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T
DRUKARNIA UNIWERSYTRETU JAGIELLONSKIEGO .W KRAKOWIE

icm

Inverse limits of certain interval mappings as attractors in two
dimensions

by

Witold Szczechla (Warszawa)

Abstract. Let p be a continuous piecewise monotonic transitive map of the unit interval int_o
itself such that, for positive iterations, the orbit of every critical point is finite and does not conta_x.n.
critical points. It is proved that for each two-dimensional manifold M, the inverse limit map of p'is
conjugate to an atiractor of some C*-diffeomorphism of M into itself, which is of class C* outside
some finite invariant set and can be chosen from an arbitrary diffeotopy class.

1. Introduction. Consider a topological space X and a continuous map p: X -+ X,
and look upon the pair (p, X) as a dynamical system (d.s.). By a quasiattractor
of (p, X) we mean a d.s. (p, 4), where 4 < X, such that there exists an open set
Uc X, called ‘a domain of attraction, with cl{p(U)) compact, cl(p(U)) cU and

b . - 3
N p"(U) = A. Xf, in addition, the restriction p|4 is transitive then (p, A) is called
n=0

dn attractor. We also refer to 4 as a (qﬁasi) attractor of p. .
Now let the space X be compact. Let lim(p, X) denote the limit of the inverse

system X4F—X<p—X <p—..., that is, the subspace of the infinite product X% defined by
lim(p, X) = {ve XV: v, = p(v,4) for n =0,1,2,..}.

The inverse limit of (p, X) is the d.s. Lim(p, X) = (p,lim(p, X)), where the
mapping p: lim(p, X)~lim(p, X) is given by (p()), =p(v,) = v,y (here
v_y = p(vy)), or simply p(v) = p o v, Note that lim(p, X) is a compact space and p is
a homeomorphism.

. Now-let I denote the interval [0, 1]. Given a mapping p: I—+J and a smoofzh
manifold M we search for a homeomorphic embedding 4: lim(p, I) > M and a dif-
feomorphism f; M — M satisfying Ao p = fo h, with the additional prop.erty that
h(lim(p, I)) is a quasiattractor of f. This means that Lim(p, I) is co.njugate to
a quasiattractor of (f, M). Notice that A(lim(p, I)) will be an attractor if anc.l on.ly
if p is transitive because, as it can be easily checked, p is transitive if and only if pis.

The study of the problem was started in [3] by M. Misiurewicz, who proved
the following. B
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{3, THEOREM Al). If the map p: I—1 is given by p(t) = 1—|2t—1| then every
smooth manifold of dimension at least three admits a C*®-diffeomorphism possessing
an attractor conjugate to the inverse limit of (p, I).

A question arises whether a similar statement is true for dimension 2 or for
other mappings of the interval. To this we give a partial affirmative answer.

2. Results. Let p: J—J be a mapping of an interval J. By a critical point we
mean one that does not possess any neighbourhood in J, on which p is one-to-one.
We will say that p is of finite type if it satisfies the following conditions:

(i) the number of the critical points is finite (that is, p is piecewise monotonic);

(i) the orbit of each critical point is finite;

(iii) if @ and b are critical points and p"(a) = b then n = 0.

Recall that a homferval is proper interval H <J such that p"|H is a homeomorphic
embedding for each n. Our main result is the following.

THEOREM A. Let p: I—1I be a mapping of finite type having no homtervals and
let M be a two-dimensional manifold. Then, in every diffeotopy class there exists a C*
diffeomorphism f: M— M such that: .

(a) the inverse limit of (p,I) is conjugate to a quasiattractdr of (f, M);

(b) there is a finite invariant set Z such that f|R*\Z is of class C*.

Notice that the supposition of the absence of homtervals can be replaced by
transitivity, and then we obtain attractors.

Theorem A will be established as a consequence of the following result.

THEOREM B. Let p: I—1 be a mapping of finite type having no homtervals.
Then there exists a C* diffeomorphic embedding f: R*— R* such that:

(@) the inverse limit of (p,I) is conjugate to a quasiattractor of (f, M), for
which R? is a domain of attraction;

(b) there is a finite invariant set Z such that f|R*\Z is of class C “,

(c) f preserves (resp. reverses) orientation.

In Appendix we show that our method cannot give a C2-diffeomorphism unless p
is monotonic.

QuesTions. 1. Does there exist a diffeomorphic embedding of class C?* of
a 2-dimensional manifold into itself, which possesses an attractor conjugate to the
inverse limit of an interval mapping?

2. Does Theorem A hold true without condition (iii) (possibly, after deleting
conclusion (b) or assuming that there are no periodic critical points)?

3. Proof of Theorems A and B. Most of this section concerns the proof of Theo-
rem B, which is in six parts. In Part 1 we impose on the map p some additional
conditions which are shown not to affect the generality, and then p is fixed. In
Parts 2, 3 and 4 we construct the asserted diffeomorphism f. In Parts 5 and 6 we
prove the properties of /. The construction consists in factorizing one discontinuous
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map of the plane through another; a general description will be given at the end
of Part 2.

Part 1. Refinement of p. In the first place, we may assume that p maps 7 onto I.
L

Indeed, consider the d.s. (p,J), where J = () p"(I). ThenJ is a closed interval
n=0

(possibly a point) and p maps J onto J as I is compact. The mapping p|J is of finite
type and homterval-free provided p is so, and we have Lim(p,I) = Lim(p,J).
For every mapping ¢: I-I write 4(p) for the set consisting of 0, 1 and the

= ngo ¢"(4(0)).

LemMA 1. If ¢, 2 I are two piecewise monotonic homterval-free mappings
= AQY) and Y|A'(¢) = |4 (@) then @ is conjugate with Y.

Proof. For each x € A(p) = A () the orbits of x under ¢ and ¥ are identical.
Hence ¢ and y have the same kneading invariant [2]. Since both maps are hom-
terval-free, it follows [2] that they are conjugate. l

LevMa 2. If ¢ is a homterval-free mapping of I onto I satisfying conditions (i)
and (ii) then the set A'(¢) is finite and ¢ is conjugate to a piecewise stretching map.

(We call a monotonic map f: J— R, where J is an interval, stretching, if for
every distinct points a,beJ we have (a—b| <|f(a)—f(B).)

Proof. By (ii), 0 and 1 have finite orbits since they have preimages in A(p).
Hence, by (i) and (ii), the set A’(¢p) is finite.

