.

(1.7) LemMA. F-Niclsen relation is right and left-univalent.

We omit an easy proof. B

(A relation R is right-univalent iff ([(¢, )€ R and (g, ") e Rl=>[o" = ¢"]);
left-univalent iff ([(¢’, ¢) € R and (g", ) € R]=> [0’ = o"'])).

(1.8) DeemviTION, Let f: X— Y be a continwous map and N, =f !(B) its
Nielsen class with. respect to B. This class is said to be an essential Nielsen class
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of f with respect to B if for each homotopy F: X'x I— ¥ joining the map f to some
map f;: X— Y there is a Nielsen class Ny of f; with respect to B, which is in
F-Nielsen relation to N,.

The number of essential Nielsen classes of f with respect to Bis called the Nielsen
number of f with respect to B and is denoted by N(f; B).

The following is an obvious consequence of the above definitions.

(1.9) TeEOREM. The Nielsen number N(f; B) is a homotopy invariant. Moreover,
every map [ homotopic to f has at least N(f; B) = N(f'; B) points x € X such that
f'(x)eB.

It is quite easy to see (regarding (1.1)) that if X is a locally path connected space
and Z is uniformly locally contractible then the following is meaningful:

(1.10) DernviTION. Let p, g: X —Z be given maps. They define a map

f=09: X>Y=2ZxZ by [f(x)=(px),q9().
The coincidence Nielsen number of maps p and ¢ is the number
n(p, q) = N(f; 4)
(i.e. the Nielsen number of f with respect to the diagonal
A={(z,2)eZxZ: zeZ}
inZ xZ).Itisa lower estimate of the number of coincidence points of maps p and q.

2. The local index. Let M be a smooth compact manifold with boundary oM,
dimM = m, A< M a closed subset of M. Let, moreover, N be a smooth closed
manifold (compact without boundary), dimN = n, P< N a smooth closed sub-
manifold, dimP = k.

We fix a metric dy in N and for any two maps f, f': M~ N we put

en(f.f") = sup{dy(f (%), f'(x): xe M} .

Along with the above assumptions, we will use in this section the following
well-known facts:

F.1. If f: M—> N is a continuous map, smooth on 4 (j.¢. there exists an open
nbd ¥ of A4 such that fis smooth on V), then for each ¢ > 0 there is a smooth map
't M— N such that fi, = fi; and gx(f,f) <e.

F.2. If f: M— N is a smooth map, transversal to a submanifold P on the set 4>
then for each &> 0 there exists a smooth map f’: M — N transversal to P on the whole
of M such that fj, = f/y and oy(f,f) <e.

F.3. If f: M~ N is a smooth map transversal to P and f,y is transversal to P.
then f~*(P) is 2 smooth submanifold of M of dimension m+k—n (if m+k~n<0
then f~*(P) = @) with boundary 8f ~*(P) = f~(P)n oM.

For details see, for example, [5].
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We will assume in the sequel (through Sections 2 and 3) that X, Y, B are smooth,
oriented and closed manifolds, B is a submanifold of Y, dimX = n, dimB = £k,
dimY = n+k.

Orientations coherent with the fixed orientations of these manifolds will be
called shortly positive; the opposite ones — negative.

(2.1) Dernamion. Let Uc X be an open subset of X. A continuous map
f: X Y is admissible on U with respect to a submanifold B if f~ Y(B)ndU = @.
Similarly, a homotopy F: XxI—Y is admissible on U with respect to B if
FY{B)n@UxI) = 3.

Let f: X~ Y be a smooth map transversal to B and admissible on U with
respect to B, and let x € f~*(B). Let us fix ordered bases {£1, ..., gt and {1, ..., M}
in the tangent spaces T, X and Ty, B, respectively, which induce positive orientations.

By the assumption of transversality of f to B, we have

AT X)® Ty B = TrnY

where df,: T, X Tj ¥ denotes the differential of f at point x. A local index
I(f, B, %) of f with respect to B in a point x is defined as follows:

1 if the basis {dfi(&1), - A&, N5 s M} induces the
positive orientation in Ty Y, ‘
—1 if the basis induces the negative orientation in Ty Y .

