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Added in proof. Problems 3.11 and 3.12 are already answered in the recent paper: R. D. Bus-
kirk, J. Nikiel and B. D. Tymchatyn, Totally regular curves as inverse limits, preprint, Namely:

1) each totally regular continuum is the limit of an inverse sequence of connected graphs with
monotone bonding surjections;

2) there exist totally (even: completely) regular continua with connected subsets which are
not arcwise connected.
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Separating collections
by

Alan D. Taylor (Schenectady, NY)

Abstract. A collection &' of sets is said to be a separating collection if it satisfies the following:
whenever f and ¢ are two functions. defined on a set X e % so that f(x) # g(x) for every x€ X,
there is a set Y& &, YS X such that f/¥ n ¢"'Y = 0. We characterize separating collections in
terms of a weak version of the partition relation & - (%, 3)* and we show this new partition relation
holds for every countable indecomposable ordinal (although it can fail for indecomposable ordinals
of cardinality ). We also characterize one-one separating collections (i.e., those where we only
consider functions fand g that are one-to-one) and derive from this some known and new results.

1. Introduction. If 7 is a collection of subsets of an infinite cardinal %, then I
is said to be an ideal on  if I is closed under subset formation and finite unions
G.e, if X, Yeland Z< XUY, then Ze ). A subset of % not in I is said to have
positive I-measure and the collection of such sets is denoted by I*; a subset of %
whose complement belongs to I is said to have I-measure one and the collection of
such sets is denoted by I'*. The following definitions generalize some ideal theoretic
notions from [MPT].

DeraTioN 1.1, A collection % of infinite sets is said to be:

(i) a separating collection if for every pail: of functions f and g defined on a set
Xe & so that f(x) # g(x) for every x € X, there is a set Ye & such that Ye X
and f'Yng"'Y = 0.

(i) a ome-one separating collection if for every pair of one-to-one functions f
and g defined on a set Xe & so that f (%) # g(x) for every xe€ X, there is a set
Yed such that Y= X and f"Yng" 'Y = 0.

If I'is an ideal on % and It is a separating collection (or a one-one separating
collection), then we will refer to I as a separating ideal (or a one-one separating ideal).
A uniform ultrafilter U on x that is a separating collection is referred to as a separating
ultrafilter. The following easy proposition shows that although Definition 1.1 suggests
that “separating” is a property that pertains to very general collections of sets, it
really is a notion that belongs in the context of ideals.

PROPOSITION 1.2. Suppose that % is a separating collection and let Iy be given by

Yelp if 2(Y)nZ =0.
Then Iy is an ideal.
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Proof. Iy is clearly closed under subset formation. To see that it is also closed
under finite unions, assume that ¥, ¥, € Iy but Yy U ¥, ¢ Iy. Then we can choose
ZSY,uY, so that ZeZ. Let Z; = Zn(¥;—1,) and let Z, = Zn (Y~ Yy).
Notice that.since Z& Y, and Z¢& ¥, we have that both Z; and Z, are non-empty.
Of course Z; & ¥; and Z, = ¥ ,. Define fand g on Zso that f"'Z; = {0} g"Z, = {1},
f'Z,= {1} and g"Z, = {0}. Since & is a separating collection we can choose X< Z
sothat XeZ and f"Xng"X=0.ThenXc=Z,or XcZ,andso XY, or Xg ¥,
Hence either Y; ¢ I, or Y, & I, and this is the desired contradiction. H

1t was shown in [MPT] that every weakly selective ideal on » is a separating ideal
and every x-complete ideal on x is separating iff % is not strongly imaccessible.
Pelletier [P] has shown that if U is a separating ultrafilter, then ultrapowers modulo U
are somewhat small (and hence, for example, if GCH holds and % is the successor
of an uncountable regular cardinal, then U is non-regular). This result was used
in [KT,1to show that if GCH holds and U is a uniform ultrafilter on » = p* where u
is regular, then U+ (U,3)2

Our goal in the present paper is, first of all, to provide a characterization of
separating- collections by mieans of a weakened version of the partition relation
& - (%, 3)> This is dope in Section 2. In Section 3 we use this to show that the
partition relation holds for every indecomposable countable ordinal. Section 4 con-
tains a characterization of one-one separating collections in terms of a property
closely related to that of Q-point ideal (or Q-point ultrafilter) and we use this to
generalize some of the known results referred to above.