Let A'(p) = {dy, dy,...,dy} where 0=dy<d <..<dy=1 and Ilet
Jp = ldeor,d)fork =1, ..., M. Then each interval J, is mapped homeomorphically

critical points of ¢, and let A'(¢)

onto an interval of the form U J;. We define

i=m

we = 2M—sup{r: @) e {Ji}i=y,. . pfor s=0,1,..,r} (k=1,.,M).
Then '
@1 : IM>w > M+1,

otherwise ¢"(Jy) € {Ji};=1,...n for every natural n, and hence J, would be
a homterval.

Now choose the points dg, @y, ..., @y €I With @y—ay_; = W(Wy+...+wp) "
for k =1, ..., M, and take a homeomorphism A: I—I such that h(d) = a, for
k =1, .., M. Define the map : I—I by letting ¥ () = ho ¢ o h~'(a,) and taking
the linear extension over each interval [g,..,, a,]. We claim that ¥ is piecewise
stretching and ¢ ~ 1. Consider an interval [g,_, @]. It is mapped linearly by
onto [a;_y, a;], where 0 <i<j< M. If i< then, by (2.1), (aj—a;_l)(ak—a,‘_l)"l
Z2(M+1D2M>1. If i=j then w; = w,+1, whence (gj—a;- N &H—&-1)""
= wyw; ' > 1. Consequently, ¥ is piecewise stretching, and hence, homterval-free.
Since ‘
' A'thepoh™) = {ag,ay, .., ay}»
1*
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we have A(W) = A(ho@oh™t) and

Yd'(hepoh™) = gld'(ho@oh™?),
80 it follows from Lemma 1 that ¥ mho @ o k™Y, that is, Y~ ¢. K
Suppose that a mapping ¢ of I onto 7 is of finite type and homterval-free. By
Lemma 2, there is a piecewise stretching map ¥: I F such that y =~ ¢ and 4’ W)
is finite. Let A'() = {dy, dy, ..., dy}, Where 0 = d, < dy <...<dy = 1. Take a map
p: R-(—1,2) satisfying the following conditions:
12 pld'(y) = Y14'Gh).
2°. For k =1, ..., M, the restriction p|[d..,, d;] is a stretching C®-immersion
extendable to a C“’ diffeomorphism p;: R—R such that [pi(x)| = 1 for
x€ R\[dk-.l: .
°. pl(— 0, d,] and p|[dy_,, ©) are C®-immersions mto (—1, 2) such that
|’ (x)[ <1 for xe R\/L
Lemma 1 1mp11es that p|I is conjugate to . As inverse limits of conjugate maps
are conjugate, instead of proving Theorem B for ¢ we may, and will, prove it for pIL
From now on the map p will be fixed. Let C denote the set of the critical points
of p, let C={ey,..,ey_q} and ¢, <c,<..<ey.y. Let I, = [c,_q, ¢] for

@«

k=2,.,N-land I) = (-~ 0, ¢;], Iy = [ey-q, ). We define D to be (9]
© n=0

and E to be [} p P'(C). By (i), E consists of those images of critical points under

iterates of P, which are periodic. Finally, let x: R—{l, .., N} be the address

function: x(x) = k if xeint(f) or x = ¢.

Henceforward we will not need the fact that p(J) = I, nor that p|I is hom-
terval-free or piecewise stretching. We will use only conditions (i), (iD), (iii) and the
following consequences of 1°, 2° and 3°:

(v} For-k =1, ..., N, the map p|J; is a C*-immiersion into R.

(v) For each x e C, the map t+(p(t)—~p(x))sign(t—x)) is a C®-immersion of
some neighbourhood of x.

(vi) If xe D\C and se {1, —1} then the map given by

ti> (p(eltt+x)—p(x))sign ()

is a C”-immersion of some neighbourhood of 0.
(vii) For each xe E, |p'(x)] = 1.

(viii) The set P(R) is bounded and () pXIc 1.
n=0

Part 2. Basic auxiliary maps.
N

k=1,2,. N and J= | J,.

k=i

Denote J, = ((k—3)/N, (k—})/N) for

icm
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PROPOSITION 3. There exists a map Q:.J—R with the restrictions @, = Ql|J;
such that:
(ix) O is a diffeomorphism of J, onto R (k = 1, ..., N);
(x) Q is stretching (k =1, ..., N); ‘
(xi) Q@) = QQRkN~*~¢) for ted, (k=1,2,..,N-1);
(xii) if x€ E, p(x) = x and

-1 -1 -1
Qo © -+ © Qe © Crioan(Y) = ¥

then |Q'(y)| = 1 and Q"(y) # 0.
In addition, the sign of Q3 can be chosen arbitrarily.
Proof. Fix ee {1, 0} and define 0,: J—=J (k =1,

0u(x) = cotan(3N(—1)*"*nx) .

For each x € E with p°(x) = x (s # 0) let x, be the unique fixed point of the con-

traction Qe © Qyepe-tmy © -+ © Qo Clearly, this definition is independent

of the choice of 5. Denote Ey = {x;},.pandlct E; = 07(E,). Since Q(p(x)*) = Xy
for every x € E, we have J(E,) = E, and thus E* E;. By (i) and (ii), E, is finite.

Let E;nJ, = {ay, 0,5, ..., a,} where a,<a,<..<a,. Consider the mapping

., N) by

f: Jy— R of the form

x

F) = Qe +(=1F [ (1 —(sil:t?m]\lt)‘I(p(t)k:[:”[1 (t~ak)2)dt

where ¢: J, — R is of class C*®. Using the fact that {0, is stretching, we can choose
the function ¢ so that infe >0 and f(g) = 0,(e) for k = 1, ..., m. Now define
Q: J- R by _
0(x) = {f(x—(k=1)/N) if xelJ, where k is odd,
= | f(=x+k/N) if x eJ, where k is even.
Then, conditions (ix), (x) and (xi) are satisfied,
3.1 Q|Ey = Q|E, and
(3.2) QG =1 and Q"(xy) #0
Let x, 5, y satjsfy the hypothesis of condition (xii). By (x), (3.1) and since §(E,) = E,,
we have y = xy, so the conclusion of (xii) follows from (3.2). B
Henceforward the map Q satisfying (ix)-(xii) will be fixed. If the diffeomorphism f
is required to preserve orienfation then we assume sign(Q}) = sign(p’)lint(l;)
which, by (xi), implies sign(Q;) = sign(p")|int(,) for each k. Otherw1se we assume
sign(Qp) = —sign(p)lint(4).
For any x e E let x, be defined by the equality
°e Q;(:c)(x*) = Xy
where s is the period of x. For every sequence u = (4,);=o € {1, ...,
natural number n we write
0n' e o'

Condition (ix) implies that [ug, uy, ...,

for each xe E.

Orto=10 © Qirtps =2 © oo
N} and every

AT Q;l-,.l(l) = [an Uy, ""J uu] .

u,] is a closed interval.
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LemmA 4. For any sequence ue{l, ...
a singleton.