I(f, B, x) =

The local index I(f, B, U) of f with tespect to B on a set U is defined by
I(f,B,U) = s I(f, B,x).

xef~1(B)nU
This definition is correct since 7~ 1(B) comsists of a finite number of poins.
(2.2) LemMa. Let fy,fy: X— Y be smooth maps transversal to B and admissible
with respect to B on an open set U < X. Moreover, let there exist d continuous homotopy
admissible with respect to B on U, joining fy to fy. Then I(fo, B, U) = I(f;, B, U).
Proof. Making use of F.1 and F.2, we may assume without loss of generality
that the admissible homotopy F: X x I— ¥ joining f, to f; is smooth and transversal
to B. It follows from F.3 that F~(B) is a disjoint union of components homeomor-
phic to a circle or to an interval with ends in X x {0}uX x {1}. Moreover, every
component lies out of dUx T (see the picture).

Xx {1}
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Notice that each orientation of the manifold X x I induces an orientation of the
boundary 8(XxI) = Xx {0} uXx {1} (see the details in Milnor [10]).

Let (x, t) € 8(X x I). We choose in T, (X x I) an oriented basis {&5, &y, .., &n}
giving a positive orientation in such a way that vectors &y, ..., &, € T(y o 0(X % I).
We accept the agreement that vectors &y, ..., &, € Ty, 0(XxI) induce positive
orientation if &, is ‘directed outside’ of X'x I. Let us fix an orientation in X x I such
that X x {0} is oriented coherently with a fixed orientation of X. Then of course
X% {1} is oriented in opposite way. Consider an arbitrary 1-manifold y which is
a component of F~1(B).

We orient this manifold in a canonical way. Let (x, t) ey and let

60(3(; t)a fl(x’ t): () cn(xs f) € T(x,\‘)(XXI)

be an oriented basis of T, (X x I) giving a positive orientation of this space. Assume
that &,(x, t) € Ts,syy- Then the differential dF; ;50 Tex,n(X%I) = T, ¥ of the
map F at the point (x, £) ey = X'x I sends a vector &u(x, t) € Tix,1y7 < Tia, (X ¥ 1)
to a vector dF,n(Eolx, 1)) € Trs,n B, Whereas vectors

AF, 060, 1), vy AF e,y 600, )

together with a basis of the space Tg,nB span the whole space Tpx,y Y-
Let vectors 7y, ..., 1y € Tr(s,p B form an oriented basis inducing a positive
orientation of the manifold B at the point F(x, #). We make the following agreement:
A vector &o(x, 1) € Tty 7y gives the positive orientation of a manifold y when
the oriented basis

dF(x,t) gi(x: t): s dF(x,t)‘fu(xs t)s LFERT

gives the positive orientation of the manifold ¥. The components of F~Y(B), which
are closed curves or which are curves outside of Ux I (see the picture), have no
influence on the numbers I(f,, B, U) and I(f;, B, U).

Let then y be a 1-manifold in UxJ homeomorphic to an interval with ends in
Ux{0}oUx{1}. Let &y(x, 1), Ey(x, 1), o, E(x, £) € T (X xI) be an oriented
basis defining a positive orientation in X xI. Furthermore, let the vector &u(x, t)
define an orientation of y. If points (o, 2o), (xy, t;) € Ux {0} u Ux {1} are ends of
a curve y then one of the vectors &,(xo, fo), &1lxy, #;) is directed outside and the
other inside of the manifold X'x I

We may assume that:

>k € T(x,t) Y

él(xO: to)s e én(xo H tO) € T(xo.to)a(XXI) El
51(x1, tl): ey fn(xls 11) € T(:cz,ts.)a(-x,>< I) .

