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Index pairs and the fixed point index
for semidynamical systems with discrete time

by

Marian Mrozek (Krakéw)

Abstract. We show that index pairs of an isolated invariant set of a dynamical system with
discrete time exist but, contrarily to the continuous case, they do not provide a homotopic invariant
of the isolated invariant set. Nevertheless the relationship between the fixed point index and index
pairs extends from the continuous case to the discrete case.

Introduction. Since the publication of the paper on isolated invariant sets by
C. Conley and R. Easton [6] a series of articles appeared in which various kinds of
closely related topological indices of isolated invariant sets were constructed (the
cohomological index, the homotopy index, the Morse index). The results of these
articles, usually designated as the Conley index theory because of the significant
role played by C. Conley in its development, has become an important tool in the
qualitative study of differential equations (see [1], [7], [8], [9] for instance). The
prime root of this theory is the famous Wazewski Retract Theorem (see [33] or
[17, Ch. X, §§ 2-3]). The foundations of the theory, in a locally compact setting,
were established in the papers of R. Churchill [4] and J. Montgomery [21] (the
cohomological index), in the book [5] of C. Conley (the homotopy index and the
Morse index) and in the paper of H. Kurland [19] (the Morse index). Later, K. Ryba-~
kowski [27], [28] generalized the theory to the case of a non-locally compact space,
which admitted direct applications in partial differential equations and functional
djfferential equations. The more recent papers concerning the development of the
Conley theory are [30] and [15]. The paper [24] contains some work towards genera-
lizing the Conley theory to the case of non-compact invariant sets.

As pointed out by K. Rybakowski in [27, § 4, Remarks] there is a series of simi-
larities between the homotopy index and the fixed point index (for the definition
of the fixed point index see [10], [11, Ch. VII, § 5] or [16]). The fixed point index is
defined for an isolated set of fixed points. It is used to establish the existence of fixed
points in a similar way as the Conley index is used to establish the existence of in-
variant sets. Like the homotopy index, the fixed point index satisfies the additivity
property and the homotopy property. °
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The aim of this paper is to show that the above similarities are'not only formal.
First we show that the notion of index pair, which plays the fundamental role in the
construction of the homotopy index, can be extended to the case of a discrete time
semidynamical system given by a continuous map and the theorem on existence of
index pairs can be proved. Recently J. Robbin and D. Salamon [26] obtained inde-
pendently a similar result for diffeomorphisms. We give examples that the homotopy
type [M/N, {N}] of an index pair (M, N) depends not only on the invariant set
inside M but also on the pair (M, N). This shows that there is no direct way of
carrying over the Conley theory from the continuous to the discrete case, though
indirect generalization are possible (see Robbin and Salamon [25] and the author’s
forthcoming paper [26]). The discrete version of the Conley theory is interesting in
applications to difference equations (see [S, § IV, 8.2]).

We show that the formula expressing the fixed point index of the translation
operator of the flow in terms of the Euler characteristic of the index pair — known in
the case of special index pairs called isolating blocks (see [22], [23], [32]) - does
bhave a counterpart in the discrete case. Namely, we will show that the fixed point
index of a given mapping in a neighborhood of an isolated invariant set K equals
the Lefschetz number of a certain map associated with every index pair of K. This
enables us to generalize the results concerning the fixed point index in [21], [22]
and [28] to the case of semiflows with compact attractor on arbitrary ANR’s.

The results of this paper are closely related to some similar results of Fenske
and Peitgen in [12] and of Fenske in [13] and in some sense generalize those results.
The formulae on fixed point index in [12] and [13] concern ejective fixed points,
whereas analogous formulae in this paper apply to isolated invariant sets, which
allow simultancous attraction and repulsion and include ejective fixed points as
a very special case.

Similarly to {12] we consider in this paper a broad class of maps of compact
attraction (seethe definition below) in order ro ensure applications in non-locally
compact spaces.

Acknowledgments. The author expresses his gratitude to Professors L. Gérnie-
wicz and 8. Sedziwy for their valuable remarks during the preparation of this paper
and to Dr. R. Srzednicki for his useful suggestions. Special thanks are to the anony-
mous referee for pointing out several omissions and mistakes. His comments sub-
stantially enhanced the presentation of this paper, especially the presentation of the
proof of Theorem 2.

1. Preliminaries. The set of real numbers will be denoted by R and the set of
natural numbers by N. Z~ and Z* will stand for non-positive and non-negative
integers respectively. (X, ¢) will denote a fixed metric space. For a subset 4 of X
we will use the notation int 4, cl4, bd A for the interior, the closure and the boundary
of A 'respectively. If f maps an open subset U of X into X, , then Fix f will stand for
the set of fixed points of f. The homotopy type of a pointed space (X, x,) will be
denoted by [X, x,]. The singular homology functor with rational coefficients on the
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category of topological pairs will be denoted by Hy. H,(f) for a map f: (X, 4) >
— (Y, B) will be briefly denoted by f,. Assume Y is another metric space. The
map f: X - Yis said to be compact iff there is a compact set K < ¥ such that f(X) < K.
It is said to be locally compact iff for every point x € X there exists a neighborhood U
of x such that f|y is compact. The map f: X— X is of compact attraction iff it is
locally compact and there exists a compact 4 < X such that for every xe X

Ad{f'x)neZ )} nd # & .

