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Some m-dimensional compacta admitting a dense set of imbeddings
into R*"

by

Darryl MeCullough * and Leonard R. Rubin (Norman, Okla.)

Abstract, For each m > 2, an m-dimensional compact metric space is constructed for which
every map into 2m-dimensional Euclidean space can be approximated by imbeddings.

In [K-L], J. Krasinkiewicz and K. Lorentz explored the notion of a membrane
of a map, which generalizes the concept of a compactum. essentially imbedded
in I" introduced in [M-R]. Having discovered an error in the proof of our Lemma 2.7
in [M~R], they gave interesting examples of disjoint essential compacta in I" disprov-
ing the conclusion of Lemma 3.6, This left Theorem 3.7 of [M-R] in doubt, as
its proof relied heavily on Lemma 3.6.

Theorem 3.7 purported to characterize the dimension of compacta in the follow-
ing way: :

(%) Let X be a (metric) compactum; then dim(X) < m if and only if the set
of imbeddings is dense in the space of continuous maps from X to R™.

It turns out that Lemma 3.6 of [M~R] is true in the case m = 1. This is actually the
content of Theorem 3.1 of [M~R], which is reproved as Theorem 3.1 of [K-L].
It follows that the statement (+) is true for m = 1.

On the other hand, («) is false when m > 2; in fact, we shall prove in this paper
the following result:

Tunorem, For each m>2, there exists a compactum X with dim(X) = m
such that every map from X to R*™ can be arbitrarily closely approximated by
imbeddings,

In terms of mapping spaces, this says that the space #(X, R?®) of imbeddings
from X to R*" iy dense in the space (X, R*) of continuous maps to R, In this
paper, we will actually prove that the space of imbeddings to the 2m-cube I*™ is
dense in the set of maps to I*"; clearly this is sufficient to prove the Theorem.
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Each space X is constructed as the inverse limit of a sequence of finite polyhedra,
Crucial to the construction are certain pairs of disjoint essential compacta M,
and L, in the 2m-dimensional ball D"x D". The pairs, constructed and discussed
in § 2, are a straightforward generalization of the examples given in [K~L].

In § 1 we present the facts about inverse limits needed for the comstruction;
in particular, Proposition 1.7 shows that the inverse limit of an inverse system
(indexed by the natural numbers) of polyhedra will satisfy the conclusion’ of the
Theorem provided that each map of a polyhedron in the system can be approximated,
in an appropriate sense, by an imbedding of a polyhedron “farther out” in the
system. In § 2, we present the generalization of the examples from [K-L] needed
for the construction, in § 3, of an inverse system. satisfying the hypothesis of Pro-
position 1.7. Section 2 also contains some other lemimas needed in that construction.

The existence of the spaces we construct here raises many questions. For example,
what is the smallest » such that there is an m-dimensional compactum whose
imbeddings into R" are dense in the maps to R"? Can the property in the Theorem.
be charactérized topologically? Is this property related to the phenomenon of
m-dimensional compacta whose products have dimension less than 2m, whose
construction [B] is somewhat similar? We hope that these and related duestions
can now be approached.

1. Tnverse limits. Let X = {X}, 0, ;} be an inverse sequence of compact poly-
hedra X, and (continuous) maps g, ;: X;— X. Assume that each X) has a fixed
metric d = d. Let X = 1imX; then X is a metrizable compactum and we provide
it with a metric d = d,. Let g,: X— X, denote the projection.

PROPOSITION 1.1, If for all £>0, the set of ¢-maps from X to I" is dense in
G(X, 1Y), then &(X, 1% is a dense G, in G(X,I").

This proposition follows from the content of Chapter V, § 3 of [H-W]. The
next is 27.9 of [N].

PrOPOSITION 1.2. If dim(X,) < m for all k, then dim(X)< m.

PrOPOSITION 1.3. For every ¢>0 and for each compact ANR P and map
h: X—P, there exists k and a map f: X, —P such that d(fe g, h) <e.

For Propositi'on‘ 1.3, see (CR1) of Theorem 8 in Chapter I, § 5.2 of [M-S].