Hence the ordered bases

{1(x05 205 s EulXos 10)} and {&,(x1, 11), -.ns &gy 1}

define opposite orientations in 8(X x I).
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After simple calculations we obtain that if points (x,, t,), (%, #,) lie in the same
level; say in X'x {0}, then I(fy, B, x,) = I(f1,B,x). (Ife.g t,=0and t; = 1
then I(fy, B, xp) = I(fy, B, x,)). Summing the indices over points, we finish
the proof. H :

(2.3) Remark. A compact manifold is an ANR-space. Therefore, for each

&£>0 there exists 0 <d,< ¢ such that, for any continuous maps f, f': X— Y, if

ox(f (%), f'(x)) <6, then f and f' are e-homotopic, i.e. there is a homotopy
F: XxI- Y joining f to ' and satisfying the condition

diam{F(x, #): telI} <& for each xe X. |

Let now f: X'— Y be a continuous map admissible on U< X with respect to
Bc Y. Take e<1/2inf{dy(f(x), y): xedU, ye B} It follows from F.! and F.2
that there exists a map f': X' — Y transversal to B on X and such that

or(f (), f'() <6,
(see 2.3); then of course, f” is admissible on U with respect to B. We can define the
index I(f, B, U) as the index of the map f’ on U with respect to B.
(2.4) DermNiTION. I(f, B, U) = I1(f", B, U).
(2.5) LemMMA. Definition 2.4 is correc?, i.e. the number I(f, B, U) does not
depend on the choice of an approximation f' of the map f.

Proof. This follows from the fact that any two approximations are
2e-homotopic (hence admissibly homotopic) and from Lemma 2.2.

It is easy to verify the following properties of the local index (by reducing the
problem to maps which are transversal to B).

(2.6) HOMOTOPY INVARIANCE. If fj, f1: X — Y are continuous maps admissibly
homotopic on an open set Uc X, then I(f,, B, U) = I(f;, B, U).

(2.7) ExcisioN. If Ve Uc X are open sets and if f: X— Y is a continuous
map such that f~Y(B)nCl(U) = f~*(B)nV then I(f, B, U) = I(f, B, V).

(2.8) Apprriviry. If U, V' < X are open, disjoint sets and f: X— Y is a con-
tinuous map such that £~ (B)n(@UUIV) = & then

I(fy B, Uuv V) =I(fs B, U)+I(fa B, V) .

(2.9) InTERSECTION. If f* X' Y is a map admissible on an open set Uc X
with respect to B Y, then I(f, B, U) # 0 =" B)nU # @.
We omit easy proofs of these properties. M
(2.10) DrrviTioN. Let N < X be a Nielsen class with respect to B of a con-
tinuous map f: X'— Y. We define the index I(V, B) of this class putting
I(N,B)=1I(f,B,U)

where U< X is an open set such that f~'(B)nCW(U) = N = f~(B)n U.
The correctness of this definition follows immediately from (2.7).
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(2.11) TrEOREM. If N, < X is a Nielsen class with respect to B of a continuous
map fo: X— Y andI(N,, B) # 0 then N, is essential in the sense of Definition 1.8.

Proof. Assume that F: XxI— Y is a homotopy starting from f; and let
N < F~!(B) be a Nielsen class of F with respect to B such that N, is the 0-section
of N.

By Corollary (1.5), the z-section N, of the class N is a Nielsen class of the map
fi: XY, where fi(x) = F(x,t), tel, xe X. Let U< X be an open set such that
N,cU and f~(B)nCl(U) = N,. One easily checks that there exists ¢>0 such
that FYB)NClI(U)x [t—e, t+e]l=Nx[t—¢, t+e]=F Y B)nUx[t—e, t+e]. It
follows from the homotopy invariance of the index that for any integer k the set
{teI: I(N,, B) = k} is open in I Because of the connectedness of the interval I we
obtain that I(N;, B) = I(IV,, B) for each tel

The class N, is then essential by (2.9). B

(2.12) Remark. Similarly as in Section 1 all the facts exposed in Section 2 can
be translated into facts concerning coincidence.

Set ¥ = ZxZ, where Z is a closed smooth oriented manifold of dimension ».

To say that a map f = (p, q): X— Y (where p, g: X¥—Z) is admissible on U
means that there are no coincidence points on 9U.

Similarly, for an admissible homotopy F = (Fy, Fp): XxI—ZxZ =Y
on U there are no coincidence points of F; and F, on dUx I

Therefore we define the local coincidence index i(p, g, U) by

i(p,g, ) =1(f,4,0)

where 4 = {(z,2)e ZxZ: zeZ}.
Of course, this index satisfies conditions (2.6)-(2.10).