We have the following easy to prove

Remark 1. Assume f: X — X is of compact attraction. Then Fix fis compact.
If Y= X is closed and f(Y)< Y, then f|y: Y- Y is also of compact attraction.

Assume ¢ = {p;} is an endomorphism of a graded vector space E over the field
of rational numbers and N(¢) := (J {¢p™"(0)| n = 1, 2, ...}. Recall (see [12]) that ¢
is a Leray endomorphism iff E' := E[N(¢p) is of finite type. For such a ¢ we define
its trace tro by tro := tre’, where ¢’: E'—E’ is an induced map. We define also
the Lefschetz number of ¢ by

46)i= 5, (-1)'tr0,

If f: (X, )= (X, 4) is a continuous map of a pair (X, A) of topological
spaces into itself such that f is a Leray endomorphism, then f is said to be a Lefschetz
map and in such a case the Lefschetz number of f is given by A(f) := A(fa).

Remark 2 (see [3], (1.3)). If ¢ and ¢ are two endomorphisms of graded vector
spaces E and F respectively and there exists morphisms #: E~F and g: F—»E
such that ¢ = ghand ¥ = hg, then ¢ is a Leray endomorphism iff y is a Leray endo-
morphism and in that case A(p) = A(})). Note that the assumptions of this remark
are in particular satisfied if there exists an isomorphism g: F— Esuch that pg = gy,
ie. if ¢ and ¥ are copjugate.

For a map f: (X, 4)— (X, 4), fyx: X— X and f,: A— 4 will denote the re-
strictions of f to (X, @) and (4, @) respectively. The following remark follows
directly from Remark 1, Lemma (4.1) in [12] and Theorem 2.1 in [14].

Remark 3. Assume X and A are metric ANR’s and 4 is a closed subset of X,
If f: (X, 4)— (X, 4) is a map of compact attraction then, fy, f, are Lefschetz maps
and

A(f) = A(f)—A(f) -

The notion of the Lefschetz number is strongly related to the notion of the
flxed point index. The fixed point index is an integer-valued function Ind defined
on a certain subclass of all admissible maps, i.e. continuous maps f: U— X, where U
is open in X and Fix f is compact (see [10] for the detailed axiomatic definition of
the fixed point index). We will use the fixed point index defined on the class of all
locally compact admissible maps f: U— X, where X is a metric ANR. The existence
of such an index is proved in [16], Theorem (12.1).
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Assume U is open in X and f: U- X is locally compact. We will say that an
open set V' X isolates the Jfixed points of fiff Fix fn V is-compact. In such a situa-

tion | is.a locally compact admissible map, thus Ind(f|,) is defined. It will be
convenient to introduce the notation

ind(f, V) := Ind(f|,) .

We give below three propertics of the fixed pomt index which will be useful
for us. For the list of all properties of the fixed point index of locally compact
admissible maps see [16]. (X and X’ denote metric ANR’s.)

(1) (additivity). Assume f: U— X is a locally compact map, Vi, V, and V
isolate the fixed points of £, VnFixfs V,u¥V, sV, VinV,nFixf= &. Then

ind(f, V) = ind(f, V) +ind(f, V).

(2) (commutativity). Assume U< X and U’'<S X’ are open and [ U-»X'

andg: U’-» X are continuous. If fis locally compact and g fis admissible then both fo
and gf are admissible, locally compact and

ind(fg, g7H(V)) = Ind(fy) = Ind(gf) = ind(gf, f~(U") .

(3) (normalization). The normalization property in the form quoted here is
proved in [12], (3.5). If f* X — X'is a map of compact attraction, then fj is a Leray
endomorphism and -

ind(f, X) = A(f).
We note that the following remark is a straightforward consequence of (1).

Remark 4. Assume f: U— X is locally compact and VN Fixf = & for some
open. V. Then ind(f, V) = 0. If V, and ¥, isolate the fixed points of f and
VinFixf= V,nFix f then

ind(f, V1) = ind(f, V).
2. Index pairs for discrete dynamical system. Let (X, @) denote a fixed metric

space. We will consider a fixed continuous map f: X— X.
The sequence o: Z~ —X will be called the left solution to S through x iff
f(e(i—1)) = a(i) for every ic Z~ and ¢(0) = x.
For a given set N X the sets
Inv*N:={xeX| VieZ* f{(x)e N},
Inv™ N := {xe X| do: Z ~ >N a left solution to f through x},
InvN = Inv" NnInvt N

will be called the positively invariant, the negatively invariant and the invariant part
of N (relative to f) respectively. We will say that N is positively invariant, negatively
invariant or invariant iff N = Inv*N, N = Tnv"N, N = InvN respectively.