PROPOSITION. 1.4. Suppose. that for each k, ™' < X,. Suppose further that
forjzk, o |S™ "t =id: S™1— 8"~ and that X, does not retract to S™"*. Then
dim(X)zm. "

Proof. Clearly the sequence - § = {S™"*, g, |S™ 1: §™~!1r§"-1} is an

inverse sequence whose limit S™~* is a closed subspace of X. We need only show
that id: ™! —8™"1 does not extend to a map k: X— 8”1, Suppose, to the
contrary, that such a map / does exist.. Choose &> 0 such that if /1 §™* - §"~?
is any map and d(f, k) <e, then f = h. Apply Proposition 1.3 to get an index k
and a map g: X,—8""" with d(g o o, k) < e. Since all g, ;S are the identity
on §™7 %, the map g,|S™™* is also the identity. We conclude that d(g|s™ !, hlS™ 1) <,
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50 tl}gt g|S™"" =id on S™~*, The homotopy extension property then implies
that id: S"7% ~ S™"* extends to a map of X, to S™~*, contradicting the hypothesis.

From Theorem 5 of Chapter I, § 5.2 of [M-S], we obtain the folIoWing.

PROPOSITION 1.5. For each open cover % of X, there exists a ko and an open
cover V" of Xy, such that g ,'(¥) refines .

1t follows that if k> k, in the preceding, then the open. cover ¥~ 0 = Q,";fk(‘l’ )
of X is such that gg '(¥,) refines %. We therefore have the following.

PROPOSITION 1.6, For all &> 0 there exists ko such that if k =k, then g,: X~ X,
is an g-map. o '

PropOSITION 1.7. Let N be a fixed positive integer. Suppose that for each k and
for each map h: X, =1V and for each 6> 0, there exists 1>k and an imbedding
y: Xy I such that b o ori: XTIV is S-close to 9. Then &(X,I") is a dense G,
in ¢(X, 1. ‘

Proof. We shall show that if ¢, 5> 0 and f: X—I" is a map, then there exists
an ¢-map g: X~I" with d(f,g)<8. The result will then follow from Proposi-
tion 1.1.

Using Proposition 1.6, choose k, so that if & > kg, then g,: X - X, is an g-map.
Next, apply Proposition 1.3 to find k>k, and a map h: X,—I" such that
d(ho g, f) < /2. s ’

Choose /2 k and y as in the hypothesis so that y: X;—I" is an imbedding,
and ho gy, is (6/2)-close to y.

Since 12 k 2k, then g;: X— X, is an g-map, and since y is an’ imbedding,
then peg, is also an ¢-map. Using commutativity in the inverse system,
hoggyo@ = hogy,. Since d(ho gy, f)<8/2, it follows that d(he gxe 05, f)<d/2.

On the other hand, d(ho gy, y)<9/2 implies that d(ho gy 001,y @) <5/2.
Therefore d(f,y - @) <d. This completes the proof.

2. Auxiliary results. This section contains lemmas needed for the construction
of the inverse system in § 3. We begin with a straightforward generalization of the
fundamental examples from [K-L] to higher dimensions.

Fix an integer m > 2. For each integer n, fix a simplicial map y,: S™"*—»S™~!
of degree n. Definc M, to be the mapping cylinder of y, and L, to be the mapping
cone of y,. We regard M, as formed from the disjoint union S™ " *xJuS™"! by
identifying (x, 0) to p,(x) for every x& S™™*, and L, as formed from the.disjoint
union D®OS"-! by. identifying x to y,(x) for every xe S™"' = §D" Denote

. by 8o M, the image of $S"~*x {1} in M,, and by d,L, the image of S~ in L,.

Note that 8, M, and 9,L, are topologically (m=—1)-spheres.

Lemma 2.1, A map f2 8o M,—S™"! extends to M, if and only if deg(f) is
divisible by n. . -

Proof. Let ¢: $""! x I— M, denote the quotient map. Suppose that f extends
to a map g: M,~S""1 Let j: " 1—S""*x{t}, (te[0,1]) be defined by
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7{®) = (%, t). Let g, denote the restriction of g to ™~ x {t} and let g, denote the
restriction of g to the image of ¢,. We have fog o, = g(°¢; °J’1'ﬁ go ° 4o ©Jo. This,
together with the fact that g, j;, and j, are homeomorphisms, implies that

[deg(f)] = Ideg(f o g5 oj)l = |deg(go © 9o ° Jo)l

= |deg(g, ° 90)| = |deg(g0)| |deg(go)| = nldeg(g,)) .

Therefore deg(f) is divisible by ».