0
N .
, NYY the set (\ [ug, gy, tty] is
n=0

©0

=N [unv Ui qs oo
n=m

and for every ,jeN either 4, = 4; or A;n4; = &. Suppose 4, has more than
one point. Since 4,, = Q5 (4,.+4), conditions (x) implies that for each m the inter-
val 4,4 is longer than A,,. Hence the intervals 4,, must be disjoint but that is now
impossible for they are contained in [0, 1]. M

Proof. FormeNlet 4, , 4,]. Each set 4, is a closed interval

For every sequence ue {1, ..., N}", the unique element of ﬂ [0, Uy, oey )

...]. ‘Define X to be ﬂ Q"'(I) Obviously,
Q7{(X)=X=Q(X) and X = {[u]: ue{l, ..., N}"}
PROPOSITION 5. There exists a map ¥': R2—+R2 with the following properties.
(xiii) int{ze R*: ¥(z) = z}2 R®\(~1, 1)%; '
(xiv) ¥ maps the set R*\H, C*-diffeomorphically onto R*\V,, where
Ho = {0}x[-%,%] and V,=[-% £1x{0};
(xv) ¥(t, %) = (£—x|,0) for (t, x) € Hy and

P, x) = ((}~

will be denoted by [1] or [uy,u,,

[x[)sign(®), |¢|-sign(x))  for (¢, x) e WNH,,
where

W= {(t,x): [t|+|x—% <% or |t]+|x+3 <%},

The action of ¥ is schematically illustrated in Figure 1.
Proof. Define ¥|W according to condition (xv). Take a C®-diffeomorphism
. T W 3 3
¢g: R— R such that g(l:_Z’Z:D = [—Zn,zn] and g'(x) =1 for any xe
56| Let D and E be C=-disks with W<int(E), E<int(D) and
Dg(~1, 1)% Let D be close to W enough that we can extend ¥ over D by
letting

R\[_fﬁ ]

. 4
Y (r-cosu, r-sinu) = (g sign(r)+r-cosg(u), r-sing (u))

nn
for 0, -y~
F# uel: 4,4] and
(r-sing~*(u), r-cosg (1))

3 3
for r # 0, ——, =
ue[ 41c,47'c],

¥ (r-sinu, $sign(r) +r-cosu) =

icm
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t . t
11,1)

AN N L
AV g

1,-1)

{=1,~1} | =1,1)

Fig. 1

to obtain a C®-embedding W|D\H,: D\H,—(—1, 1)%. Then, D\H, is carried
onto D'\V,, and E\H, onto E™\V,, where D’ and E’ are disks, E' Sint(D’),
V, Sint(E) and D’ =(—1, 1)* By extending ¥|bd(E) to a diffeomorphism of E
onto E’ and using [1] (Ch. 8, Th. 1.9), one gets a difftomorphism ¥*: D— D’ which
coincides with W near bd(D). By [1] (Ch. 8, Th. 3.1), ¥’ extends to a diffeomorphism
of R? having the support contained in (—1, 1)%. Extending ¥ in the same way pro-
vides conditions (xiii) and (xiv). W
Now let the map F: R%Z—R? be defined as follows:

m F@,x) = (p(), 0;5() -

By (iv) and (ix), F is one-to-one and F |[R*\Cx R is a diffcomorphic embedding of
class C®. However, F is discontinuous at each point of Cx R. For ¢>0 small
enough, the stripe [c,—e,¢]x R is carried onto [p(e),p(c—8)]xJ; or
[p(ci—2), p(e)l xJ;, (with F({c,} x R) = {p(c)} xJ,), and the stripe (¢, ¢, +8]x R
onto (p(cy), plci+e)]xJxey or [p(cu+8), p(e)) X Jisy, Tespectively. By (xi), the
points F(c,, x) and lim F(¢, x) € {p(c)} x Jy+1 are symmetric with respect to the

tef
line x = —

The required diffeomorphism f will be the unique continuous map satisfying

= fo G, where G: R? - R? will be constructed in Part 3 (formula (9)) and

F R2 — R? in Part 4 (formula (11)). The map F is a slight modification of F; needed
in order that f be smooth (cf. Claim 11, Proof, 3). If we worked with F instead of F
then f would still be continuous and have the required quasiattractor. (In this case,
the present proof goes through after obvious simplification.) Intuitively, the map G
is obtained by cutting the plane along countably many parallel segments and re-
joining the edges of the incisions with the aid of suitable maps like ¥ of Propo-
sition 5, where the incision has been made along H,. This operation is applied to

4 4
the segmcnts {p(c)} x BCV Fia ;+ SN] and their images under F (or F) so that G

cancels the discontinuities on Cx R.
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Part 3. Define the closed intervals 4% recursively by
k-1 k+1
1
==, 2 (k=1 ., N=1),
=[S )
AZ+1 = Qx—(;l:"(ck))(A:)

and let a;, be the length of Af.
Choose a positive number d such that

@

? 2+ sup [p'|)d < inf dist(x, D\{x}) and
i—-1,2] xeD
@ 2d sup [p"”| <inf}(Q7YY'(%)| .
[~1,21 xel

Define the rectangles B; by
® ’ By = [p'(c)~day 5, p(c) +da ] x Ay
Inequality (3) guarantees in particular, together with condxtlou (iii), that
(CxRynel( U By UF(B}) = @. We note that
F{e} xR) = {p(c)} xJ, and

{p(co} x () = {p(c0)} x int(4i) S int(B})
and that

F ({P" ()} x 4) = {p"H (e} x AR+t
For x e E'write x* = (x, x,),and let Z = {x*: x ¢ E}. We have F(x*) = p(x)*,
therefore F(Z) = Z. The set Z will later satisfy conclusion (b).