The following three remarks are easy to prove.
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Remark 5. InvV is invariant, i.e. Inv(InvN) =
subset of N.

Remark 6. If N is closed then Inv*' N is closed.

We will say that a closed set N < X satisfies the Rybakowski condition iff for
every pair of sequences {x,}r=y SN and {m,};iz; =Z" such that

{fix)i=0,1,...,m}cN

and m,— oo, the sequence {f™(x,)}.=: Is precompact, i.e. relatively compact.
Remark 7. If N satisfies the Rybakowski condition then Inv™ N and InvN
are compact. If {x,} and {m,} satisfy the assumptions of the Rybakowski condition
then every cluster point of {f™(x,)} belongs to Inv™ N. :
Assume K is a closed invariant set. If X is the largest invariant set in some its.
neighborhood N, then K is called an isolated invariant set and N is said to isolate K.
If N is closed, it is called an isolating neighborhood for K. If additionally N satisfies
the Rybakowski condition then N is said to be an isolatig neighborhood of Ryba-
kowski type. If an isolated invariant set admits an isolating neighborhood of Ryba-
kowski type, then it is called the isolated invariant set of Rybakowski type. Notice

Inv N. It is the largest invariant

-

“that if K is an isolated invariant set then Fix Fn K is an isolated set of fixed points.

We have the following

THEOREM 1. If f: X — X is a locally compact map then every compact isolated
invariant set of fis of Rybakowski type.

Proof. Let X be a compact isolated invariant set of /' and M be an isolating
neighborhood for K. For every p e K choose a closed neighborhood W,= M of p
such that f restricted to W, is compact. Using compactness of K find a finite collec-
tion P of points in K such that K& W := | {W,| p e P} = M. Then W is obviously
an isolating neighborhood for K and f (W) < K, for some compact K; & X. Assume:
{x}&, =W and {m,}:2, satisfy the assumptions of the Rybakowski condition.
Then, for almost all n we have f™(x,) = f{ ™ (x,)) € K;. This shows that the
sequence {f™(x,)} is precompact, which finishes the proof. M

DEFINITION 1. We will say that the function L: E— [0, co) grows along trajec-
tories of f on E iff

“ L(x)>0, f(x)e E=L(f(x)>L(x).
Similarly we will say that L: E-»[0, o] decreases along trajectories of f on E iff
L(x)>0, f(x) e E=L(f(x)) <L(x).

DEFINITION 2. Assume K is an isolated invariant set, U is an isolating neigh-
borhood and ¢, y: U~ [0, wv]. We will say that the pair (¢, y) is a Lyapunoy pair
Jor K iff

e ¢ decreases and y grows along trajectories of f on U,

© ks (0010,
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(7) for every neighborhood W of K there exists an & > 0 such that the set
H(e, 9,7) = {xe Ul p(x)<e,y(x)<¢e}
satisfies the condition
clH(, 0, 9)=W.

We will say that (¢, y) is a continuous Lyapunov pair for K iff (¢, y) is a Lyapunov
pair for X and both ¢ an y are continuous.
We have the following

THEOREM 2. For every non-empty isolated invariant set K of Rybakowski type

there exists an open neighborhood V of K, which admits a continuous Lyapunov pair
for K.

The proof of the above theorem is modelled on the proof of a similar theorem
on the existence of isolating blocks for flows by K. Rybakowski (see [27], Theo-
rem 2.1). However, sogge changes are necessary to cope with the discontinuity
caused by the discrete character of the semidynamical system f. For this reason we
include the proof but postpone it to the last section.

DerFINITION 3. Assume K is an isolated invariant set and (M, N) is a pair of
closed subsets of X such that N = M. The pair (M, N) will be called an index pair
for K or briefly an index pair iff the following conditions are satisfied:

(8) xeN, f(x)e M=>f(x)eN,
) xeM, f(x)¢ M=>xeN,
(10) K = Inv(M\N) cint(M\N) .

‘We will say that the pair (M, N) is a weak index pair for K iff it satisfies (8), (9)
and

(10) Fix focl(M\N) < int(M\N) .
© We note the following obvious
Remark 8. Every index pair is also a weak index pair.

We will say that the index pair (weak index pair) (M, N) is regular iff the follow-
- ing conditions are satisfied:

(11)  there exists a set U/ open in M such that N< U and f(I\N) € N,
(12) A{f(NNM)Ncl(M\N) = & .
Similarly to the case of a semiflow we have the following

‘THEOREM 3. Assume that K is a non-empty isolated invariant set which admits
a continuous Lyapunov pair on some neig/zborhood of K. Then for every neighborhood U
of X there exists a regular index pair (M, N) for K such that M< U.
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The proof of Theorem 3 presented below depends essentially on Theorem 2.
A much shorter proof of Theorem 3 in the smooth case can be found in [26] and
in the locally compact case in [25].

