Some \(m \)-dimensional compacta admitting a dense set of imbeddings into \(R^{2m} \)

by

Darryl McCullough * and Leonard R. Rubin (Norman, Okla.)

Abstract. For each \(m \geq 2 \), an \(m \)-dimensional compact metric space is constructed for which every map into \(2m \)-dimensional Euclidean space can be approximated by imbeddings.

In [K-L], J. Krasinkiewicz and K. Lorentz explored the notion of a membrane of a map, which generalizes the concept of a compactum essentially imbedded in \(f^p \) introduced in [M-R]. Having discovered an error in the proof of our Lemma 2.7 in [M-R], they gave interesting examples of disjoint essential compacta \(x^p \) disapproving the conclusion of Lemma 3.6. This left Theorem 3.7 of [M-R] in doubt, as its proof relied heavily on Lemma 3.6.

Theorem 3.7 purported to characterize the dimension of compacta in the following way:

\((\ast)\) Let \(X \) be a (metric) compactum; then \(\dim(X) < m \) if and only if the set of imbeddings is dense in the space of continuous maps from \(X \) to \(R^{2m} \).

It turns out that Lemma 3.6 of [M-R] is true in the case \(m = 1 \). This is actually the content of Theorem 3.1 of [M-R], which is reproved as Theorem 3.1 of [K-L].

It follows that the statement \((\ast)\) is true for \(m = 1 \).

On the other hand, \((\ast)\) is false when \(m \geq 2 \); in fact, we shall prove in this paper the following result:

Theorem. For each \(m \geq 2 \), there exists a compactum \(X \) with \(\dim(X) = m \) such that every map from \(X \) to \(R^{2m} \) can be arbitrarily closely approximated by imbeddings.

In terms of mapping spaces, this says that the space \(\mathcal{E}(X, R^{2m}) \) of imbeddings from \(X \) to \(R^{2m} \) is dense in the space \(\mathcal{C}(X, R^{2m}) \) of continuous maps to \(R^{2m} \). In this paper, we will actually prove that the space of imbeddings to the \(2m \)-cube \(I^{2m} \) is dense in the set of maps to \(I^{2m} \); clearly this is sufficient to prove the Theorem.

* Supported in part by NSF Grant DMS-8701666.
1980 Mathematics Subject Classification: Primary 54F45; Secondary 54C25, 54E45.
Each space X is constructed as the inverse limit of a sequence of finite polyhedra. Crucial to the construction are certain pairs of disjoint essential compacta M_ϵ and L_ϵ in the 2m-dimensional ball $D^n \times D^n$. The pairs, constructed and discussed in §2, are a straightforward generalization of the examples given in [K-L].

In §1 we present the facts about inverse limits needed for the construction; in particular, Proposition 1.7 shows that the inverse limit of an inverse system (indexed by the natural numbers) of polyhedra will satisfy the conclusion of the Theorem provided that each map of a polyhedron in the system can be approximated, in an appropriate sense, by an imbedding of a polyhedron "farther out" in the system. In §2 we present the generalization of the examples from [K-L] needed for the construction, in §3, of an inverse system satisfying the hypothesis of Proposition 1.7. Section 2 also contains some other lemmas needed in that construction.

The existence of the spaces we construct here raises many questions. For example, what is the smallest n such that there is an m-dimensional compactum whose imbeddings into R^n are dense in the maps to R^n? Can the property in the Theorem be characterized topologically? Is this property related to the phenomenon of m-dimensional compacta whose products have dimension less than $2m$, whose construction [B] is somewhat similar? We hope that these and related questions can now be approached.

1. Inverse limits. Let $X = (X_t, \epsilon_t)$ be an inverse sequence of compact polyhedra X_t and (continuous) maps $\theta_t^j: X_t \to X_t$. Assume that each X_t has a fixed metric $d = d_t$. Let $X = \lim X_t$; then X is a metrizable compactum and we provide it with a metric $d = d_\theta$. Let $\theta_0: X_0 \to X_0$ denote the projection.

Proposition 1.1. If for all $\epsilon_0 > 0$, the set of ϵ-maps from X to X^ϵ is dense in $\mathfrak{Q}(X, X^\epsilon)$, then $\delta(X, X^\epsilon)$ is a dense G_δ in $\mathfrak{Q}(X, X^\epsilon)$.

This proposition follows from the contents of Chapter V, §3 of [H-W]. The next is 27.9 of [N].