LemmA 6. (2) If Bi~int B # & then k =1 and m = n,
® IfF(B,':)nintB # @ then k=1 and m=n+1.
© Zn U B =
(d) For each k, lim max dlst(z » "(e)*) = 0.
n—co zeBf
Proof. (a) By (3) and (5) (where @n<1) we have p"(c) = p™(c,). Hence
6.1) ' {P"(co)} x i {p"(c)} xint(AT) # O .
We may assume m2n. By (1) and (2).
{P"(Ck)} X Ay = F"—I({P(Ck)} X Ali) and
{p"(e)} xint(AT) = F"~1({p"~"*1(c)} x int (47" 1)) .
Since F'is one-to-one, (6.1) implies
{p(cd} X A 0 {p™ "+ ()} xint (4] ~"+1) # &,

that is
(6.2) o p(e) =p**™"(c) and
6.3) Apxint(Ay ") 2 @

icm
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First suppose m = n. By (6.3) we have |k—I| <1, but if [k—/} = 1 then (6.2) cannot
hold, so that k = I Suppose thenm > n. Since 47 ™" = Ot mni) (A7), by (6.3)
we have that p"~"(c)) € [, UL,y This and (6.2) imply p™"(c,) = ¢, contrary to
condition (jii).
(b) Since Bin(Cx R) = B, it follows from (1) that -
F(B) = [p"*!(cd~d sup |p'|, o (cp)+d sup [p|]xAL* .
[-1,21 [-1,21-

This implies Agt'nint(4]) # @ and, by (3),. p"*i(c) = p"(c). Hence
BiY* Aint(B]Y) # &, so that (b) follows from (a).
(¢) Suppose Z B; # . Then, by (3),
Zn({p' (e} x4) # O
Since F(Z) = Z this implies
ZAF"({p(c)}x 4}) # O .
But since i
F({p"(c)} % 4) ={a}xR,
this means ¢ € E, which is impossible by virtue of (iii).
(d) Let k be fixed and let p"(c,) € E for every n3>m. Denote
L =x(p"(e)) and pe) = [y, 81, 85,...] fornzm.
Then, :
= Ql—:x ° Q;y-:iz @ QI-OI(AIT:)S [in—l’ in—z’ ey io]
S [in—1= AR im+1a lm] = [139 II) wery i:—m-—-l] ’
whence
max dist(z, p"(c)*) < (L +d)V2diam (75, i1, ..., fipmei]) -
re B
As the sequence (i,);=,, is periodic, Lemma 4 implies that diam([ig, i%, ..., fn—m—1])

tends to 0. H
Let the mappings F,: R*->R* (k =1, ...,

(6) F k,n(t’ x) = (P" (e 0+ [P }- En (t —P"(ck)) > Q;(;"(Ck’)(x)) f

where &, = sign(p’ (p"(ck))). Define the maps ¢,,: R>—R? recursively by

N—1,n=1,2,..) be given by

(/)k,l(t:r .X) = (p(ck)'l'zade-lt5 (x+k)N~1) B

0]
= Fk,rl @ (Pk'u

(pk, ntl )

where g, is the sign of the right-hand-side derivative of p at ¢,. Let B = [—1, 1]%.
Note that F, , settles diffeomorphisms of Rx 4}, onto Rx 4;** and of B; onto By+!
taking the segment {p"(c)} x A¢ onto {p"*(c)}x Ax**. Thus, ¢, maps B C®-

diffeomorphically onto B and takes {0} x[—1, 1] onto {p"(¢;)} x 4x. By induction


Artur


10 W. Szczechla

we lmmedxately obtain the formulas
Punts 1) = (270 +ELdaint, Orn-sceny * - © Crisean(Ce+x) N 1)
Pralt, X) = (Ekd Gen (t=p'(co), NQ"'(x)— k)

where & = 8,81 ... B n—1.

Now let us take a map ¥: R*— R? satisfying conditions (xiii), (xiv) and (xv)
-of Proposition 5 and define the map G: R>—R? by

Pne ¥ o Pea(z) for zeint(By),
19 G(2) = i ’
©) @ {z for z¢ | intBg.
kn

By (xiii), (xiv) and Lemma 6(a), G is well defined. Under the notation of Propo-
sition 5, let

Vi = 0i(Vo), Hi=¢,(Hy) and V= kU Vi, H= kU Hg.

21 A
By Lemma 6(a), the segments H; as well as the segments ¥y, are disjoint. It follows
from Lemma 6(a)(d), (xiii) and (xiv) that the set R*\(HuZ) is open and mapped

C®-diffeomorphically by G onto R®™\(FuZ).

Part 4. We take functions f: R>—R* and y: R*—R of class C* satisfying the
following conditions:

(103.) ﬁ(t: x) = (709 x), x) 5
(100) P, x) = —y(—t, x) = y(t, —%) ;
(10¢) ty(t,x)=>0 for t,xeR;

(10d) int(y~*({0)) 2 (RNint(B) U R x ((~%, ~Hu, D) ;
(10¢) there is a neighbourhood U of the set {0} x {—%, 0, 4} such that B|U = idy;

(10f) sup(dy/éx,) =1 and sup(—dy/dx,) < inf |p|- inf |p|”*.
[-1,2] [~1,2]

The proof of the existence of B, being a standard exercise, is omitted. Figure 2
displays a possible shape of the graph of the function ¢t+y(z, x) for x close to — %, 0
or —%. :

u

Fig. 2
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Now define the map F: R?— R? as follows:

(ll) F(Z) - F(z)+Fk,n ° QP ® Be ';Dk,n(z) Fo P © ﬁ (pknl(z) for z EBI';' >
F(z) for z¢ U B;.
kn
LeMMA 7. (a) 7y o F = m, o F (n, denotes the projection to the second coordi-
nate).

(b) There exists a neighbourhood U of the set {0} x{—%,0, %} such that

FogulU=F o0, U for every k and n.
(c) There exists a set U= B with {0}x[-1,11c U and
lntB(U)Ebd(B)U[_la I]X(('—'%a '—'})UG” %)) B

such that

Fi H Pra(U) = F H Pn(U)

d) FIRxX = F|Rx X.

Proof. (a) By the definitions we have =, o F, ,|Bi = =, o F|By, so it is enough
to use (11).

(b) follows from (10e) and (11).

(© Let U = y~*({0}) n B. By (10b), (10¢) and (10d) we have {0}x[-1,11e U
and intp(U)2bd(B)u[—1, 1]x((—%, P U, ), so we only have to check that
Fino @ppoBlU = Fo g, BlU, and this is a direct consequence of (1), (6), (8)
and the equality B|U = (0, id).

(d) Let (¢, x) e ByA(Rx X). Then

0" ) e Q" HX)N QL) = Xn4i ST Uiy,

= ((k—%)N, (k—D/N)U((k+1)/N, (k+%)/N)
so, by (8),
Pin(t, ¥ e(—1,11x(-%, —HuE, 3).

Hence F(t, x) = F(t, x) by (c).

LemMa 8. The restrictions F|B, are C®-diffeomorphisms onto F(B}).