Proof. Let (p,7): V—=[0, 0]x[0, 0] be the continuous Lyapunov pair
for K. Put W= UnVnf Y ¥)nf V). Find &> 0 such that cl H(2e, ¢, ) S W
and denote M:={xeV| o(x)<Se,y(x)<e}, N:={xeM|y(f(x))=s}
H := H(Q2e, ¢, 7). We will show that (M, N) is a regular index pair for K. It is easy
to see that M, N are closed.

Assume xe N and f(x)e M. Then y(f(x)) = ¢ and we get from (4) that
YW f(SG)) >(f(x) >, i.e. f(x) € N. Assume in turn that xe M and f(x) ¢ M.
Then ¢(f (%)) < ¢(x) < &, thus it must be y(f(x)) > & wich means x € N and (8), (9)

"are proved.

We have K = InvK<Inv(M\N)cInv(V) = K and we get from (6) that
Kc{xe V| y() <s o(x) <e, 7(f(x) < &} Sint(M\N), which proves (10).

Put U, := Mn{xe W| y(f¥x))>¢}. Then U, is open in M. Take xe N.
Then y(f2(x))>y(f(x)) > e, hence xe U,, which shows that N< U, Assume
xe UNN. Let y =f(x). Then o())<o()<e and y(3) = y(f(x)<s, thus
ye M. We have also y(f(3) = 7(f*(x)) > ¢, hence y € N. This proves (11).

In order to prove (12) assume it is not true. Then there exists
y e cl(M\N)nel( F(NNM)

L
and consequently y(f(»))<e and y(3) =& Thus y(f(»))>7(») =e, a contra-
diction. M

Since (@, ©) is obviously a regular index pair for @, from the above theorem
and Theorems 1 and 2 we get the following corollaries:

COROLLARY 1. For every isolated invariant set K of Rybakowski type and every
neighborhood W of K there exists a regular index pair (M, N) such that MS W
and K = Inv M.

COROLLARY 2. Every compact isolated invariant set K of a locally compact map
(in particular of a map of compact attraction) admits regular index pairs arbitrarily
close to K.

3. Two examples. The theorem on the existence of index pairs for isolated
invariant sets of flows forms the basis for the construction of the theory of homo-
topic index for isolated invariant sets (cf. [5], [27]). One of the essential theorems
of the theory asserts that the homotopy type of the pointed space (M/N, {N}) of -
any index pair (M, N) depends only on the isolated invariant sets inside M. The
following examples show that the similar theorem in case of a discrete dynamical
system is not true,

ExAMPLE 1. Let X = Ru{o}u{—oo} and f: X— X be given by
L x+l for xe R,
1) = {x otherwise .

~ Fundamenta Mathematicae 133/3


Artur


186 ’ M. Mrozek

Then f is continuous. For every neN put N, := [r, n+1/2] and
M,:=U{N]i=0,1,2,..,n}.

One can easily verify that for every ne N (M,,, N,) is an index pair for f such that
M\N, isolates the empty set. On the other hand [M,/N,, {N,}] equals the homotopy
type of a pointed set of n elements.

ExampLE 2 (Smale’s Horseshoe). Assume X = S? = R*u{co}, I:=[0,1)
Q:=IxIS X. Put ,

C, = {ay /54, /5" 05"t 0, {1,3},i=1,2,...,n,0el}c],

N, = Ixcl(ING,). b
Assume f: X— X is a continuous map such that f maps two rectangles R, and R,

linearly onto rectangles S, and S, as indicated in Fig. 1. Assume also that f maps
.Q\(Ro UR)) into. X\Q and XA\ Q into X\(SoU S;). (Compare [31] or [18].) Then

fla) flb) fic') fd)

4 N .
at ]
R
d' ! ¢
. , sio|s| .
R,
d 0 c
fld} fle) #ApY Flz)
Fig. 1

K:=InvQs N{C,xC,J n=1,2,..}. One can easily verify that for all neN
(Q, N,) is an index pair for K and that [Q/N,, {N,}] equals the homotopy type of
the wedge sum of 2" copies of a pointed circle.

4. The fixed point index and the index maps. By the above examples we cannot
expect that it is possible to extend directly the Conley index theory to dynamical
systems with discrete time. Nevertheless some analogues of Conley index in the
discrete case have been constructed recently (see [25] and [26]). The aim. of this
paper and this section, however, is to show that index pairs carry information about
the fixed point index.

We begin with the following

Levma 1. Assume (M, N) is a weak regular index pair for f. Then f maps the
pair (M, N) into the pair (M Uf(N), NUf(N)) and the inclusion i, y: (M, N)—
—(MUf(N), NUf(N)) induces an isomorphism in homology.

. ‘Proof. Assume yef (M), i.e. y = f(x) for some xe M. By (9) f(x)¢ M
implies x € N, hence y e MU f(N), which proves the first part of the lemma. The
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second part follows easily from (8), (12) and from the excision property of homo-
logy theory (see [11], IIL. 7.4). &

Let fyry denote the mapping f considered as a mapping of the pair (M, N)
into the pair (MUf@V), Nuf (V). The above lemuna enables us to define an
endomorphism Iy y: Hy(M, N)=Hy(M,N) by Lyy = (st o (fuws We
will call this map the index map of the index pair (M, N).