Proposition 1.2. If $\dim(X_0) \leq m$ for all ϵ_0, then $\dim(X) \leq m$.

Proposition 1.3. For every $\epsilon > 0$ and for each compact ANR P and map $h: X \to P$, there exists k and a map $f: X_k \to P$ such that $d(f \circ \theta_0, h) < \epsilon$.

For Proposition 1.3, see (CRI) of Theorem 8 in Chapter I, §5.2 of [M-S].

Proposition 1.4. Suppose that for each k, $S^{n-1} \times X_k$. Suppose further that for $j > k$, $\theta_j|S^{n-1} = \epsilon_0|S^{n-1} =: \epsilon: S^{n-1} \to S^{n-1}$ and that X_0 does not retract to S^{n-1}. Then $\dim(X) \geq m$.

Proof. Clearly, the sequence $S = \{S^{n-1}, \theta_k|S^{n-1}: S^{n-1} \to S^{n-1}\}$ is an inverse sequence whose limit S^{n-1} is a closed subspace of X. We need only show that $S^{n-1} \to S^{n-1}$ does not extend to a map $k: X \to S^{n-1}$. Suppose, to the contrary, that such a map k does exist. Choose $\epsilon > 0$ such that if $S^{n-1} \to S^{n-1}$ is any map and $d(f, h) < \epsilon$, then $f = h$. Apply Proposition 1.3 to get an index k and a map $f: X_k \to S^{n-1}$ with $d(g \circ \theta_0, h) < \epsilon$. Since all $\theta_0|S^{n-1}$ are the identity on S^{n-1}, the map $\theta_0|S^{n-1}$ is also the identity. We conclude that $d(g|S^{n-1}, h|S^{n-1}) < \epsilon$.

so that $g|S^{n-1} \simeq id$ on S^{n-1}. The homotopy extension property then implies that $id: S^{n-1} \to S^{n-1}$ extends to a map of X_0 to S^{n-1}, contradicting the hypothesis.

From Theorem 5 of Chapter I, §5.2 of [M-S], we obtain the following.

Proposition 1.5. For each open cover \mathcal{U} of X, there exists a k_0 and an open cover \mathcal{V} of X_{k_0} such that $\mathcal{U} = \mathcal{W}_k(\mathcal{V})$ refines \mathcal{U}.

It follows that if $k \geq k_0$, then the open cover $\mathcal{U}(\mathcal{V})$ refines \mathcal{V}. Thus it is true if $k

Proposition 1.6. For all $\epsilon > 0$ there exists a k_0 such that if $k \geq k_0$, then $q_0: X \to X$ is an ϵ-map.

Proposition 1.7. Let N be a fixed positive integer. Suppose that for each k and for each map $h: X_k \to I^n$ and for each $\delta > 0$, there exists $l \geq k$ and an imbedding $\gamma: X_l \to I^n$ such that $h \circ \theta_l: X_l \to I^n$ is δ-close to γ. Then $d(X, I^n)$ is a dense G_δ in $\mathfrak{Q}(X, I^n)$.

Proof. We shall show that if $\epsilon > 0$ and $f: X \to I^n$ is a map, then there exists an ϵ-map $g: X \to I^n$ with $d(f, g) < \epsilon$. The result will then follow from Proposition 1.1.

Using Proposition 1.6, choose k_0 so that if $k \geq k_0$, then $q_0: X \to X_l$ is an ϵ-map. Next, apply Proposition 1.3 to find $k \geq k_0$ and a map $h: X \to I^n$ such that $d(h \circ \theta_k, f) < \epsilon/2$.

Choose $l \geq k$ and γ as in the hypothesis so that $\gamma: X_l \to I^n$ is an imbedding, and $h \circ \theta_l$ is $(\epsilon/2)$-close to γ. Since $l \geq k \geq k_0$, then $q_0: X \to X_l$ is an ϵ-map, and since γ is an imbedding, then $\gamma = q_0$ is also an ϵ-map. Using compactness in the inverse system, $h \circ \theta_k \circ \theta_l \simeq h \circ \theta_k \circ \theta_l \simeq h \circ \theta_l$, and by Proposition 1.6 we have $d(h \circ \theta_k \circ \theta_l, \gamma) < \epsilon/2$ implies that $d(h \circ \theta_k \circ \theta_l, \gamma) < \epsilon/2$. Therefore $d(f, g) < \epsilon$. This completes the proof.