3. Wecken's Theorem. Let P, Q be smooth submanifolds of a smooth oriented
manifold R, dimP = p>3,dimQ = ¢>3,dimR =rand r = p+q. Let xe Pn @
be a transversal point of intersection of P and Q (i.e. T,P @ T, Q = T, R). Assume
that (&4, ..., &), (1y, ..., 1) are oriented bases in T'.P and T, Q determining positive
orientations in P and @, respectively. Denote

1 ~ if the basis (¢, ..., &, 1y, ..., 11,) O the space T, R
determines a positive orientation of a manifold R,
—1 in the other case.

ind(P: Q,x) =

The number ind(P: Q, x) is called the intersection index of submanifolds P
and Q at a point x.

In the sequel we make use of well-known Whitney’s theorem.

(3.1) TuroreM (Whitney). Assume that x,yePnQ are transversal inter-
section points of manifolds P and Q such that ind(P: Q,x) = —ind(P: Q, ).
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Further suppose that there exist smooth paths a, B: I— R and a smooth homotopy

h: IxI-R tel{0, 1} such that
(i) 2(0) = x = B(0),

(i) a(l) = y = (1),

@) (NP, )= Q,

(IV) h(,O) = o, h(: l) = ﬁa

W {@up}nPnO) = {x,}.

Then for any open neighbourhood U < P of a(l) there exists a smooth isotopy

H: PxI— R with a compact support contained in U, transforming the manifold P
onto a manifold P’ such that Pn Q\{x, y} = P'n 0.

(Cf. J.W. Milnor [11] and B.J. Jiang [9].) B

Recall that X, Y are closed oriented smooth manifolds, B is a closed oriented
smooth submanifold of ¥ and dimX = dim ¥—dimB and let dim X > 3.

(3.2) A precedure of cancelling points with image in B. Assume that

(1) f: X Y is a smooth map such that £~ *(B) consists of a finite number of
points.

(2) x4, %, €f7Y(B) are points where the map f is transversal to B.

3 I(S, B, xo)+I(f, B, %1) = 0.

{4) x,, x; € N, where N is a Nielsen class of the map f with respect to B.

It is easy to check that then the points (xq, f (%)), (*(,f(¥1)) € X x ¥ are trans-
versal intersection points of submanifolds I'y = {(x,/(®)) e X% ¥: xe X} and
XxB in the manifold Xx ¥, and I(f, B, x) = (—1)”ind(1",: XxB, (xi,f(xi)))
for i=0,1. Xx ¥, Xx B have the product orientations and the orientation of I',
is induced from X by the diffeomorphism (1,f): X—T' e

(3.2.1) Since x;, x; € N are in the same Nielsen class, there are paths ¢: I—X
and p: I— Y such that 6(0) = x,, 6(1) = X, p(0) = f(xo), (1) =1 (xy), u(l) = B
and there is a homotopy H: foo~urel{0, 1} such that Hy = foo, H; = i

We reduce the situation to Whitney’s Theorem (3.1), defining:

P=I, Q=XxB, R=XxY.

We define smooth paths «, §: I-»R as follows:

DermITION of . A path o is replaced by a smooth path é: J— X such that
G fTHB) = {xo, x,}; this is possible, since £~ 1(B) contains of a finite number
of points and dim X > 3.

A smooth path a: I+ Xx ¥ = R is defined as a(t) = (8(2),/° 8(1)).
DerNITION of §. We first define a path f: I+ Xx ¥ = R putting

B@) = (6@, ne),
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where y is the path from (3.2.1). Next, the path B is replaced in the same homotopy
class by a smooth path B: - Xx ¥ = R arbitrarily close to B and such that

() BI)= Xx B,

@) BO) = (x0,f (X0 B = (%1, /D),

G) DTy = {(xo ,f(xo»’ (xuf(xﬂ)}-
This is possible, since I';nXxB consists of a finite number of points and
dimXxB=3.

DEFINITION of & smooth homotopy h, joining o and B. Let g,: & ~ o be a homo-
topy joining the smooth path & to the path ¢ (i.e. go = &, gy = o).