Proof. Fix n and k and let F|B} = (F,, F,), F|B} = (F;, F,). The map F|B;
is of class C*. By Lemma 7(a) and (1) we have F,(¢, x) = Fy(t, x) and 8F,/0x, = 0,
0F,/0x, 5 0. Moreover, F|Bj is one-to-one and F|bd(B}) = F|bd(By) by
Lemma 7(c). Consequently, it suffices to show that

™ . (OF Jox)(t, x) # O

The derivative of the first coordinate with respect to the first coordina;te will be
denoted by a prime. Take a point (f,x)eB; and denote u = ¢y,(t, x)€ B,
vy, v3) = v = @, ° B(u) € B. By (1), (6), (102) and Lemma 7 (a), all the functions

for every (¢, x)e By.
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which occur in the definition of F|Bj preserve the foliation parallel to the first coordi-
nate. Hence we compute ‘

F'(t, %) = F'(t, )+ (Fpn o @ © B o @en)(t, )= (F o 00 B o 0icr) (2, %)
= F'(t, X)+ Fep(0) 0inlB © Pien(t, X)) B/ (W) (0i)'(t, %)
—F'(0) @inlB ° Pents 1) ') (9ica) (¢, X)
= F'(t, X)+ Fy ,(v) - f'(u)~ F'(v) B'()
= p'(#) +(ak,n+ 1 a;,vlt & ‘“P'(%))’Y'(“)-
Note that sign(p'(t)) = sign(p'(v;)) = &, Now if y'(u) < 0 then, by (10f).
1E(t, )] 2 10— (@hns 1 0 80— P'(01)) ' ()]
> .i’f,fz ]Ip’l - :gg}lp’lv’(u)l >0.
If y'(u) > 0 and sign(p'()) = Sign(dens 1% 8a—p (1)) then |F'(1,%)] > |p'(1)] > 0.
Finally, if y'(u) >0 and sign(p'()) = —sign(ayn+1 % &,,—P'(v4)) then
e F' (1 %) = D' (1) + (Bim 10 = 80P (1))’ @)
Z &0 (1)t G Gen —&aP'(0)  (by (10£))

»>/akn+1ahn [t— 1’1|ES‘11P [p"|

> inf [(Q1 ')'|—2d sup |p"|>0 (by (4)). W
[0,11 [-1,21
We can now define the map f: R*— R Let

GoFoG™(z) for ze RNV,
12 =
(12) 7@ {Fk,,,(z) for ze Vy.

LEMMA 9. Fo G = Go F.
Proof. If ze R*™\H then G(z) € R®\V, so

SoG(@) =GoFoG HG() = GoF(z).
If ze Hy then Lemma 7(c) implies that F(z) = F, (z), whence

Go F(Z) = GoF2) = Gpurio¥e (p;;ul+l o Fyu(2) =
=FinoG(z) =foG(z). A

l;'k,n ° (Pk,n oo (pl:,ul(z)

Lemma 10, The map f is one-to-one. ' N
Proof. By Lemma 8, the map F is one-to-one. By Lemma 8 and 6(a), we have

N-
(10.1) FR™H) < (RZ\H) U Uka .
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Suppose f(a) = /(). If ae V or be V then a = b since cach map F,, takes ¥y
_ N-1
one-to-one onto ¥;™! and f(R®\V) < (RAV)uU U Vi by (10.1). Suppose that

a,be R*\V. Then a = G(c) and b = G(d) for some ¢, de R*\H and Lemma 9
implies

GoF(o) = GoF(d).

From this and (10.1) it follows that F(c), F(d) e Hj for some k. This and Lemma 8
imply that ¢, d¢ U B}, therefore F(c) = F(c), F(d) = F(d) and ¢,de{c,} xR.

Hence, by formula L), F©), Fdc{plc)} =, which equals either
0,1 ({0} x (—%, =) or ¢, 1({0} x (3, 3)). On these sets G is one-to-ome, so that
F(c) = F(d), which means c = d. B

Part 5. Smoothness of f. The proof of Claim 11, stated below, is based mainly
on conditions (xi), (v), (vi) and Lemma 7(b). Smoothness near Z involves conditions
(vii) and (xii), and passing to the limit of the derivative.

CLAmM 11. The restriction f|R*\Z is a diffeomorphic embedding of class C®.

Proof. In view of Lemma 10 it suffices to show that F|R?\Z is of class C®
and the derivative Df (2) is nonsingular for every z e R*\Z. We will show this by

. examining f on four open sets separately.

1. The first set is U = R*™(ZuVUCxR). By (9), (xiii), (xiv) and since
(CxR)N U By = @, the set U is mapped C®-diffeomorphically by G~ onto

U, = Rz\(ZuHu(CxR)) By (1), Lemma 8 and Lemma 7(c), the map F|U,
is a C*-embedding into U, = R*\(Zu H). By (xiii), (xiv) and Lemma 6(a)(d),
the map G|U, is a C*-embedding. It follows that therestriction f[U= G o Fo GYU
is also a C®-embedding.

2. Let U be a neighbourhood of {¢,} x R such that

Un( H Biu(\{aDxR)=0 and F(U)<s g (W)

and let z = (¢, x) € U. From (7) and (xv) we compute
fG)=GoFoG Y 2)=GoF(z) = Go F(2) =
= Qo ¥ oy i(P ®. Qx(r)(x))
= ¢y,1 ° ¥ (eed L ag 1(p (1) —plcy), NQ;(,I)(x)—k)
_ (Pk,l(NQk-i(x)_k'l‘%s -Bkd_lail(lf(f)*?(ck)))
B {(Pk, 1(/""‘NQ1:+11(X)+%: &d a1 (p (D) ’P(Ck)))
It follows from condition (xi) that Qpyy(x) = 2kN~*—Q; 1(x), and so
J,%) = 0 1[N D~k +%, 8,d ™ a 1(p(1)—p(e))sign(t—cy) .

Now conditions (ix) and (v) imply that f|U is. an immersion. -

Pr,1° TWO;,i o F(z)

for t< e,

for t>¢.
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3. Let U, <int(B) be a neighbourhood of the set {0} x {0, -4, 4} such that
Flow U = Fi lpr Uy for all indices k& and n. Its existence is guaranteed by
Lemma 7(b). Considering (xiii), (xiv) and (xv), it is easy to see that there is a neigh-
bourhood U of the set {—%, 0, £} x {0} such that ¥~ !(U) < U,.- We will show that
FloeulU) = Filor,(U). We have f [V = Fy,|Vy', and for every z e o ((UNV.

f@=GeFeG (@) =GeFo(Pone ¥ " oppn)@)
=Go Fk,n © Py,n © Wfl ° (pi::fv(z)
= (Qent1° P o Qonst) @ Fipo Prno Pl o 0pn(2)
= Qr,p+1° Yo ((PI:,}! ° Fk_,-nl) ° Fk,n ° Qk,n ° yoio (Pk-,}x(z) ‘
= Fk,n(z) . )
4. We will show that for an arbitrary index (k, n), the map fis a C®-immersion

of some neighbourhood of the set ¥{\¢;. ,({—%, 0, £} x {0}), and that will complete
the proof.