We are grateful to Fred Galvin and Donald Pelletier for some enllghtenmg
correspondence concerning the problems considered here.

2. The characterization theorem. For our purposes, a graph G will be considered
to be an ordered pair (¥, E) where V is an arbitrary set (whose elements will be
called vertices) and E is a collection ‘of two element subsets of ¥ (and if {x,y} e E
we will say that x and y are adjacent.) A subset of ¥ in which no two vertices are
adjacent is called an independent set. The main result of this section is based on the
following. :

DerNITION 2.1. Suppose that G = (V, E) is a graph whose vertex set ¥ is
well-ordered by <. Suppose k> 1 and C is a set of 2k-+1 vertices. Then C will be
called an oscillating cycle (of length 2k+1) if the elements of C can be arranged in
a sequence {f, d;, ..., %y, B of length 2k+2 where:

(i) the points B, «y, ..., ayy are distinct, and

(i) <oy >0y <ty>oy<...> 0 <f.

Notice that every 3-cycle (i.e. triangle) is an oscillating cycle:

]

[

2
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It is also not difficult to convince oneself that there are eight osc111a‘ung cycles of
length 5:

1. 2. .3 4 5 8. 7 8.

(Notice that (1, 2), (3,4), and (6, 7) are pairs where one is obtained by flipping
the other upside down.)

With Definition 2.1 at hand we can now state the desired characterization
theorem. )

THROREM 2.2. Suppose that A is an ordinal and that % is a collection of subsets
of A Then the following are equivalent:

(1) & > (&, oscillating cycle)?; i.e., if X € & and G is a graph with vertex set X,
then either G contains an independent set Y with ¥ € & or else G contains an oscillating
eyele.

(2) & is a separating collection; i.e., if X € X and f and g are functions defined
on X so that for every p e X we have f (B) # g (f), then there is a set ¥ € X such that
Ye& and f"Yng"Y = Q.

The proof of Theorem 2.2 requires the following definition and lemma.

DorNITION 2.3, Suppose that G = (¥, E) is again a graph whose vertex set ¥
is well-ordered by <, and suppose that o and f§ are vertices with o < f. Then the
sequence {f, ty, O, vy OGop—1, &y Where k=1 will be called an oscillating path
Srom fto o ifT f <oy >0ty <ty > <Olgpg >0

Notice that we do not demand that the vertices B, o6y, ..., ¥z, & be distinct
(as we did in Definition 2.1). Also note that we only speak of such a path from §
to o when fi>o (i.c., oscillating paths are “downhill”).

Limvma 2.4, Suppose that G = (V, E) is a graph whose vertex set V is well-
ordered by < and assume that G contains no oscillating cycles. Suppose that o, fe V/
with o < f§ and that {B, &y, 0z very Ggerq» 6 I8 an oscillating path from B to o. Then
is not adjacent to o,

Proof of Lemma 2.4. Assume there exists such an oscillating path from g
to o where f is adjacent to « and assume that among all such we have chosen f, o
and P = (B, oy, 0y, oy Ogge g, & 50 that k> 1 is as small as possible. If the points
B, oyy ., tggny, o are distinct then the sequence B, 0y, ..., Gag—1, %, B> shows
that C = {B, &y, «u.s %gy-y, &} is an oscillating cycle (of length 2k+1) as desired.
So suppose that some vertex is repeated in P and let i be the least index so that
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«; = o, for some index j where we relabel § as g and relabel « as «,,. We will con-
sider the different possibilities for 7 and j and in each case exhibit an oscillating path P’
‘that will contradict the minimality of P. We leave it to the reader to check that the
various paths P’ indeed work. (This involves verifying that each P’ starts with o,
for some even n, ends with a,, for some even m1, and that the last vertex in P’ is both
less than and adjacent to the first vertex in P".)