Conversely, suppose that deg(f) = kn. Then f o y, ¢ y,, so f extends to M,
if and only if y, o7y, does. But the composite yj o p, o Projgm-s: S™ 1 x - gn-1
factors through M,, providing the extension. This completes the proof.

LemMA 2.2. For each n, there are imbeddings ¢: M,— D" x D™ and v L, -
— D" x D™ with the following properties:

@) o(M,) and Y (L,) are disjoint, and

(i) ¢ carries 0, M, homeomorphically onto 8" *x {0}, and W carries 8,L,
homeomorphically onto {0} x §™~1,

Proof. Using the idea of [K-L], we define ¢t M,—D"x D" by ¢'([z, t]h
= (tz, (1/2+1/2)y(2)). Next, extend y, to y,: D™~ D" by letting 7,(tz) = tp,(z) for
zeS™71, then define y': D" D"x D™ by Y'(») = (y, —3(»). It is casy to
see that these are imbeddings. Moreover,

® o' (M) ny/'(D™ is empty .
For suppose that ¢'([t, z]) = y'(y). Then we have

_n t)

and hence ¢ =1 and y = z. But then, y,(z) = ~7(@) = —7,(2), a contradiction.
Note also that

= =% =1yl = ltz| = ¢

()} O'(M)NI(D"™x D™y §m=tx gu—1
(3) w'(Dm)na(D’"x.D"')gS'"“xS"'“i ,
Now, define
_ [0z, 2] ifo<r<1/2,
o@D {(z, @-2m() if 1211,
and
¥'(2y) ifogiy<1/2,
v(y) = y ¥
2=20y]) —, =y, (= i
(( 2 2, v,,(,y!)) it 12< 1yl <1
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It is easily checked that ¢ and i satisfy (if). Also, we observe that

“ P(My) = ¢'(M,)0(p(M,) (S™~1 x D)),
PM)NS" T xS"t = 49, M,)
&) VL) = Y (D" UL, N (D" x Sm1))

WL S x §m=t = (g pm).,

Property (i) follows from (4), (5), and (1). This completes the proof of Lemma 2.2.

Suppose that Z is a finite polyhedron. Define & z to be the space of maps from Z
to D™x D",

LemmA 2.3, %, comains a countable dense set.

Proof. Choose triangulations K of Z and L of D™ x D™, The set of simplicial
maps from some barycentric subdivision of X to some barycentric subdivision of L is
countable. By the Simplicial Approximation Theorem [S, Theorem 3.4.8), this set
of simplicial maps is dense in the set of all maps.

Lemma 24, Let Z be an m-dimensional finite simplicial complex containing
a subcomplex of Z™' which has a fixed identification with S™~1. Suppose that Z
does not retract to 8", Let B be a closed m-ball in Z—Z=, Then there exists an
integer n 2 2 such that the identification space (Z ~int(B))u M, obtained by identi-
JSying OB with 2, M, does not retract to "1,

Proof. Orient 8B arbitrarily, We will first show that either the set

D = {d|there is a retraction from Z—int(B) to S™ ! whose
restriction to 0B has degree d}

is empty, or it consists of a single nonzero integer, or there are integers 0 <a < b so
that D = {a+-nb| ne Z}. ’

Write S for 8B and Z, for Z—int(B). If f: Zs—S™"1 is a retraction, define
d(f) to be the degree of the restriction of f'to S. The degree of this restriction must
be nonzero, otherwise f would extend to Z contrary to hypothesis.

We claim that if f and g are retractions from Z, to ™%, with d(f) = r and
d(g) = s, then for any integer n there is a retraction 4, from'Z, to $™~* such that
d(h,) = r+4n(s—r). Triangulate Z, and give cach simplex an orientation. Choose
a vertex s, € S""!, Since $™"! is (m-—2)-connected, there are maps f* and g’
homotopic to f and g respectively, that carry the entire (m— 2)-skeleton of Z;, to s5.
For cach (m-1)~simplex o of Z,, define ¢;{(0) and c,(c) to be the degrees of the
restrictions of f* and g’ to ¢ (regarded as maps from (o, d0) to (S™™, 5,)). Now
if Y is a subcomplex of Z, such that | Y| is homeomorphic to the (m—1)-sphere,
and [¥] = Y g0, is a fundamental class determining an orientation for ¥, where
each g, is an (m~-1)-simplex of Z,, then the degree of the restriction of f'to Y is
equal to Y 8,¢0(0). Therefore ‘

(1) If 7 is any m-simplex of Z,, then since the restrictions of f’ and g’ to dt
extend to 1, we have ¢,(01) = ¢,(91) = 0,
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(2) Since the restrictions of /" and g’ to S are of degrees r and « respectively,
we have ¢ ([S]) = r and ¢, ([S]) = s.