Let U be a neighbourhood of ¥,\{—%, 0, 4} x {0} such that U < int(cl(¥ (#)))
and Fog,, o P (U)S @ s1(W). By (9) and (12) we have

F,, f VinU,
ay  se- {0 Ly o EETO
Cieynt1° ¥ o Qpnes© Fo Prne P o u(z) for ze UNVY.
By using (10a) and the formulas for F, , and ¢,,, we compute:
(11.2) 4013—(-1 oFo @p,u(2)
= (Pk_,jﬂ o (F+Fin° QruoBo (01:_,;“F° PanoBo (Pl:}-) ° (pk,n(z)
= ((Pk_,»f-u oFo (Pk,n+¢£r}+1 LY N ﬁ“¢l::+1 oFo@ o B
= (S, x),x) for z=(¢,x)€B.
where .
(11.3) Sin(t, %) = L(p(Kt+p"(cd)—p"**(ci)
+ 9(t, x)=L(p(Ky(t, x)+p"(c) ="+ (c) »

where, in turn, K = ejda, and L = gf*'d " tap 1.
From (11.2), (xv) and the equality sign(S, (7, x)) = sign(z) (Lemmata 7(c)
and 8), for (¢, x) = ze Y (W)\V, we have

(114) ql ° (pl:::'i'l o F o (Pk,n ° W”I(t:.x)
= (1, Sy, (Ix[sign(®)), (% |]sign(x))sign(x)-sign(t)) .
By expanding this formula according to (11.3) noting that; by (10b, ¢),

7(lxlsign(®), (3~ [#)sign () = Iy (x, $= |z]Isign(),
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we obtain
Pine1 oS 0pult, ¥) = (1,
(p(Klx|sign () +p"(c)) —p"* (cp)) L -sign (x)sign ()
+y(x, =11
— (p(Kly(x, £—1t])Isign () +p"(cd)—p"* (c0) L-sign(y (x, £—[¢]))sign (1))
for (¢, x) e U\V,.

By (11.1), this holds for (¢, x) € ¥, as well (for, in this case, x = y(x, £—|t[) = 0).
Since sign(t) is locally constant for (¢, x)e U (as intcl¥(W)n {0} x R = @), it -
follows from condition (vi) that the map tp}:_i,r 10fe ¢ ,|Uis of class C*®. By 1,.
the derivative D@y 141 °f° @, is nomsingular on UNV,. Since US cl(U\Vo):
and

sup ||D—1(P1:r}+1 of° @yl = sup [[D™1¥e (P12§+1 oFe Pre,n © v
U\Vo : U\Vo
< sup || D¥||-sup|| D" @ ni1 o Fo gyl -sup [|D~1¥]
intw B . int W
= 1supllD™ gipss o Fo gyl 1 <00,
it follows that it is also nomsingular on V,nU. B
We go on to prove that fis of class C! in a neighbourhood of Z.
LeMMmA 12. If a<b<c and f: [a, cl—[a, c] is a function of class C* such

that f(a) = a, f' is decreasing and 0 <f'(x) <1 for x e (a,c) then the sequence of
Sfunctions g, [b, c]—R given by

gu(x) = (S(D~"®) (S ()
uniformly converges to a function g: b, c] (0, o).
Proof. Consider the functions A,: [b, c]— R given by

h(%) = Wn(((f ")’(5))' YE).
As

@ =0 and g, = J exp (i () dx)~ exp () »

it suffices to show that the sequence (f;) is uniformly convergent. We have:
n-1 n—1
h(x) = (/Y G M (x) = (kgf' °f"(X))"(k];Iof "o fH)Y
n-1 ‘
=3 (/< @) (S oS )

n—1
=3 (7o) S EIYD
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Hence the problem reduces to the uniform absolute convergence of the series
Y. (f%(x) on [b, c]. Since (f*) is positive and decreasing,
k=0 .
kzol(f")’(x)l < kZO (B < kzo (S O-1®)6-r @)
=b(b—f(®) ' <co. B ‘ :

For neN and k=1,..,N-1 let y,, be the affine map satisfying
‘I’k,nl{l? _“1}2 = q’k,n]{l’ _1}2'
Lemma 13. For k=1, ..., N—1 there exist C-diffeomorphisms
Yt Rx[—1,11->Rx[—-1,1]
such that lim Y b ¢, , =  in the space CY(Rx[—1, 1], R?).

n~oo

Proof. By (8),
- 1 0
—Dl//k,ioqak,n(t: x) =[ ‘l

0 1G]
where
Gux) = (/L) =A(=1)"Yi(x)
and
Julx) = Qx_(zjz""(ck)) Qe © Q;;(Ck))((x+k)/N) .
It is sufficient to show that |G,| uniformly converges to a function

Gt [=1,112(0, c0). Assume y = p™(c,) = p"**(c,), where m and s are fixed
positive integers, and let

f= Q;(;"‘+2"1(Ck)) Oin o Q;(ll’"'(l-'k)) .
Then f(px) = 4, and condition (xii) implies that
(@) =1 and  Q(Q* () #0 (k=0,1,..,25~1).
It follows from condition (xi) that |Q'| > 1, so we also have
Q0w =0 and sign(Q(Q"(rw) = sign(Q"(Q*r4)) -
Since Q°(y4) = yy this implies

(@%Y(7) = 1 &(Q%)"(7s) = 0&(Q*)"(34) >0,
whence
F(re) = 1&F"(py) = 0& f""(y4)<0.
Let U be an open interval with y, € U and S'|U<0. By Lemma 6(d)(c), for some

integer M we have Ay "™ = . ([~1,1) < U\{y4}. Lemma 12, applied either
to f or to —fo (—id), then yields

limn (o fur 2D =" o= D)WY = g,
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where g: A" 2**— R\{0} is continuous. Since we have the identity Suszs =50 fus
it follows that

1im(fm+2ns+zMs(1)"fm+2ns+zMs(“ D) Yot ams+ 20 = S 2nas*9 © Fruwas
n

Moreover, by Lemma 6(d) and condition (xii).
Um| fop g o fi )] 145 = Bm| (Qrimeny)’| 145 = Hm[(Qp e (2"(c0s)] = 1
n n n
and thus |G,| tends to | fusoss'd @ fpuonsl - B
LemMA 14. For every sequence (z,) such that z, = (t,, x,) € Bl,

lim DF;}t o F(z) = 1.

n—+oo
Proof. First note that, under the same hypothesis,
(14.1) lim DF, o F(z) = 1.
n-+co

Indeed, we have

‘ DFk-,—: o F(z,) = a"'"a’:”}ﬂ &,nP () O =
0 1 .
by (1) and (6), and also
© limg,p'(4) = lim &,p'(p"(c) = lim g, = 1
n=co n—oo n- o0
by Lemma 6(d) and condition (vii).
According to (11),