Then G, = fo g, is a homotopy joining the smooth path fo & to fe o.

We define a homotopy

(G
W= {Hz,_l

for 0<1<K1/2,
for 12<1t<1.

This homotopy joins the smooth path fo & to a path u containt?d in B.
Let us notice that the homotopy H, = (8, W) joins a to k. Consider the homo-

topy:
Hy,
F =
{th—l

for 01<1/2,
for 12<t<1,

where B,: f ~ prel{0, 1} is a homotopy joining the path B to f. The homotopy F,
joins « and B but may be nonsmooth.

Replacing F, by a smooth homotopy %, we obtain a homotopy satisfying the
assumption of Whitney’s theorem.

Therefore all assumptions in Whitney’s theorem are satisfied. That means, for
each open neighbourhood U of the path o, that there is a smooth isotopy
H: I'yxI—XxY with a support in U and such that

I'anXxB = I,0XxB\{{(x,f (X)), (1, £ o))}
where I'" = H(I';,1). Let h: XTI, be the diffeomorphism defined as follows:

h(x) = (%, f (%)) .

Put ¢ = (¢, ¢5): XxI-»Xx Y, p(x,t) = H(h(x), t) (H denotes an isotopy from
Whitney’s theorem).

Consider the map ¢, = 7y o @, where my: Xx ¥~ ¥ is the projection onto
the second coordinate. The map ¢, is a homotopy joining the map f to the map
fo = @5(-, 1): X ¥ such that f~1(BN{xo, %1} = 5 '(B). .

We can demand that the support of the homotopy @, be contained in an arbi-
trarily small open neighbourhood U of a(I).

.(3.3) A procedure of creating mew points with image in B. Let f: X->Y be
a smooth map, X, € f~*(B) an isolated point inf~'(B)and v # 0 an arbitrary integer.
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We will construct a map ¢: X — ¥ homotopic to f and such that:

() ¢71(B) = fT1(B)U {x1, X3, e Xpyy» ¥} (| | denotes the modulus),

(2) the points xg, X1, X3, ..., X4, ¥ belong to the same Nielsen class of ¢ with
respect to B,

(3) the points x,, x,, ..., X(y are points where the map ¢ is transversal to the
submanifold B,

(4) y is a point for which I{p, B, @) = v for an open neighbourhood Q of y
such that ¢~ '(B)nCL(Q) = {3},

(5) the support of homotopy joining maps f and ¢ is contained in an arbi-
trarily small open neighbourhood of x,.

Thuslet U< X'be an arbitrary neighbourhood of x,. Fix an open tubular neigh-
bourhood T = ¥ of the submanifold B. There exists an open neighbourhood ¥ < U
of x, in X which is diffeomorphic to R* and f(¥) =T and f~Y(B)n¥V = {x,}.

Let &: T— B denote the projection of a bundle with fibre R". Without loss of
generality we may assume that /' (V) < £7(W), where W is a neighbourhood of the
point f(x,) in B diffcomorphic to R*. Then |~Y(W): "X W)= W is a trivial
bundle. We can identify £™*(W) with R*x R” where ¢~ {(W)nB = R*x {0} and
consider the restriction fly : V¢ (W) as 2 map (f;,f,): R"—R*x R

We will assume that 2 <||x,}| <3. Let us regard R" as Cx R""2 (C denotes
the complex plane) and fix |v] different points z, z, ..., zj, € C such that 0 < |z;| <1
for i=1,2,..,|v|. Let : C—C be given by the formula

$ (@) = {z‘_(f—zl)(z—zz) v (z—2) for >0,
27 (z—2z)(z—2y) ... (z—z,) for <0,
where A = (—1)™-v.

We define a map h: Cx R*"2— Cx R*"? putting

h(z,w) = (y(z),w) for zeC, we R""2.
Then. the points x, = (z4, 0), ..., Xy, = (25, 0) € R" are isolated zeros of degree
+1 (depending on sign?).

The point y = (0,0)e CxR""% = R" is a zero of degree A of the map h.
Therefore the map 4 considered as a map A|S*: S*— R\{0} (where S* = R" is the
unit sphere) is an inessential map (i.e. a map of degree 0).