(3) Since f* and g’ are homotopic to retractions to S~ *, we have c,.([S™"1])
= ¢ (15" = 1. |
Now for any fixed integer #, define kj: Z§"~ ) — 5™~ by sending the (2~ 2)-skeleton
to s, and sending cach oriented (m—1)-simplex ¢ by a map of degree
ne (0)—(n—1)ecp(0). By (1), b, extends to all of Z,. By (2), the degree of 4, on S is
ns—(n—1)r =r+n(s—r). And by (3), the degree of the restriction of A, to S™~1
is n—(n—1) = 1, hence by homotopy extension 4, is homotopic to a retraction 4,.
This completes the proof of the claim.

Assume that there is more than one possibility for the degree of the restriction
to § of a retraction from Z, to S™~*. Let & be the smallest positive integer for which
there are retractions f; and f; so that d(f;)—d(fy) = b. By the claim, cach of the
integers in the set {d(f;)+nb| ne Z} is the degree of the restriction to & of some
retraction; since O is not a possible degree, this set has the form described in the

statement of Lemma 2.4. Since b was chosen to be minimal, no other degrees are

possible. This completes the proof that the set D has the stated form.

" To complete the proof of Lemma 2.4, choose a positive integer » which does
not divide any element of D. Suppose f is any retraction from Z ~int(B) to S™~1,
Since the degree of the restriction of fto S is not divisible by n, Lemma 2.1 shows
that f cannot extend to M,.

3. The construction. In this section, we construct for each m>2 an inverse
system X = {Xj, g, ;} of finite m-dimensional polyhedra whose limit X has dimen-
sion mm and -such that X satisfies the hypotheses of Proposition 1.7 with N = 2m.
This will complete the proof of the Theorem stated in the introduction.

Fix an integer m>2. Let X, = D™ Using Lemma 2.3, choose a sequence
4y, ;= D" x D" such that {o; ;}%, is dense in Fy,

Suppose inductively that I>'1 and there are chosen finite polyhedra
Xy, X5, ..., X and maps g;-q, ;: Xy Xy for j=2,3,..,1 Let g 1 Xi— X,
equal the 1dent1ty map, and for 1<j<k<l, let

Qinke = Q1,41 °Qpa1, jr2 © o @ Qg it Xy X

Suppose further that the following hold;
(1) For 1<j<l, there is a fixed sequence ¢, ;i Xj— D™ x D™ such that
; {0, n}iz1 is dense in 37,{,
() X, contains §™7*, X; does not retract to S™", and the restriction of each
. ),k to S™1 is the identity map for 1 <j<k</
(3). dim(X) =m for 1<j<l.
(4) For j+k<i<g], there is selected an imbedding yj,k: Xy~ D" x D" such
that d(yj,x, a0 ;) < 1/2"
Now choose a dense sequence {o Jit 1 in &y,

icm
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We wish to construct a finite polyhedron Xi+; and a map g, ;44! Xy = X,
so that when we adjoin X4, to the collection X, X,, ... , X;, the corresponding
properties (l,+1), (2141)y Buay), and (4,4,) will be true.

Write Yy for X;. Consider the finite collection of maps

ool jrk<I+1} &y

Choose self-transverse piecewise-linear approximations 51 % of o e g, 1 (see, for
example, [R-S]) so that

(&h)] d(‘sj,lu oy, © Q1) < 1/2'*2,

(6) No point in D™x D™ is a double point for more than one 5"“

.» Z,} of the 55 liein the interior of D™ % D"’ Each z,

arises from a pair of distinct points {p,, g} in Y¢— (Y&~ Choose disjoint

closed neighborhoods N, of the z, in D™ x D™ and pairwise disjoint neighborhoods P,

of p, and Q, of ¢, in ¥y — (Y’)(’” U 50 that

(h  diam(N,) < 1/2"*? and N, is homeomorphic to B™x B™ where B™ is the
‘ m-ball.
(8)  Foreach r, if z,is a double point of 34 then 843 carries P, homeomorphlcally
onto B"x {0} =N, and Q, homeomorphmally onto {0} x B™. .
(9)  For each r, if z,is not a double point of 6%} then there is a closed neighborhood
e of 85%(p,) in the mtcrxor of D"‘xD"’ such that diam(V},) <1/2*2,
the preunagc under 8% ,k of Vi is P,, and Vj is homeomorphic to B" ><B”'
so that 8%} carries P, homeomorphically onto B™ x {0}.