2. Auxiliary results. This section contains lemmas needed for the construction of the inverse system in §3. We begin with a straightforward generalization of the fundamental examples from [K-L] to higher dimensions.

Fix an integer $m \geq 2$. For each integer n, fix a simplicial map $\gamma: S^{n-1} \to S^{n-1}$ of degree n. Define M_0 to be the mapping cone of γ, and L_0 to be the mapping cone of γ. We regard γ as formed from the disjoint union $S^{n-1} \times I \cup S^{n-1}$ by identifying $(x, 0) \simeq \gamma(x)$ for every $x \in S^{n-1}$, and L_0 as formed from the disjoint union $D^n \cup S^{n-1}$ by identifying $x \simeq \gamma(x)$ for every $x \in S^{n-1} = D^n$. Denote by $\delta_0 M_0$ the image of $S^{n-1} \times \{1\}$ in M_0, and by $\delta_0 L_0$ the image of S^{n-1} in L_0. Note that $\delta_0 M_0$ and $\delta_0 L_0$ are topologically $(m-1)$-spheres.

Lemma 2.1. A map $f: \delta_0 M_0 \to S^{n-1}$ extends to M_0 if and only if $deg(f)$ is divisible by n.

Proof. Let $g: S^{n-1} \times I \to M_0$ denote the quotient map. Suppose that f extends to a map $g: M_0 \to S^{n-1}$. Let $j: S^{n-1} \to S^{n-1} \times \{1\}$, $(x \in [0, 1])$ be defined by
Let \(f(x) = (x, t) \). Let \(q_0 \) denote the restriction of \(q \) to \(S^{n-1} \times \{ t \} \) and let \(q_t \) denote the restriction of \(q \) to the image of \(q_t \). We have \(f = q_0 + f_1 = q_1 + f_1 = q_0 + f_0 \). This, together with the fact that \(q_1, f_1, \) and \(f_0 \) are homeomorphic, implies that
\[
|\deg(f)| = |\deg(f_1 + q_1)| = |\deg(q_0 + q_0 + f_0)|
\]
\[
= |\deg(q_0 + q_0)| = |\deg(q_0)| = n|\deg(q_0)|.
\]
Therefore \(\deg(f) \) is divisible by \(n \).

Conversely, suppose that \(\deg(f) = kn \). Then \(f \) extends to \(M_n \) if and only if \(\gamma_k \gamma_k \) does. But the composite \(\gamma_k \gamma_k \rightarrow \prod_{z \in 1} S^{n-1} \times I \rightarrow S^{n-1} \) factors through \(M_n \), providing the extension. This completes the proof.

Lemma 2.2. For each \(n \), there are embeddings \(\varphi : M_n \rightarrow D^{n} \times D^{n} \) and \(\psi : L_n \rightarrow D^{m} \times D^{m} \) with the following properties:

(i) \(\varphi(M_n) \) and \(\psi(L_n) \) are disjoint, and

(ii) \(\varphi \) carries \(\partial_0 M_n \) homeomorphically onto \(S^{n-1} \times \{ 0 \} \), and \(\psi \) carries \(\partial_0 L_n \) homeomorphically onto \(\{ 0 \} \times S^{m-1} \).

Proof. Using the idea of [K-L], we define \(\varphi : M_n \rightarrow D^{n} \times D^{n} \) by \(\varphi([x, t]) = (t, (2-t/2)\gamma_0(x)) \). Next, extend \(\gamma_0 \) to \(\gamma_0 : D^{m} \rightarrow D^{m} \) by letting \(\gamma_0(z) = t_0 \gamma(z) \) for \(z \in S^{m-1} \), then define \(\psi : D^{m} \rightarrow D^{m} \times D^{m} \) by \(\psi(z) = (y, -\gamma_0(z)) \). It is easy to see these are embeddings. Moreover,

\[
\varphi(M_n) \cap \psi(D^{m}) = \emptyset.
\]

For suppose that \(\varphi([t, z]) = \psi(y) \). Then we have
\[
\frac{1}{2} + \frac{t}{2} = \left(\frac{1}{2} + \frac{t}{2} \right)\gamma_0(z) = \frac{1}{2} - \gamma_0(z) = \frac{1}{2} = t
\]
and hence \(t = 1 \) and \(y = z \). But then, \(\gamma_0(z) = -\gamma_0(z) = -\gamma_0(z) \), a contradiction. Note also that

\[
\varphi(M_n) \cap \psi(D^{m}) \subseteq S^{n-1} \times S^{m-1}.
\]