The main result of this paper is the following

THEOREM 4. Assume X is a metric ANR and f: X— X is a map of compact
attraction. If (M, N) is a regular weak index pair for f and M, N are ANR’s then Iy x
is a Leray endomorphisms and

ind(f, int(M\N)) = Ayn) -

A similas formula can be found in [12], Corollary (4.4). It concerns, however,
a very special case of an ejective fixed point.

COROLLARY 3. Under the assumptions of the above theorem, if additionally fun
is homotopic 1o iy y, then the relative Euler characteristic of the pair (M, N) exists
and i

ind(f, int(M\N)) = x(M, N).

Note that in case of f being a translation operator of a semiflow one can always
find index pairs (M, N) for which fiy is homotopic to i . We omit details,
because they are based on the technique of isolating blocks not discussed here.

Corollary 3 generalizes Theorem 4.1 in [22], Theorem 2.1 in [23] and Theo-

" rem 4.4 in [32], where analogous results are proved, in the locally compact setting,

for special index pairs called isolating blocks. Similar formulae, concerning the very
special case of repulsing isolated invariant sets can be found in papers of Fenske
and Peitgen [12], Proposition [5.3] and Fenske [13], Theorem 1. In the smooth
setting the counterpart of Corollary 3 for Hopf index is the main result of
Mec Cord [20]. Also the result of Rybakowski for gradient vector fields ([29]
Theorem 1), which expresses the Brouwer degree of the field in terms of Betti
numbers of Conley index can be viewed, by [32] Theorem 5.1, as a very special case
of Corollary 3.

In course of the proof of ,Theorem 4, we will need the following lemma, which
is closely related to Lemma (4.3) in [12] .

LEMMA 2. Assume X, A are metric ANR’s and A is a closed subset of X. If
i (X, A)—(X, A) is a map of compact attraction, such that there exists some open
neighborhood U of A mapped by f into A, then

ind(f, X\d) = A(f)—-A(f) = A) -
Proof. Put ¥ := X\4, W:= X\U. We have then

FixfaV = FixfnW, FixfnU=Fixfnd, Fi}(fnUHV:Q.

[
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This shows that U and ¥V isolate the fixed points of f and, by (1) and 3),
A(f) = ind(f, X) = ind(f, U)+ind(f, ¥). Let i: 4— U be the inclusion. Since
f(Uyc 4, we get from (2) and (3)

ind(f, U) = ind(iofly, U) = ind(fly o i, Und) = ind(f4, 4) = A(f) .

Thus ind(f, X\4) = A(f)—A(f,). The remaining equality follows from Re-
mark 3. &

5. Proof of Theorem 4. Let I := [0, 1]. Put
Yi= Mx{0}UNxTUXx{1}.

Let U be an open neighborhood of N in M such that f(UN\N)SN. Let
W= (M\U)x{0} and Z:= NxJuXx{l}. W and Z are closed and disjoint
subsets of Y. Let a: ¥— I be continuous and such that «ly = 0, &, = 1. We will
show that the mapping g given by g(x, £) := (f(x), «(x, £)) maps ¥ into Y.

Indeed, if (x,f)e W then xe M\N, thus by (9) f(x)e M, ie g(x,1)
=(f(),00e Mx{0}c Y. If (x,1)eZ then g(x,1) = (f(x), Dexx{l}g¥.
I (x,1) e YN(WUZ) then xe UNN, thus f(x) e N, i.e. g(x, 1) = (f(x), a(x, 1)
eNxIcY. .

In fact, we proved even more, namely that g is a mapping of the pair (¥, Z)
into itself. We will prove that g is a map of compact attraction. Let (x, NeY.
There exists a neighborhood ¥ of x and a compact K< X, such that fV)ek.
Then g(V'xI) < Kx 1, which shows that g is locally compact. Assume A is a com-
pact set in X such that for every x e X cl{ f"(x)| ne N}nAd +# @. Put A" 1= AxI
and take (x, #) € Y. Then g*(x, f) = (f*(x), 5,) for some s, e I. Let

yeo{fYx)| ne N}n4.

Choose a sequence {n}i= S N such that f™(x)—y and a subsequence {re} S {8}
such that r,—r for some rel Then (y, ryecl{g’(x,t) neN}n4'n Y. Since
A'nY is compact, we proved that g is of compact attraction.

Put @ := NxIL P:= Mx{0}uQ, P and Q are closed subsets of Y, Qis an
ANR by Theorem (7.2) in [2]. Since Mx{0}, Nx {0} are ANR’s and
Mx{0}n Q = Nx {0}, we infer from Theorem (6.1) in [2] that P is also an ANR.
An easy computation shows that (P, Q) is a regular index pair for g. Put
R:=int(M\N), R :=int(M\N)x{0}, f: Rox—(x,0)eR, ¥ = YR,
V' := V'x{0}. Then ' ,

FixfAR = FixfnV, FixgnR = FixgnV’
and Remark 4 together with (2) applied to g o Bly and B|,-1 show that
(13) ind(f, int(M\N)) = ind(g, int(P\Q)) .