Case 1. i=0 (i.e, B is repeated; f = o).
1.1 jis even: P’ = {B, 01, ey Uggeys 0.
1.2, jis odd: P’ = (B, 00, ey %y, 0y De
Case 2. 0<i<2k and j<2k.
2.1 iis even and j is odd: P''= {a;, v, %1 Dn
2.2. i and j have same parity: P’ = {f, 81, vy Oy 0pgqs ey 0
2.3. iis odd and j is even: P = @, 0y, e, Oyy1)-
Case 3. 0<i<2k and j = 2k (i.e., a is repeated; a; = a).
3.1. iis even: P’ = {f, 0, .., 2.
32.ids odd: P’ = {0, Ogpm gy ooes Qygq e

‘This completes the proof of Lemma 2.4. M

Proof of Theorem 2.2. (1)~ (2): Suppose that X e & and f, g are functions
defined on X so that for every f € X we have £ () # g(f). Let G be the graph on X
obtained by making « adjacent to f iff « < f and f(x) = g(f). Suppose for the
moment ‘that C = (B, ay, ..., %, B> is an oscillating cycle in G (so <oy
S0, < Uy > oy <...> 0y < f). Then

T = g(@) = f (o) = g(3) = f(aa) = ... = f(22) = 9(B).

This contradicts our assumption that f(8) # g(B) and so G contains no oscillating
“cycles. Hence G contains an independent set ¥ < X so that ¥ e &. Notice that if
«, B e Y with o < 8 then f(x) % g(B), but we still cannot guarantee that g («) # f(8)
in this situation. What is required is that we repeat the procedure starting with Y
in place of X and with the roles of f and g reversed. The resulting independent set
Z< Y with Ze & will then have the property that f“Zng”Z = 0 as desired,
(2)—=(1): Suppose that & is a separating collection and let G be a graph with
vertex set X e &. For notational simplicity, assume that X is the ordinal y. We will
assume that G contains no oscillating cycles and produce an independent set Y& &,
Let & and ¢ be disjoint sets of cardinality |y|*. We will define functions
fi9: y= F U ¥ simultaneously by induction so that if f(¢) and g(x) have been
defined for every o< f, then we obtain f(8) and g(f) as follows: -

g8
G(1): If there is some ¢ < f§ so that « is adjacent to f, then we choose
such an « and set g(B) = f(x).

G(2): Otherwise, we let g(f) be any element of %.
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Fp):
F(1): If there is some « < § and an oscillating path from B to «, then we
choose such an « and set f(B) = f(x).
F(2): Otherwise, we let f(B) be any element of % such that f(B) is
distinct from f(e) for every a < p.
Notice that we always have f(8) e #, while g(f) e & if clause G(1) is used and
g(P e @ if clause G(2) is used.

Cram 1. For all B, if /(B) is defined by clause F(l), then the value of f(f) is
independent of which a < f8 we choose (subject to the condition that there is an oscillating
path from fi to ).

Proof. Suppose the claim fails and Jet § be the least counterexample. Then
there exist o' <« < f, an oscillating path P = {f, oy, ..., tpyq, 0> from f to «,
and an oscillating path P’ = (B, o, ..., &1, ') from f to o so that £ () # f ().
Let P = {0, Ogpmys vees Ugy By &3y oney Ghpg, 0>, Then P is an oscillating path
from o to o'. Hence, f(¢) was defined by clause F(1) and since 8 was the least coun-
terexample to Claim 1 and ¢’ < f we have that f(«') = f(x); contradiction.