Now, define
\[
\psi((x, t)) = \left\{ \begin{array}{ll}
\varphi([x, 2t]) & \text{if } 0 \leq t \leq 1/2, \\
([x, (2-t)\gamma_0(x)] & \text{if } 1/2 \leq t \leq 1,
\end{array} \right.
\]
and
\[
\psi((y)) = \left\{ \begin{array}{ll}
\psi(y) & \text{if } 0 \leq |y| \leq 1/2,
\gamma_0\left(\left(\frac{|y|}{|y|} \right) y \right) & \text{if } 1/2 \leq |y| \leq 1.
\end{array} \right.
\]

It is easily checked that \(\varphi \) and \(\psi \) satisfy (ii). Also, we observe that

\[
\varphi(M_n) = \psi(M_n) \cup (\varphi(M_n) \cap S^{n-1} \times D^{m}),
\]

\[
\varphi(M_n) \cap S^{n-1} \times S^{m-1} = \psi_0(M_n),
\]

\[
\psi(L_n) = \psi(D^{m}) \cup (\psi(L_n) \cap D^{m} \times S^{m-1}),
\]

\[
\psi(L_n) \cap S^{n-1} \times S^{m-1} = \psi(D^{m}).
\]

Property (i) follows from (4), (5), and (i). This completes the proof of Lemma 2.2.

Suppose that \(Z \) is a finite polyhedron. Define \(F_Z \) to be the space of maps from \(Z \) to \(D^{m} \times D^{m} \).

Lemma 2.3. \(F_2 \) contains a countable dense set.

Proof. Choose triangulations \(K \) of \(Z \) and \(L \) of \(D^{m} \times D^{m} \). The set of simplicial maps from some barycentric subdivision of \(K \) to some barycentric subdivision of \(L \) is countable. By the Simplicial Approximation Theorem [S, Theorem 3.3.8], this set of simplicial maps is dense in the set of all maps.

Lemma 2.4. Let \(Z \) be an \(m \)-dimensional finite simplicial complex containing a subcomplex of \(Z^{n-1} \) which has a fixed identification with \(S^{n-1} \). Suppose that \(Z \) does not retract to \(S^{n-1} \). Let \(B \) be a closed m-ball in \(Z - Z^{n-1} \). Then there exists an integer \(n \geq 2 \) such that the identification space \(Z - \text{int}(B) \times M_n \), obtained by identifying \(\partial B \) with \(\partial_0 M_n \), does not retract to \(S^{n-1} \).

Proof. Orient \(\partial B \) arbitrarily. We will first show that either the set
\[
D = \{ d \mid \text{there is a retraction from } Z - \text{int}(B) \text{ to } S^{n-1}, \text{ whose restriction to } \partial B \text{ has degree } d \}
\]
is empty, or it consists of a single nonzero integer, or there are integers \(0 < a < b \) so that \(D = \{ a + nh \mid n \in Z \} \).

Write \(S \) for \(\partial B \) and \(Z_0 \) for \(Z - \text{int}(B) \). If \(f: Z_0 \rightarrow S^{n-1} \) is a retraction, define \(d(f) \) to be the degree of the restriction of \(f \) to \(S \). The degree of this restriction must be nonzero, otherwise \(f \) would extend to \(Z \) contrary to hypothesis.

We claim that if \(f \) and \(g \) are retractions from \(Z_0 \) to \(S^{n-1} \), with \(d(f) = r \) and \(d(g) = s \), then for any integer \(n \) there is a retraction \(h_n \) from \(Z_0 \) to \(S^{n-1} \) such that \(d(h_n) = r + n(s - r) \). Triangulate \(Z_0 \) and give each simplex an orientation. Choose a vertex \(s_0 \in S^{n-1} \). Since \(S^{n-1} \) is \((m,n)\)-connected, there are maps \(f' \) and \(g' \), homotopic to \(f \) and \(g \) respectively, that carry the entire \((m,n)\)-skeleton of \(Z_0 \) to \(s_0 \). For each \((m,n)\)-simplex \(x \) of \(Z_0 \), define \(c_0(x) = c_0(x) \) to be the degree of the restrictions of \(f' \) and \(g' \) to \(x \) (regarded as maps from \(x \) to \(s_0 \)). Now if \(Y \) is a subcomplex of \(Z_0 \) such that \(|Y| \) is homeomorphic to the \((m,n)\)-sphere, and \(|Y| = \sum c_0(x) \) is a fundamental class determining an orientation for \(Y \), where each \(c_0(x) \) is an \((m-1)\)-simplex of \(Z_0 \), then the degree of the restriction of \(f \) to \(Y \) is equal to \(\sum c_0(f)(x) \). Therefore