Observe that, by Theorem (6.1) in [2], Z is an ANR, because N x I, Xxx{1}
and (NxI)n(Xx {I})“= Nx{1} are ANR’s. Similarly ¥ is an ANR, because
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Y =ZuMx{0}), Zn(Mx{0}) = Nx{0}. Taking U’ := (Ux{0})UZ, an easy
computation shows that U’ is an open neighborhood of Z, mapped by g into Z.
Thus it follows from Lemma 2 that g, is a Lefschetz map and, since PNQ = \Z,
we have

(14) ind(g, int(P\Q)) = ind(g, int(¥\Z)) = A(gs) .

Consider now the following commutative diagram

Hy(Y,Z) ——%——— H(Y,Z) «—= Hy(Y, Z)
i J1x Jax ) Jix

Hy(P, Q) —222 > H,(Pug(Q), Qug(Q)<—2— Hy(P, Q)
Pix Pax Pix

Hy(M, N)—L2% s g (MUF(N), NOf (N)) <222 F.(M, N)

in which j;: (P, @)~ (Y, Z) and j,: (Pug(Q), Qug(Q))—(Y,Z) are inclusions
and

Pyt (P: Q)B (x= t)"’JCE(M, N)’

P2t (PUG(Q), QUG(Q)3 (x, 1)~ x e (MUF (N), NUF(N))
are projections. Since cl(Xx {IN\P)S Xx{l}sintZ, we see that j; is excision,
thus f, is an isomorphism. By Lemma 1 applied to (P, @), (p, o)« is an isomorphism
hence j, is an isomorphism. This shows that g, and Ir g are conjugate and since g
is a Lefschetz map, we see by Remark 2 that Ip o is also a Lefschetz map and

13 A(gs) = A(lp,Q) -

One can easily verify that the mapping (M, N) 3 x— (x, 0) € (P, Q) is the homotopy
inverse of py, thus pj is an isomorphism. Since (ip,g)s and (iy,y)« are isomor-
phisms, we see that also p,y is an isomorphism. This shows that Jyy and Ip g
are conjugate and since Ip o is a Lefschetz map, so is Jyy and

16) A(IP, o= A(IM.N) .
The assertion follows now from (13), (14), (15) and (16). ®

6. Proof of Theorem 2. For a subset 4 € X define the mapping
. o0 ifVieZ" fix)ed,
0gr A3%> max{ne Z"| fi(x)ed for i=0,1,..,n} otherwise.

We shall need the following two easy to prove remarks.

Remark 9. If 4 is open then o, is lower semi-continuous (Ls.c.) and at every
point x of discontinuity of w,, fo4®**(x) e bd 4. If A is closed then w, is upper
semi-continuous ‘(u.s.c.) and at every point x of discontinuity of w,, f(x) ebdA4
for some Ie{0,1, ..., 04(x)}. If Uis open and N = clU then wy < wy and if for
some x€ U wy(x) = wy(x) then both wy and wy are continuous at x.
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Remark 10. Assume F: Xx Z* - R is continuous, AS X, o: A—Z% U{w}
is Ls.c. at x, & X and

Fi: Asx—sup{F(x,n)| neZ*, n< o)} e (0, ],
F: Ao x—inf{F(x,n)| neZ*, n<w(x)} <0, o].

Then F, is Ls.c. and F, is w.s.c at x,.
For every open set U< X such that InvU is compact defihe the function

’Gvi Xax—g(x, InvU)/(e(x, InvU)+o(x, X\0))

(we assume @(x, @) = 1) and the function
Yyt U x~inf{Gy(f"C))/(n+ D) ne Z*, n< oy(x)} .
For every closed set N< X define the function

Fy: Xax—min(l, o(x, Inv”- NUbdN))
and the function )

oxi N2 x-sup{@n+ 1) Fy(f'())/n+1)] neZ*, n<oy(x)} .

LemMA 3. Assume K is a non-empty isolated invariant set of Rybakowski type
and U is open such that N := clU is an isolating neighborhood of Rybakowski type
Jor K. Then there exists V = U, an open neighborhood of K such that (oyly, yolv) is
a Lyapunov pair for K, yyly is continuous and @yly is u.s.c.

Proof. In order to simplify the notation, we will drop the subscripts U, N in
Gy, Yu, Fy, @y throughout the proof.

First we shall show that y and ¢ are u.s.c. The upper semi-continuity of y follows
directly from Remark 10. Assume ¢ is not u.s.c. at some xg € N. Then there exists
a sequence {x,},=1 SN, x,—x, such that ¢(x,)> j1> ¢ (x,) for some p and all,
ne N. Hence there exists also a sequence {i,} = Z* such that

<o) and Qi +1D)0E+HD)THE(Mx) > p>0.