CLAIM 2. For all B, if g(P) is defined by clause G(1), then the value of g(B) is
independent of which o< we choose. _

Proof. Suppose that o’ < « < f and that both o’ and « are adjacent to . Then
P =<, ff,a'> is an oscillating path from « to « and so (by Claim 1 and
clause F(1) at stage &) we have f («') = f (). Thus, at stage 8, g (B) has the same value
whether we choose o' or o,

Cram 3. For all B, if < p and f(B) = f(¢), then there is an oscillating path
Jrom B to o,

Proof. We proceed by induction on f. Suppose that f(f) = f(«) where o < B.
Then f(8) must have been defined by clause F(1). Hence, there is some o' < and
an oscillating path P = (B, at, ..., dz—q, &> from § to o’ and we have f (). = F@).
Since £ (f) = f () also, we have f(2) = f (). Assume that o' < ¢; the argument for
o< is similar. Since o < our inductive hypothesis guarantees that there is an
oscillating path P’ = o, &y, «vrs Wap-y, &> from a to o, Let

’
P o= </f, Oy y enny Bokmyy a’y O‘Izm—u rery al’“) .

Then P is an oscillating path from B to a as desired.

Cram 4, For all i we have f(B) % g(B).

Proof. Suppose for contradiction that f(8) = g(f). If at stage B we had used
clause G(2), then we would have g(8) € ¢ while we always have f(B) € #. Hence,
at stage f we used clause G'(1) and so there is some & < B with o adjacent to\ﬁ and
g(B) = f (). But since g(§) = f(p) also, we have f (2) = f (f) and s0 by Claim 3 we
know there is an oscillating path from f to «. But now Lemma 2.3 guarantees that 8
is not adjacent to o; contradiction,
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Since we are assuming that & is a separating collection, Claim 4 guarantees that
there is a set Y e & so that Y< X and f" Y ~g"' Y = 0. Hence, to complete the proof
of Theorem 2.2 it remains only to verify the following.

CLAM 5. Y is an independent set in the graph G.

Proof. Suppose a, f € ¥ with o < § and a is adjacent to . Then at stage B,g(B)
was defined by clause G(I) and Claim 2 guarantees that g(f) = f(). But then
g(B)eg"Ynf"Y; contradiction. H

Since every oscillating cycle is a fortiori an odd cycle, it follows from Theorem 2.2
that if % is a separating collection then Z — (%, odd cycle)®. The converse, however,
fails. The point is that a graph G fails to contain an odd cycle iff G is bipartite (see
[BCL pg. 23]). From this it easily follows that & — (%', odd cycle)? iff the collection
of sets not in & is closed under finite unions. Combining this observation with the
first sentence of this paragraph yields another proof of Proposition 1.2.

§ 3. Countable ordinals. An ordiné.l a is indecomposable if whenever a set 4 of
order-type o is decomposed 4 = Bu C into two sets, then either B has order-type o
or C has order-type . For an ordinal « we let I, be the following collection:

I, = {X<u: order-type of X is less than o} .

Notice that I, is an ideal iff « is indecomposable. It is well-known [MR] that the
indecomposable ordinals are precisely the powers of w. It also follows from the
comments in the last paragraph of the previous section that o is an indecomposable
ordinal iff «— (2, 0odd cycle)®. Our goal in this section is to prove a preservation
theorem for separating collections that yields as a corollary the following.

THEOREM 3.1. If o is an indecomposable countable ordinal then I, is a separating
ideal and (hence) o.—(d, oscillating cycle)®.

In order to state the preservation theorem that will yield 3.1 as a corollary, we
need to invoke some terminology and notation from the theory of ideals (see [BTW]).
First, suppose the sets W, for n e o are pairwise disjoint and that [, is an ideal on W,
for each n. Let W= {J {W,: new} and let I, = {¥cw: X is finite}. Let T be
the ideal on W defined by

Xel if{new: XnW,el} is cofinite .