(i) \(f \) is any \(m \)-simplex of \(Z_0 \), then since the restrictions of \(f' \) and \(g' \) to \(\partial \) extend to \(f \), we have \(c_0(\partial f) = c_0(\partial f) = 0 \).
2. Since the restrictions of f' and g' to S are of degrees r and s respectively, we have $c_p((S^r)) = r$ and $c_p(S^s) = s$.

Since f' and g' are homotopic to retractions to S^{m-1}, we have $c_p(S^{m-1}) = 1$

Now for any fixed integer n, define $h'_n : Z^{m-1} \to S^{m-1}$ by sending the $(m-2)$-skeleton to s_0 and sending each oriented $(m-1)$-simplex σ by a map of degree $n(c_p(\sigma)) - (n-1)c_p(\sigma)$. By (1), h'_n extends to all of Z_n. By (2), the degree of h'_n on S is $ns - (n-1)r = r + n(r-s)$. And by (3), the degree of the restriction of h'_n to S^{m-1} is $n - (n-1) = 1$, hence by homotopy extension h'_n is homotopic to a retraction h_n. This completes the proof of the claim.

Assume that there is more than one possibility for the degree of the restriction to S of a retraction from Z_n to S^{m-1}. Let b be the smallest positive integer for which there are retractions f_1 and f_2 so that $d(f_1) - d(f_2) = b$. By the claim, each of the integers in the set $\{d(f_1) + nb : n \in Z\}$ is the degree of the restriction to S of some retraction; since 0 is not a possible degree, this set has the form described in the statement of Lemma 2.4. Since b was chosen to be minimal, no other degrees are possible. This completes the proof that the set D has the stated form.

To complete the proof of Lemma 2.4, choose a positive integer n which does not divide any element of D. Suppose f is any retraction of $Z - \text{int}(D)$ to S^{m-1}. Since the degree of the restriction of f to S is not divisible by n, Lemma 2.1 shows that f cannot extend to M_n.

3. The construction. In this section, we construct for each $m \geq 2$ an inverse system $X = (X_n, \varphi_{n,m})$ of finite m-dimensional polyhedra whose limit X has dimension m and such that X satisfies the hypotheses of Proposition 1.7 with $N = 2m$.

This will complete the proof of the Theorem stated in the introduction.

Fix an integer $m \geq 2$. Let $X_1 = D^m$. Using Lemma 2.3, choose a sequence $\alpha_{1,k} : X_1 \to D^m \times D^m$ such that $\alpha_{1,k} \circ \text{id}_{X_1} = \text{id}_{X_1}$.

Suppose inductively that $l \geq 1$ and there are chosen finite polyhedra X_1, X_2, \ldots, X_l and maps $\varphi_{l-1,j} : X_j \to X_{j-1}$ for $j = 2, 3, \ldots, l$. Let $\alpha_{l,k} : X_k \to X_1$ equal the identity map, and for $1 \leq j < k \leq l$, let

$$\alpha_{l,j} = \alpha_{l,j-1} \circ \varphi_{l-1,j-1} \circ \ldots \circ \varphi_{1,0} \circ \alpha_{1,1} : X_1 \to X_j$$

Suppose further that the following hold:

(i) For $1 \leq j < l$, there is a fixed sequence $\alpha_{l,j} : X_j \to D^m \times D^m$ such that $(\alpha_{l,j})_* = \text{id}_X$.

(ii) X_j contains S^{m-1}, X_j does not retract to S^{m-1}, and the restriction of each $\varphi_{l,j}$ to S^{m-1} is the identity map for $1 \leq j < k \leq l$.

(iii) $\dim(X_j) = m$ for $1 \leq j \leq l$.

(iv) For $j + k < l \leq l$, there is selected an imbedding $\psi_{l,j} : X_j \to D^m \times D^m$ such that $\psi_{l,j} \circ \alpha_{l,j} \circ \varphi_{l-1,j-1} \circ \ldots \circ \varphi_{1,0} \circ \alpha_{1,1} \circ \varphi_{1,1} \circ \ldots \circ \varphi_{1,0} \circ \alpha_{1,1} < 1/2^j$.