It cannot be i,-» o, since otherwise by Rybakowski condition, {f i"(x,,)} admits
a subsequence tending to some z € Inv™ NV and we get in the limit 0 = 2F(z) > u >0,
a contradiction. Thus, one can pick a constant subsequence from {1}, say {m}. It
follows from the upper semi-continuity of wy that m < wy(x,), so we get in the
Limit (2m+1)(m+1)"*F(f™(xo)) = u > @ (x,), again a contradiction.

Assume y is not Ls.c. in every neighborhood of K. Then there exists a sequence
{x}n=1 S U such that y is not lower semi-continuous at x, and o(x,, K)—~0.
Since K is compact, we may assume that x, —x, for some x, € K. Thus, by Ls.c.
of wy, limwy(x,) = wy(x,) = . It must be also wy(x,) < oo, since otherwise
y(x,) = 0 and then y is continuous at x,. The lower semidiscontinuity of y at x,
means that there exists a sequence {x, ,}m=y tending to x, with m— oo and a con-
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stant p, <7y(x,) such that y(x, ,) <p, for all me Z *, Thus there exists also a se-
quence of integers {k, m}m=1 such that

an (K, m+ 1) TG ™ (2, m)) < P <7(x,) and

Without loss of generality we may assume that for each neN there_ exists
1, = lim k, ,€ Z" u{co}. We have I, > wy(x,), because otherwise passing in (17)

m=r o

to the limit as m— oo, we get
GADT G ") S pn <7 (%) s

which contradicts }, < wy(x,).
Thus we may assume that k, , = @y(x,)+1 for all n. We know from Remark 9

that
1% FoE M (e bd U

kn, m < wv(xn, m) .

For each ne N choose m = m(n) such that y, := X, , satisfies

(9 o(FouE i (x,), £ () < Un

" Put k, := Ky men and j, i= [wy(x,)/2]. We get from (17) and the definition of y that

(20) eyt DIG( /() < Ga+ D7 G((x) -

Obviously j,— o and the Rybakowski condit_ion implies that the §equencc fJ‘ ()
is precompact. Hence we can assume that f/"(x,)—>we Inv_" N. Since wi.,( )
>Jj,—» 00, we get from the u.s.c. of wy that wy(w) = oo, i.e. weInv* N. Thus
we K and consequently

@1 lim G(f*™(x,)) = G(w) = 0.

n—+o

The sequence {f**®”¥(y,)} € U is also precompact, thus we can assume it
tends to some ze Inv~ N. By (18) and (19} zebd U. If the sequence {k,,—-a),,(x,,)}
is unbounded then, by the second inequality of 21), wy(z) = o and ze Knbd U,
a contradiction. Thus assume the sequence is bounded. T hen without lois of gene~
rality we can assume that k, = wy(x,)+p+1 for some constant p e Z™*, because
k, = oy(x,)+1. From (20) we get

7 i - Jn
G(f""(yn))<(kn+1)Un+1)"G(f’"(xn))<(21n+P+3)(1,.+1) LG( M)
hence (21) implies that limG(f*(y,)) = 0. There is also
wy@zp and  G(f7@) = G(Slimf au 10y 3)) = ImG(/*(y) = 0.
Thus f?(z) € K and z € K, which contradicts z € bd U. Hence y is continuous in some
vicinity of K. .
Choose ¥ an open neighborhood of K which is small enough to ensure that 7y is

continuous and ¢l V& U. In order to show that (¢ly, Yly) satisfies the assertion
of the lemma we have to prove that it is a Lyapunov pair.
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In order to show (5) assume y{(x) >0 and f(x)e V for some x & V. Then
:;:(tx) <o and wpy(f(x)) <co. Thus there exists ne {0, 1, ..., wy(f(x))} such
a .

1(f () = G @) +1) > G S D)L+ (r+1) 29 (x)

because G(f"**(x)) > 0. This shows that y|;; grows along trajectories of £ on V.
Assume @(x) >0 and f(x) e V for some xe V. Let

(e 0,1, .y y(F ()}

be a sequence such that

Qi+ 1)+ ) F( (£ () > o(f ()~ 1/n.

As pre'viovrlsly the Rybakowski condition excludes the case i, — co and we can assume
that {7} is constant, i.e. for some ke {0, I, ..., oy(f (%))}

o(f () = @e+DE+D) T FOf(f ) <@QUE+1)+ 1) (k+2) " F(f* 1)) < 0 () .

This shows that |, decreases along trajectories of 7 in V.
To show (6) assume that x e K. Then wy(x) = co, hence y(x) < 1/(n+1) for
all neN, i.e. y(x) = 0. Also for all ne N f*(x) e Inv™ N, thus ¢(x) = 0.
In order to prove (7) fix an open neighborhood W of K and assume that for
allneN
CIH(I/I’I, ¢’V’ VIV)¢ w.

Then there exists a sequence {y,} S\ such that

In € CIH(I/TI, (PIV’ 'YIV) cclV.