I'is usually called “the I, sum of the I,’s” and denoted I,XI,. Notice that Xe I*
iff XA W, el for infinitely many n’s.
If Tis an ideal and X e I'* then the restriction of I to X is the ideal 1| X given by
YellX iff YnXel.
If I is an ideal and f is a function then f,(7) is the ideal given by

Yefill) iff fY¥)el.

icm

Separating collections 141

In this case we say that fi (1) is below I in the Rudin-Keisler ordering and write
SulD) Segd. Ko (1) is dual to an ultrafilter U, then we will often say “Uis RK - below I”
even though this is & slight abuse of terminology.

The preservation theorem we will establish is the following.

TuroreM 3.2. Let #y be the collection of ideals I satisfying (x) and let £, be
the collection of all ideals I satisfying both (x) and (w+):
(%) The only ultrafilters that are RK.-below any restriction of I are principal.
(o) I iy @ separating ideal.
Then both I\ and F, are closed under I,-sums.
The proof of Theorem 3.2 requires the following lemmas,

LemmMa 3.3, For any ideal I, condition (x) in Theorem 3.2 is equivalent to the
Sfollowing

(«"): For every X & I and every function f with domain X, if f is not constant on
a set in I then there are sets Y, Zel" with Y,Z< X and f"'Yf"'Z = 0.

Proof. (¥)—(x"): Given fand X we know that f,(I|] X) is either dual to a prin-
cipal ultrafilter or not dual to an ultrafilter at all. The former case holds iff there is
an object a so that « ¢ Y iff f~(Y) e I| X and this holds iff f is constant on X—Z
for some set Z & I, and so fis constant on a set in 1™, The latter case holds iff there are
disjoint sets 4, B &f,(T| X)*, so here we can let ¥ = f~(4) and Z = f~Y(B) and
have ¥,ZelI" and f"Ynf'Z = 0.

('Y= (%): Suppose fy(I] X) is dual to the ultrafilter U. Then we cannot have,
disjoint sets ¥, Z< X with /" Ynf"Z= 0and ¥, Ze I'* so wemusthave 'Y = {a}
for some set Y'< X with Y& I™. But since Y'e T* JS'YeU a.nd $0 {a} shows that U
is principal. M

LimmA 3.4. Suppose that the set {W,: ne o} are pairwise disjoint and that I,
is an ideal on W, for each n. Let I = I, X1I,. Assume that f is a function such that
Vnew VXl either (i) or (i) below holds:

WAV, Zs X st Y, Zel and f'Yf'Z =0,
(i) d¥Ys X s.t. Yel and fis constant on Y.

Let g be any function defined on W =) {W,: ne o} so that g is not constant on any
set of positive I-measure. (We allow the possibility that g = f.) Then (iii) below holds:

(i) Vaeo VXl VAderI* 3X =X J4'c 4 s.t.

(a) X'el;
L) 4 el
(©) f”X’ng”A’ = 0,

Proof. Suppose that n, X and 4 are given as in, (iii). Assume first that for this n
and this X, (i) holds. Then either g~ '(f"Y)ndel™ or A— g”‘(f”Y)eI+
If it is the former, let X' = Z and 4’ = g™ *(f"Y)n 4. If it is the latter, let X' =
and let 4' = A—g~*(f"Y). Clearly (a), (b), and (c) hold for these choices of X
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and A4'. Now assume that for this » and this X that (i) holds. Let X’ be the set
Yel, with f constant on Y (say f”X’ = {p}). Then g™ {pHndel (since g is
not constant on any set of positive I-measure) so we can take A’ = A~g~({p}). @

LemMmA 3.5. Assume that f, g and I are as in Lemma 3.4, Then VA elI*ABc 4
such that BeI* and

Vo, meo [if n<m then f"(BAW,)ng"(BAW,) = 0].