Now choose a dense sequence $(\alpha_{l,k})^m_{k=1}$ in \mathcal{F}_X. We wish to construct a finite polyhedron X_{i+1} and a map $\varphi_{i+1,j} : X_{i+1} \to X_j$, so that when we adjoin X_{i+1} to the collection X_1, X_2, \ldots, X_i, the corresponding properties $(1_{X_{i+1}}, (X_{i+1}), \beta_{i+1,j}, (1_{X_{i+1}})$, and $(\psi_{i+1,j})$ will be true.

Write Y_j^2 for X_j. Consider the finite collection of maps

$$\{\alpha_{l,k} \circ \varphi_{l,k} : j + k \leq l + 1\} \subseteq \mathcal{F}_X$$

Choose self-transverse piecewise-linear approximations $\delta_{l,j}^k$ of $\alpha_{l,k} \circ \varphi_{l,k}$ (see, for example, [R-S-I]) so that

$$\delta_{l,j}^k \circ \alpha_{l,j} \circ \varphi_{l-1,j-1} \circ \ldots \circ \varphi_{1,0} \circ \alpha_{1,1} < 1/2^j$$

No point in $D^m \times D^m$ is a double point for more than one $\delta_{l,j}^k$.

The double points $\{x_1, x_2, \ldots, x_n\}$ of the $\delta_{l,j}^k$ lie in the interior of $D^m \times D^m$. Each x_i arises from a pair of distinct points $\{p_i, q_i\}$ in Y_j^2 of the form $\delta_{l,j}^k$. Choose disjoint closed neighborhoods N_i of the x_i in $D^m \times D^m$ and pairwise disjoint neighborhoods P_i of p_i, and Q_i of q_i in Y_j^2 such that

$$\text{diam}(N_i) < 1/2^{j+2}$$

and N_i is homeomorphic to $B^m \times B^m$ where B^m is the m-ball.

For each r, if x_i is a double point of $\delta_{l,j}^k$ then $\delta_{l,j}^k$ carries P_i homeomorphically onto $B^m \times \{0\} \subseteq N_i$, and Q_i homeomorphically onto $\{0\} \times B^m$.

For each r, if x_i is not a double point of $\delta_{l,j}^k$ then there is a closed neighborhood $V_{r,j}^2$ of $\delta_{l,j}^k(x_i)$ in the interior of $D^m \times D^m$ such that $\text{diam}(V_{r,j}^2) < 1/2^{j+2}$, the preimage under $\delta_{l,j}^k$ of $V_{r,j}^2$ is P_i, and $V_{r,j}^2$ is homeomorphic to $B^m \times B^m$ so that $\delta_{l,j}^k$ carries P_i homeomorphically onto $B^m \times B^m$.

After slight further adjustment of the maps $\delta_{l,j}^k$, we may assume that the closed neighborhoods $V_{r,j}^2$ and $W_{r,j}^2$ are pairwise disjoint.

Consider $Y_j^2 - \text{int}(P_i)$ and let $S = \partial P_i \subseteq Y_j^2$. Now Y_j^2 does not retract to S^{m-1}, so by Lemma 2.4 there exists an n so that the space Z_n^2 obtained from $Y_j^2 - \text{int}(P_i)$ by attaching a copy of M_n using a homeomorphism of ∂P_i, M_n, with ∂P_i does not retract to S^{m-1}.

Next, form Y_j^2 by attaching a copy of L_n to Z_n^2 using a homeomorphism of ∂L_n with ∂Q_i. Again, S^{m-2} may be regarded as a subspace of Y_j^2, and Y_j^2 does not retract to S^{m-1} since any retraction of $Z_n^2 - \text{int}(Q_i)$ to S^{m-1} cannot have degree zero on ∂Q_i and so cannot extend to Y_j^2.