Pick x,e H(l/n, oly,yly) such that o(x,,»)<1/n. Then 2{x, \W) -0,
2(x,, el ¥) =0, y(x,) =0, ¢(x,)~0. In particular F(x,)—0, i.c. '

2(x,, Inv" NUBAN) -0,

Thus we can assume that x, —xedVn(Inv- NUbdN)NW < Inv™ N\W. It cannot
be xelnv* N, because otherwise xe K\W = &. Thus o (x) < o0 {.co ()} i
bounded and, taking a subsequence if necessary, we can flilnd keZ, * si]xc}: th li
7(:9,) = G(f{(x)/(k+1) for all neZ*. Hence G(f x) = (k+Dlimy(x,) —-1:1)
which shows that x e K\W, a contradiction. This finishes the proof ’)())f "(7)— ‘
Proof of Theorem 2. Choose an open neighborhood U of K such that
N := clU is an isolating neighborhood for X of Rybakowski type and fut P =
Ep [:= ON- .By Lemma 3 we can find an open neighborhood ¥ of K sucl.l tlylilu’:
a(gs;;lgj,,zhl;a} Izéf%p;n;v pair for X and y|y is continuous, ¢[y isw.s.c. We may also
i .]_ByH (7) we can find an ¢>0 such that clH(e, oly,yly) s V. Put
= H(e, ¢ly, yly) and N’ := clU’, y 1= Yu> @' 1= @y Since yly and @], are

u.s.c. U’ is an open neighborhood of K. Tt is obvi i i i
o Rybakonsti b obviously an isolating neighborhood
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Again by Lemma 3 we can find an open neighborhood V' < U’ of X such
that (¢’ly, ¥'ly) is a Lyapunov pair for X with 'l continuous and ¢'[y. w.s.c.

We have to show that ¢’|y- is L.s.c. If wy, is continuous at x e ¥’ then the lower
semi-continuity of ¢’ at x follows from Remark 10. Thus assume wy- is not con-
tinuous. Then we can derive from Remark 9 that k := wp(x) <wy(x). Then
y 1= f**1(x) e N\U'. In particular ye VAU’ means that y(y)>s>0. Since
FINYSF(V)S V, we have also f(3) €V, by (5), we get y(f(3))>r(») =, iLe.

£ = f() $elU = N,

which shows that wg(x) = k+1 = wg(x)+1<co. Since y = f**1(x) e bdN’,
we get Fy(f*'(x)) = 0. Consequently

@'(x) = @+ D Ey(F@)G+1)
Fix p>0. From the lower semi-continuity of g we get that
¢'() 2 Qi+ DEy(FONG+D > G+ D E(F)/ G+ 1)~k = ') —r

for y sufficiently close to x. This shows that ¢’ is continuous at x and completes.
the proof. M

for some je{0,1,...,k}.
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On a classification of pointwise compact sets of
the first Baire class functions

by

Witold Marciszewski (Warszawa)

Abstract. The paper is concerned with compact separable subspflces of the sp‘ace By(w®) of
the first Baire class functions on irrationals endowed with the pointwise t?pology, i.e. Rosenthal
compacta. We associate to each separable Rosenthal compactum K an ordinal 'numbcr 71(@ < Cf’z,
which indicates the “Borel complexity” of the compactum. The index 77(K) is a topological in-
variant of the function space Cp(K) endowed with the pointwise toPology. ‘We construct Rosenthal
compacta of arbitrarily large countable index and we use them to give examples of open linear con-
tinuous maps raising the Borel class of linear spaces.

§ 1. Introduction. Our terminology follows [En), [Ku] and [Se].. We shall fienote
by R the real line; o is the set of natural numbers and o is the Baire space, i.e. to-

i irrationals.
POIOicilzpt;l‘? ,Xl; —Y, where X and Y are separable metrizablf: spaces, is of the
first Baire class if f~X(U) is an F,-set for every open U= Y@GE Yisa segarable
Banach space, this means that fis a pointwise limit of a sequfence of continuous
maps from X into ¥), cf. [Ku, § 31]. Given a separable met{lzable space }.(, we
denote by B;(X) the space of real-valued first Baire class functions on X equipped

i topology of pointwise convergence. :

wnhlfﬁics p:per ?:conferned mainly with compact spaces which_can l.ae embedded
in the space B,(w®) of the first Baire class functions on irrationals, i.e. with Rosenthal
compacta, see [Go]. For fundamental facts about Rosenthal compacta we refer the
reader to the papers by Bourgain, Fremlin, Talagrand [BFT], Godefroy [Go]
and Negrepontis [Nel. In the sequel we shall oft.en use the deep result by
Bourgain, Fremlin and Talagrand [BFT, Th. 3F] stating that Rosenthal f:ompact;
K are Fréchet topological spaces, i.e. for every set AcK and a point x&
there exists a sequence of points from 4 which converges to x. . )

Let us notice that if A is a metrizable space which is a continuous image of
irrationals (i.e. 4 is an analytic space), then compact sub‘spaces of_Bl(A) are 'Ros-,en—
thal compacta, as the map f—fo u, where u: w® - A is a continuous surjection,

. . o
embeds B,(4) homeomorphically into B(0™).
Let K1 (be a separable compact space; given a countable dense subset D of K
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