Proof. Simply apply Lemma 3.4 N, times. W
With these lemmas at our disposal, we can now return to the task at hand.

Proof of Theorem 3.2, We first show that #, is closed under w-sums. So
suppose that {W,: ne w} are pairwise disjoint and that for each n e o the ideal 7,
on W, satisfies (*) of Theorem 3.2. Let I = I,Z1,. We want to show that I also
satisfies (x). By Lemma 3.3 it suffices to show that I satisfies (), so suppose
that Xe I and f is a function with domain X that is not constant on any set of
positive J-measure. Since cach I, satisfies (x) and hence (') we can apply Lemma 3.5
withg = f.Let {X,,: i <o} besuchthat X,, e I} ,n, <n; < ..., and f'X, 0 f" X, =0
whenever i<j. Let ¥ = | {X,,: i even} and Z = {J {X,,: i odd}. Then ¥, ZeI*
and f"¥nf"Z = 0. This shows that I satisfies (x').

We now show that £, is closed under w-sums. Suppose that W,, 1, and I are
as before and assume that each J, satisfies both (x) and (x%). It remains to show
that I satisfies (%); i.e., that I is separating. Suppose that f and g are such that
S (x) # g (%) for apy x and, without loss of generality, assume that both fand g have
domain W. If either f or g is constant on a set of positive I-measure, then we are
clearly done. So assume otherwise. Now, for any n e’ we known that I, satisfies (x)
and hence (+'). Thus the hypotheses (i) and (ii) of Lemmas 3.4 and 3.5 hold so we
can apply Lemma 3.5 for this f'and g. Applying Lemma 3.5 once more with the roles
of f and g reversed yields a set BeI™ so that if n ¢ m then

S BAWYNG ' (BaW,) =0.

To finish the proof we consider each » such that B W, eI, and use the fact that 1,
is separating to get B, < Bwith B, e I," and f"'B,ng"'B, = 0.If B’ = (J {B,: new},
then B'eI* and f"B' ng"B' = 0 as desired. B

Of course, Theorem 3.1 now follows trivially by induction from Theorem 3.2
(using the fact that the indecomposable ordinals are the powers of w).

A natural question that arises is whether or not Iis a separating ideal for every
(even uncountable) indecomposable ordinal. This turns out not to be the case. For
example, Galvin has shown (unpublished) that if CH holds, cf(x) = @y,
o <a<w, and « is indecomposable then I, is nof a separating ideal (and, in
fact, (#+) fails for I, as well).

§ 4. One-one separating collections. The notions of P-point and Q-point ultra-
filters are well known and have long been studied. In [GW] and [BTW], these and
some related notioms were considered in the context of x-complete ideals on x,
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and those investigations led to the investigation (first in [GW]) of a property called.
Ulamness that turned out to be both very natural and quite central to the study of
structural propertics of ideals. The definition, generalized here to ideals that are not
necessarily »-complete, runs as follows: An ideal I is an Ulam ideal iff every at
most two-to-one function defined on a set of I-measure one is one-to-one on a set
of I-measure one. Our goal in this section is to prove the following characterization:
theorem and then use it to derive a result from [MPT] and to affirm a conjecture:
of Pelleticr.

TurorEM 4.1, For any collection & of sets, the following are equivalent:

() & is an Ulam collection: i.e., if X € % and I Is an at most two-to-one function
defined on X, then there cxists a set Y& X such that Y < X and h is one-to-one on Y.

(ii) & is a one-to-one separating collection: le., if Xe & and f and g are one-
to-one functions with domain X so that f (x) s g(x) for every x & X, then there exists:
a set Ye& such that Y= X and f'Yng"Y = 0.