F(Z) = F(z)+Fk,n ° ,(pk,n ° ﬁ ° (p;,f,(z)—-—Fo (pk,n ° ﬁ e qu;:}l(z) (ZEB;:) *

This implies

(14.2) FiloF(z) = Fto F(2)+ a0 B o 0pi2)—
~FyoFoge,ofo0en(@ (zeBy
because
Tz 0 F(t, %) = my 0 Fy (¢, %) = Q,'[(;n(cw)(x) ((z, x) € By),

Tae Bt x) =x ((t,x)e B},

the first component of F, , is affine and because, as it is easy to check, both s.ideis
coincide for z & {p"(c,)} x 4;. To deduce the lemma from (14.2) and (14.1), it is
thus enough to prove the estimate

-1
sup sup || Doy 0 B0 @@ < oo .
up SUp || Dy e f o @i

' zeBp

2 — Fundamenta Mathematicae 133/1
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For the norms taken over B or By it holds that
1Dy, 0 B o @il < [1D@g Wl DA (1D 2|
= ID@eull" 1D p,ll  (by (10a,1))
= ||z n DPr, nll * 11k, D™ @l
< |16 DWiull 11 DY © Pl 1|0, w D™l
X |ID™ M n o il

By Lemma' 13, Sup”Dl/I;,f; ° (Pk,uH'SuPHD_I‘//k—,: ° ‘pk,n” < 0. AlSO
n n

sup||a,n Dy, ll S|y, D™, ll < 0
n

n
; xd O
D = - .
l//k,n ak,n[ 0 il}

since

Cra 15. The map f is a diffeomorphic embedding of class C*.
. Proof. In view of Lemma 6(a)(c)(d) and Lemma 8 it is clear that fis continuous
at any point of Z and hence, by Claim 11, continuous everywhere. Taking condi-
~tions (xiii) and (vii) into account we see that for some neighbourhood U of Z we
have f|U\ U B; = FIU\ U B;. By Lemama 6(d) the set kU BiuZ is closed, so
ks n .

k,n

Df(z) = DF(z) for ze UN\(U BiuZ).
k.

By virtue of Claim 11 and the continuity of f, the goal is to prove that for any z, € Z
and for every sequence (z,) tending to z, of elements of R*\Z the limit lim Df (z,)
exists, We will show that it equals DF(z,). To this end it suffices to consider the se-
quences with z, & int(B{"\V{" for some i,, j,. We may assume that /, is constant,
i, = k. By Lemma 6(c) we have limj, = oo.

Lemma 8, Lemma 6(b) and the definitions (9), (12) and (7), yield

f(Z) = Fk,n ° (Pk,n oWo (DI;} ° Fk—,.n:l ° F ° (Pk,n e W—l ° (P;:(Z) (Z EB;;\VI':) .

We begin with the middle part of this formula. Denote G, , = cp;",,} o Fy, 1o Fa Qi
Using the fact that

Vi o B o F o ,(0,0) = (0,0)  and  Diy(2) = [ig iﬂ

we deduce from Lemrna 14 that

lim Yn o Fem o Foty, = idy in the space C'(B, R?).
n-oo

This and Lemma 13 imply

lim Gk,n = 1dB
n-o

in C1(B, R?).
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Also, observe that Gy ,| U = idy, where Uis some neighbourhood of {0} x {— %, 0, £
(Lemma 7(b)), and G, preserves the sign of the first coordinate. This along with
conditions (xiv) and (xv) imply that the derivative

DY o Gy, o ¥ (¥(2) = D¥(G,,(2)) o DG,,l2) o D1 ¥(2)

tends uniformly to idp.g,. Since Wo Gyuo¥™H(1,1) = (1,1) and ¥(B\H,)
= B\V,, it follows that )

Lm ¥ o Gy, P! =idp\y,

n-+o0

in CYB\V,, RY.

From this and Lemma 13, by expressing ¢y, in the form ¥, o (¥ia o Qp)s WE
infer that ‘

lim DFj) o f(z,) = lim Dgy s, o ¥ o 9icj, o Fijro Fo gy, 0 ¥ o ppi(z) = 1.
Since

Df(Z,, = DF,:]‘;(F’(—;J: Of(zn)) © -DFk—,'ji Df.(zn) L]
the proof reduces to showing that

(*) lim DFI«,],,(FA:jfI °f(zn)) = DF(z,) .

Let w, = (p™(c), ma(Fijh o £ (2)). We have Fy, of(Bj) < Rx Ay for every n and
P'(e) = my(2,) for every sufficiently great n. Also, DF, ;. (Fy it o f(z,) = DFi ;,(h,)
since DF, ; () is independent of the first coordinate of z Thus, the partial deri-
vatives of Fy;, at Fy .o f(z,) and of F at u, are equal except one:

(6 (my o F)jox 1) (u,) = Pl(Pi"(Ck)) and

.(6 (7y © Fi,3,)/ 3x1) (Fk_jt of (Zu)) = Qg jnt1 ak:it sign(p’(p] "(Ck))) .

Now (x) follows from conditions (vii) and (xii). B

Part 6. The quasiattractor. In this part we prove conclusion (a) of Theorem B.
Define 4 to be () f*(R?).
n=0

CLAM 16. The set A is a quasiattractor of f and R? is its domain of attraction.

Proof. Since fis continuous (Claim 15), we only need to show that cl(f(R?))
is compact, that is, £ (R?) is bounded. Since cl(G(R?)) = R? this reduces to boun-

. dedness of the set fo G(R?) which, by Lemma 9, equals G o F(R?). By Lemma 8 we

have F(R®) = F(R?) = p(R)x Q" !(R). It follows from condition (vii) that the
last set is bounded, and so is its image under G since G displaces points within the
sets By only. M :

We define X to be () F'(R* and K to be [} F"(R?).
. n=0 ) n=0 .
2*
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Levma 17. K = K.
Proof. We will prove the following sequence of equalities:

©

= ) F{(Rx X) = ﬁF"(RxX) =
n=0 n=0

The second one follows from Lemma 7(d). By definition, F is one-to-one and
K= Rx ﬂ Q07"(R) =
one-to- one Lemma 7{a) implies that K< R x ﬂ Q7"(R), and these facts together

n=0

Rx X, so we have the ﬁrst Lemma 8 implies that F is also

give the third equality. M
LemMa 18. The map G takes K onto A.