Consider the imbeddings $\phi : M_n \to B^m \times B^m$ and $\psi : L_n \to B^m \times B^m$ as given in Lemma 2.2. For each pair j, k with $j + k \leq l + 1$, define $\psi_{l,j}^k : Y_j^2 \to D^m \times D^m$ as follows. On the subspace $Y_j^2 - (P_i \cup Q_i)$, $\psi_{l,j}^k = \delta_{l,j}^k$. On M_n, if x_i is a singular point of $\delta_{l,j}^k$, then $\psi_{l,j}^k(x_i) = \varphi$, carrying P_i into N_i, while if x_i is a singular point of $\delta_{l,j}^k$. This completes the proof of the theorem.
then $\delta^{1}_{1} = \emptyset$, carrying P_{1} into V^{1}_{n+1}. On Q_{1}, the definition is similar using ψ. Coordinates are selected on these pieces so that these maps fit together. The singular image of each δ^{1}_{1} is contained in $(z_{1}, z_{2}, ..., z_{n})$. There is a projection map $\phi_{0,1}^{1}$: $Y_{1}^{1} \rightarrow Y_{2}^{1}$ defined by extending the identity map on $Y_{2}^{1} \cap (F_{1} \cup Q_{1})$ using maps from $(M_{2}, \partial_{2}M_{2})$ to $(F_{2}, \partial_{2}F_{2})$ and from $(L_{2}, \partial_{2}L_{2})$ to $(Q_{1}, \partial_{0,1})$. Since the diameters of N_{1}, W_{2}, 2^{1}, and V^{1}_{n+1} are all less than $1/2^{n+2}$, we have
\[
\phi_{0,1}^{1} = \partial_{0,1}^{1} \circ \phi_{0,1}^{1} + d(\phi_{0,1}^{1} \circ \phi_{0,1}^{1} + \phi_{0,1}^{1} \circ \phi_{0,1}^{1}) < 1/2^{n+1} + 1/2^{n+2} = 1/2^{n+1}.
\]

Repeating this procedure, starting with Y_{1}^{1} and replacing δ^{0}_{1} by δ^{1}_{1}, we obtain a sequence $Y_{1}^{1}, Y_{2}^{1}, ..., Y_{n+1}^{1}$ of m-dimensional finite complexes, corresponding maps δ^{1}_{j+1}: $Y_{j}^{1} \rightarrow Y_{j+1}^{1}$, and projections $Y_{j}^{1} \rightarrow Y_{j-1}^{1}$ such that the distance between $\delta^{1}_{j} \cup 1$ and the composite $\phi_{n+1}^{1} \circ \phi_{n+1}^{1} \circ \phi_{n+1}^{1} \circ ... \circ \phi_{n+1}^{1}$ is less than $1/2^{n+1}$. Put $X_{n+1} = Y_{n+1}^{1}$, $\delta^{1} = \delta^{1}_{n+1}$, and $\phi_{0,1}^{1} = \phi_{0,1}^{1} \circ \phi_{0,1}^{1} \circ \phi_{0,1}^{1} \circ ... \circ \phi_{0,1}^{1}$. Note that the restriction of $\phi_{0,1}^{1}$ to S^{n+1} is the identity, and δ^{1}_{n+1}: $X_{n+1} \rightarrow \delta^{1}$ is an imbedding. We have thus established the desired properties.

Now consider the inverse sequence $X = \{X_{i}, \phi_{n+1}^{1}\}$ just constructed. Let $X = \lim X$. Applying Proposition 1.2 to (3), we see that $\dim(X) \leq m$. On the other hand, Proposition 1.4 and (2) yield that $\dim(X) \geq m$. Therefore
\[
\dim(X) = m.
\]

Let us now check that the hypotheses of Proposition 1.7 are satisfied with $N = 2m$. Identify $D^{n} \times D^{m}$ with I^{2m}. Let σ and a map h: $X_{n+1} \rightarrow D^{n} \times D^{m}$ and $\delta > 0$ be given. Using (1), there is an a_{n+1}^{1}: $X_{n+1} \rightarrow D^{n} \times D^{m}$ such that
\[
d(a_{n+1}^{1}, h) < \delta/2.
\]

Choose l so large that $k + s < l$ and $1/2^{l} < \delta/2$. According to (4), there is an imbedding ϕ_{l}^{1}: $X_{l} \rightarrow D^{n} \times D^{m}$ such that
\[
d(\phi_{l}^{1}, a_{l}^{1} \circ \phi_{l}^{1}) < \delta/2.
\]

From (12), we get
\[
d(\phi_{l}^{1} \circ a_{l}^{1} \circ h, \phi_{l}^{1}) < \delta/2.
\]

Then (13) and (14) combine to yield the desired condition that $d(\phi_{l}^{1} \circ a_{l}^{1} \circ h, \phi_{l}^{1}) < \delta$.

References