Proof. (i) —(ii). Suppose that & is an Ulam collection and that £, g and X are:
as in (ii). Let {x,: ¢ <x} be an enumeration of X in order-type » = |X]|. fpr each.
subset Y of X we will inductively construct a partition Part(¥) = {4, : e <}
of Y into sets of size at most two as follows. Suppose « < » and A;’ has been con-
structed for every y <o, We consider three cases.

Case 1: Either x,¢ ¥ or x,€ 4] for some y<u.
In this case we set A) = 0.

Case 2: X, e Y and Yy <a [x ¢ 4] and
VB <a [xge Yerg(xg) # (XD
In this case we set A7 = {x,}.

Case 3: x,e Y and Vy<a [x,¢ 47} and
dB>a [xze Y and g(xp) = f(x)]. _

Notice that if we arc in Case 3, then there is exactly one 8> o; with g (x5) = f (x>
since g is one-to-one. So in Case 3 we choose this § and set 41 = {Xy, Xg}. »

Consider Part(X). Since & is an Ulam collection ther§ is a se_t Y< X with
Ye & and such that | V' 4} < 1 forevery o < . Notice that it may st‘xll be the c;lsc‘
that we have x,, xp & ¥ with a < ff and f(x,) = g (x;). However, if this occurs t enn
in the construction of 4% we must have been in-Case 1 and so thcrg was somcxy <ciz.
with x, € A}, But this means that f(x,) = g(xl“) and 4y = {x,, x,,s}. Since | ¥ AT}IJ fws
and x, & ¥ we have x, ¢ Y. This, together w1t.h the fact that f is one-to-one, § .der:
that we have f(x;) # g(x,) for any x;€ ¥ with £ < . Hence, if we now cor.ﬁx <,
Part(Y), then in the construction of AY we will be in Case 3 andysc; s{vef wxevegr .
AY = {%,, x;}. Thus, if we choose Ze & so that ZS ¥ and |Zn 4| <1 for ! y
@ < % then it will be true that for x,, x; € Z with o <f we have f(x,) # g(x,,)_.h ;]vi
to complete the proof we need ouly repeat the abov<.: two step prpcedu;{e wit :
roles of fand g reversed and starting with the set Z in place of the set X.
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(ii) ~ (i). Suppose that & is a one-one separating collection, X€ % and h is
a function that is at most two-to-one on X. Let g be the identity function on X
and let f be any one-to-one function defined on X satisfying:

(@) Vxe X [f(x) # x], and

(b) Yx,ye X [if x#y and h(x) = h(p), then f(x) =y and f(y)= x].
Since both fand g are one to one we getaset Ye & sothat Y< Xandf”" Yng”'Y = 0.
Suppose, for contradiction that we have x,ye Y with x ¢ y and A(x) = h(y).
Then f(x) = y and f(¥) = x. But then xef"”Y (since x = f(p) and ye ¥) and
xeg"Y (since x = g(x) and x e Y); contradiction. B

In order to state the corollaries we want, a couple of definitions from [BTW]
are needed. If I is an ideal on 2 then I is said to be selective (weakly selective) iff
every function defined on a set of J-measure one (positive I-measure) is either con-
stant on a set of positive J-measure or one-to-one on a set of /-measure one (positive
I-measure). It is easy to see that I'* is an Ulam collection for every ideal J and I*
is an Ulam collection iff I is an Ulam ideal. Moreover, “separating” and “one-one
separating” are equivalent for I'* when I is weakly selective. Given these observatlons,
the following are easy consequences of Theorem 4.1.

COROLLARY 4.2 [MPT]. Every ideal is a one-one separating ideal and every weakly
selective ideal is a separating ideal.

COROLLARY 4.3. [ is an Ulam ideal iff I* is a one-one separating collection.

COROLLARY 4.4. Suppose that I is a selective ideal on % and f, g: %~ are such
that neither is constant on a set of positive I-measure and for every o < x, f (&) # g ().
Then there is a set XeI* so that f"Xng"X = 0.

Corollary 4.4 confirms a conjecture of D. Pelletier.
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