Proof. We will verify the following sequence of equalities:
G(K) = G(K) = G( noF"(RZ)) = QOG(F"(RZ))

= () F(G(R) = n 1R =
n=0
The first equality follows from Lemma 17. The third one holds since the sets F"(R?)
form a descending sequence and each element has a finite number of preimages
under G (at most two). The fourth holds because Geo F* = f"o G by Lemma 9.
The fifth equality holds because R2 = G(RH UV, f(GRH)< G(R*) (since

GoF =1+ G), fF(V) ¥ by (12) and mf"(V) @ by (12). ®

LEMMA 19. There exists a continuous map Y. R*— R* such that s« G = 7.
Proof. Define '

(e for ze Vy,
vy = {7 o
0 G7Nz) for ze R*\V .

Ifz € Hy then G(2) € Vi, s0 ¥ (2) = p"(c;) = W o G(2). If z € R*H then G(z) € R*\V,

80 Yo G(2) = my e G710 G(z) = my(z). Now we will check the continuity. If

UsR\D is an open set (recall that D = {) {p"(c,)}) then the preimage
k,n

Yy~ (U) = Go a7 Y(U) = G(UxR) is also open since G settles a homeomorphism
between the open sets R™N\(HuUZ) and R*™\(VuZ), and HuZ< Dx R. Now
let ye D and U = (a, b) where a <y < b and b—a < d (see (3)). We will show that
the preimages ¥~ '((—o0, a]) and ([, c0)) are closed. Let ¢ = y—~d. Then,
by (3), [e, al< R\D whence ¥ ~!([c, a]) = G([c, a] x R). Since

GI(RN(—1,2))x R = id
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and the set [¢, a] x [—1, 2] is compact, it follows that ¥ ~*([c, a]) is a closed set.
Also, Yy~ ((—o, c]) = (— o, c]x R since

Y H(—o0,c]) = G((— o0, c] x RNH) U U Vi

(k,n); p(er) <y

and since, by (3), for each rectangle B we have either By =(—o0,c]xR or
Bin((—o0, c]x R) = @. Thus, the preimage ¥~ *((— 0, a]) is closed. Similarly,
Y([b, o)) is closed. B

CLAM 20. The dynamical system (f, A) is conjugate to the inverse limit of (p, I).

Proof. Take a continuous map i such that i o G = =, and consider the
following infinite diagram:

f A f

A
e
4
4 K

By Claim 16, 4 is a compact set and f: A -4 is a homeomorphism. The map
F: K— K is one-to-one and onto since F is one-to-one. By Lemma 18, the map
G: K—A is onto. By condition (viii), =, does map K into 7, therefore ¥ takes A
into I indeed.

We will check that the diagram commutes. We have Y o G = =, also
myoF=pom; by (1) and Go F = fo G by Lemmata 9 and 7(d). Hence

|l/ofoG=1//quF= 1Z1°F=p°7t1.=p°1,b'°G,

but G is surjective, so Yof = po.
Since ¥ o f = p o, the formula

(S@)w =¥ ofT"2)

defines a function S: A—lim(p, I) satisfying Sof= po S. We claim that S con-
jugates (£, A) to (p, im(p, 1)), and it remains to prove that § is a homeomorphism.
By compactness of A and continuity of §, it suffices to show that S is one-to-one
and onto.

In order to show that S is onto take an element u = (uq, u3, U4y, ...) € im(p, I)
and let x, = [x(t41)s X(y+2), ..] for e N. Observe that by definition F(u,, x,)
= (Uy—y1, Xy_1) for n=1,2,.., and consequently, (u,, x,) € K for each n. Hence
u = S(G(ug, xo)) by commutativity of the diagram.

To show that S is one-to-one suppose that a, a' € A4 and S(a) = S(a’) and let
t, %), (t'.x") e K satisfy a = G(¢,x) and @' = G(¢'; x'). For any neN we have
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g o F7™t, x) = wy o F7"(t', x'). Hence t = n(t, x) = n,(¢t', x") = ¢’ and, by the
identity
F(u’ [vo, V1 W)= (P(u)s [X(u)’ Vos Vg ]) »

x=[yom o F7't,x), yom o F3(t, %), ...]
‘ =[xeom o F7Y(t",x), x om0 F72(t', x),..] = x'.

Thus, (t x)= (' x)and soa=a. W

Note that if it was assumed in Part 2 that sign(Q;) = sign(p’ )]Ik then F pre-
serves orientation, and otherwise F reverses orientation, By Lemma 8 and since
F|bd(B}) = F|bd(B}), the same is true for F and so, by (12), also for £, This con-
cludes the proof of Theorem B. ;

Proof of Theorem A. Let g: M—M be a diffecormorphism of a two-dimen-
sional manifold M. Take a map f: R*- R? satisfying the conclusion of Theorem B.
If M is orientable, assume that f and g both preserve, or both reverse, orientation.

0
Denote A = () fYR?), let D be a C* disk such that A< D and f(D) <int(D),

n=0
and take a C*-embedding 4: D —int(M). By condition (b), f| D can be approxi-
mated in the C* topology by a C* diffeomorphism f;: D— 7 (D) which coincides
with f in a neighbourhood of bd(D). Let f; be.close to f enough to be isotopic with f
via the linear parametrization. Then, the C'-diffeomorphism g,: M- M satisfying
giehefi = hof|D and g M\kof(D) = id, is diffeotopic to the identity. ¥ M is
orientable then g o b preserves orientation if and only if hof, does. Hence, by
Th. 3.1 of Ch. 8 of [1], there is a C*-diffeomorphism g,: M — M, diffeotopic to the
identity, such that g,egsh = hofy. The C!-diffeomorphism ¢ = g, eg,og is
thus diffeotopic to g, of class C* outside #(Z), and such that @ o h = hof|D. B

4. Appendix. We will show that in our construction the diffeomorphism
f: R*—> R*is not of class C2 unless C = @, that is, p is monotonic. More precisely,
the derivative Df is not Lipschitz continuous in any neighbourhood of Z. To verify
this, first observe that, for some neighbourhoods U of, ¢y,,(bd(B)) we have
f1U, = F|U,, and hence

Oy o f10x4(1,00, 1)) = 0my 0 Flox,(91,(0, 1) = 8y,

for every sufﬁmently great n. On the other hand we have f (V’) = V! 5o there
exist points z,e By with &,,(dn, o f)ox,)(z,) = ay,4105s. Now suppose that

12 (Z2)— Df (1,0, D)II < L-dist(z,, 1. (0, 1))
for each n. Since diam (B}) < 3a,, this implies (1 —ay, ,,Hal g 3[,(11 4, and hence
we have ay,,>Kn™* for some K> 0. Tt follows that the series Z a,,, is divergent,

and this is impossible since the rectangles B" have disjoint mtemors‘ and each of them
intersects the line {#"(c)} x R along a segment of length ag,. @
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