The same can be said about the map f, restricted to the sphere of radius 2.

Hence, there exists a map fi: R"— R" satisfying the conditions:

2 = h(x)
@ #0
b :(x) = fo(x)

We‘ define a map gy: R"— R*x R" putting ¢y(x) = (f1(), Sa()).
This map can be obviously extended to a map ¢: X~ ¥ by putting ¢ (x) = f(x)
for x ¢ V. Notice that ¢ is smooth on an open neighbourhood. of points in ¢~1(B)

for |Ixlj <1,
for 1<|lxll<2,
for [|x||>2.

On the generalization of the Nielsen number 13

and I(g, B, U,)) = (—1)™deg(f5, x), where U, denotes an open neighbourhood
of x such that Cl{U) N 1(B) = {x}, for x = xy, X5, ..., X,, ).

It is not difficult to see that ¢ satisfies the desired conditions. M

(3.4) TuEOREM. Let X, Y be closed, oriented, smooth manifolds, B be a closed
oriented smooth submanifold of Y and dimX = dim Y—dim B> 3. Then for every
continuous map f: X — Y there exists a map g: X— Y homotopic to f and such that

N(f,B)=N(g,B) = %5~ '(B).

Proof. Without loss of generality we may assume that f* X — ¥ is a smooth
map transversal to the submanifold B. We cancel every Nielsen class of zero index
by using Procedure (3.2), since every Nielsen class of zero index consists of the same
number of points of index +1 and —1.

If the index of the class is v 5 O then using Procedure (3.3) we can deform our
map in such a way that it will have in its Nielsen class additional |v| peints of index +1
and one point y whose index with respect to B is equal to v. We can now apply Pro-
cedure (3.2) to all points with index +1 and the class ‘reduces’ to the single point y.

(3.5) CoroLLary (Wecken's Coincidence Theorem). If X and Z are smooth,
closed, orientable manifolds of the same dimension =3 and p,q: X—Z are conti-
nuous maps, then there exist continuous maps p', q': X —~Z homotopic respectively
to p and q and possessing exactly n(p, q) = n(p’, q) points of coincidence.

Proof. We obtain these maps by putting in Theorem (3.4) Y= ZxZ, B = A
and f=(p,q)- W
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One point extensions of trees and quadratic forms
by

Nikolaos Marmaridis (Ioannina)

Abstract. Let T beany tree with underlying graph one of the graphs D, Dy, n=4, En, Em,
m = 6,7,8.Let A be one point extension of the path-algebra kT by an indecomposable preinjective
kT-module M. Using methods of tilting theory and of vector space categories, we prove that 4 is
of (infinite) tame representation type if and only if the Tits-form 74 of 4 is weakly non-negative.

Introduction. Let 7" be an oriented tree with underlying graph one of the graphs.
D, D, n=4 E, E,, m=6,7,8. Let

kM
A‘[Okr]

be any one point extension of kT by an indecomposable preinjective k7-module M.
The aim of the present paper is to prove the following:

THEOREM A. The algebra A is of (infinite) tame representation type if and only
if the Tits-form t, of A is weakly non-negative.

In representation theory of finite dimensional algebras it is common to associate
to an algebra 4 a quadratic form in order to study the representation type of 4 or
other invariants of mod.4. We refer, for example, to [1] and also to the long list of
papers cited there, which are dealing with related questions. Moreover, we refer
to [11] for a detailed study of relations between quadratic forms and various module
categories. Finally, we like to mention [9] received during the preparation of the
present paper. In this work J. A. de la Pefia proves an analogue to Theorem A for
the so-called “hyperbolic algebras™.

The present paper is divided as follows: In the first section we recall preliminary
results. Any notion used in our paper and not defined in Section 1 can be found in [3]
or [11]. In the second section we introduce sequences of triangular matrix algebras A
induced by tilting functors. These sequences behave nicely in relation to the Tits-
form 1, and to the representation type of 4. In the third section using the above
mentioned sequences we reduce the proof of Theorem A to the study of the so-called
A’-maximal tame algebras. For any Tits-form associated to an 4'-maximal tame
algebra there is a convenient presentation such that one can see easily that the Tits-
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