(10)  For each r, if z, is not a double point of 85% then there is a closed neigh-,
borhood W}, of 8%%4g,) in the interior of D"'>< D™ such that diam (W7} ,)
<1212 the prelmage under 6% 7k of Wi is Q,, and W], is homeomorphic
to B"x B"™ so that 845 carries Q, homeomorphlcally onto {0} x B™.

After slight further adjustment of the maps 85 7 k> We may assume that the closcd

neighborhoods V, x and W], are pairwise disjoint.

Consider ¥¢—int(P,) and let § = dP; = Y4. Now Y; does not retract to

,S'”“l, so by Lemma 2.4 there exists an n so that the space Z! obtained from

j—int(P,) by attaching a copy of M, using a homeomorphism of d, M, with P
doc@ not retract to S™~1.

Next, form Y} by attachmg a copy of L, to 2} —int(Q,) usinga homeomorphlsm
of 0yL, with §Q,. Again, $"~! may be regarded as a subspace of Y7, and ¥} does
not retract to S™~?* since any retraction of Z4 —int(Q,) to S™* cannot have degree
zero on 9(Q; and so cannot extend to Y7,

. Consider the imbeddings ¢: M,— B"x B™ and l// L,~B"xB™ as given in
Lemma 2.2, For each pair j, k with j+k </ + 1, define 8% }: ¥{—» D" x D" as follows.
On the subspuce Ya—(Py U Qy), shi 1k . On M,,, 1f z, is a singular pomt of
849, then 8%} 7k = @, carrying Py into Ny, whlle if z; is not a singular -point of 5, x>
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. then 6%} = @, carrying P, into V};. On @y, the definition is similar using . Co-
ordinates are selected on these pieces so that these maps fit together. The singular
image of each 6%} is contained in {z,, 23, ..., z,}. There is a projection map gf,,:
Y} — ¥ defined by extending the identity map on ¥§—int(P, U @,) using maps from
(M,, 8, M) to (P,, 0P,) and from (L,, 8,L,) to (@, 8Q,). Since the diameters

of Ny, W}, and V}, are all less than 1/2'*2, we have

d@'j,k, G x° @10 Q{),l) < d(él’,}n 55",?; o QB,]) +d(5lj',?c e Q:J,l s %e 005,10 QS.L)
<1242 4122 = 1/21+1 )

Repeating this procedure, starting with ¥{ and replacing 5% by 8% 1, we obtain
a sequence Y{, ¥, .., ¥, of m-dimensional finite complexes, corresponding
maps 8%%: Y{-» D"x D" and projections g}, ;¢ ¥i'~ Yi_ such that the distance
between 6%% and the composite o, 005, °00,1 © 012 ° 0001, is less than
12" Put Xpy = Y08 = 83%, and onues = 06 00h20 0 0hey,,. Note
that the restriction of gy ;.. to $™1 is the identity, and y57}: X4y — D™ x D™ is
an imbedding. We have thus established the desired properties.

Now consider the inverse sequence X = {X,, g, ;} just constructed. Let
X = limX. Applying Proposition 1.2 to (3,), we see that dim(X) < m. On the other
hand, Proposition 1.4 and (2;) yield that dim(X)>m. Therefore

(un dim(X) =m.

Let us now check that the hypotheses of Proposition 1.7 are satisfied with
N = 2m. Identify D"xD" with I* Let k and a map A: X~ D"x D" and
6>0 be given. Using (1,4,), there is an ag ,: X, — D" x D™ such that

(12) (e By <52

Choose /so large that k+s < /and 1/2' < §/2. According to ( 4, there is an imbedding
Yi.s7 X;-+ D™ x D™ such that ‘

(13) A(Pies tis © Q12) < 92
From (12), we get
(14 d(oy, 0 Quts o gyp) <6/2.

Then (13) and (14) combine to yield the desired condition that d(v},',, hogi)<d.
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