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Bing-Whitehead Cantor sets
by

David G. Wright (Provo, UT)

Abstract. We exhibit a collection of Cantor sets in 3-space so that the embedding of a given
Cantor set exhibits a high degree of homogeneity. Let X be a Cantor set from the collection and
S F; — F; a one-to-one correspondence between arbitrary finite subsets of X. Then f extends to
a homeomorphism of 3-space to itself that sends X onto X. However, these same Cantor sets are
not strongly homogeneously embedded, i.e. there are homeomorphisms of X to itself that do not
extend to a homeomorphism of 3-space. Daverman [D] has constructed wild Cantor sets in S"(n>5)
that are strongly homogeneously embedded. However, it is unknown if a strongly homogeneously
embedded Cantor set in §® must be tame.

We also give an independent proof of a recent result by Ancel and Starbird that gives necessary
and sufficient conditions for Bing—Whitehead decompositions to be shrinkable. These decompo-
sition give rise to the Cantor sets described in this paper.

1. Introduction. R. J. Daverman has constructed examples of wild Cantor sets
in R" and S” (n > 5) [D] with the property that every self homeomorphism of these
Cantor sets extends to a homeomorphism of R or S™. Such Cantor sets are said to
be strongly homogeneously embedded. The constructions of Daverman definitely rely
on techniques that are only valid in high dimensional spaces. It seems doubtful
that such Cantor sets exist in 3-space.

Antoine’s necklace [A], the classical wild Cantor setin 3-space, is homogeneously
embedded, meaning that for each two points in the Cantor set, there is a homeomor-
phism of 3-space that takes one point to the other and takes the Cantor set to itself.
However, Antoine’s necklace is easily seen to not be strongly homogeneously em-
bedded. In fact, if the tori Ty, T}, T, T, are the cyclically ordered components of the
first stage of a defining sequence for an Antoine Cantor set 4, then any homeomor-
phism of 4 to itself that fixes a point of T, n A and sends 2 point of T, 1 4 to a point
of T30 A cannot be extended to a homeomorphism of 3-space [Wrl.

Suppose that X is a Cantor set in 3-space that is strongly homogeneously em-
bedded, then the linking that occurs in the defining sequences of Antoine’s necklace
must be avoided. An obvious candidate is the Bing Cantor set described in the
following paragraph.

R. H. Bing proved that the union of two Alexander crumpled cubes attached
by the identity map along the 2-sphere boundaries yields a 3-sphere [B]. His proof
showed that a Cantor set in 3-space could be comstructed as the intersection
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of manifolds M; i=0,1,2,..., where the manifold M, is an unknotted solid
torus and each component of M, is a solid torus which contains two compo-
nents of M;,, that are embedded as shown in Figure 1. We call the intersection of

Fig. 1

the M; a Bing Cantor set. If X is a Bing Cantor set, then X exhibits a higher degree
of homogeneity than Antoine’s necklace for if f1 F, » F, is a one-to-one corres-
pondence between finite subsets of X, then there is a homeomorphism of 3-space
extending f which takes X to X. This is because, unlike Antoine’s necklace, the com-
ponents of the defining sequence of the Bing Cantor set fall apart. Hence, by going
deep enough into the defining sequence M; for the Bing Cantor set we can find a j so
that the points of F, are in different components of M; and the same is true for F,.
Now using the fact that the components of M; fall apart, it is easy to get a homeo-
morphism of 3-space to itself that takes X to itself and takes the component of M,
containing a point p of F; to the component of M, containing f(p). This homeo-
morphism can then be followed by a homeomorphism of 3-space which fixes X
and the components of M; set-wise and takes p to f(p) for p in F,.

There is a generalization of the Bing Cantor set obtained by interlacing the
Whitehead link with the construction of Bing. We let G be an upper semi-continuous
decomposition of 3-space consisting of points. and components (| M; where M, is
a solid torus and M;,, is obtained from M; by the Bing Construction (placing two
solid tori in each component as in the construction of the Bing Cantor set — see
Figure 1) or by the Whitehead Construction (placing a Whitehead link in each com-
ponent — see Figure 2). We assume that the sequence M, has an infinite number
of Whitehead constructions. Let , be the number of consecutive Bing constructions
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placed in M, before the first Whitehead construction. In general let #; be the number
of consecutive Bing constructions between the (i—1)st and ith Whitehead con-
structions in the sequence M;. Of course #; could equal zero if there are consecutive
Whitehead constructions. It should be clear [B] that if there are enough Bing con-
structions, then the decomposition G is shrinkable. In fact a recent result of Ancel
and Starbird [A-S] states that the decomposition is shrinkable if and only if the

.. . . . . .
series Z 5 diverges. We outline an independent proof of this fact in Appendix A.
i=1

In any case, if G is shrinkable, then the image of [} M; in the decomposition space
is a Cantor set which we call a Bing—Whitehead Cantor set. Such Cantor sets have
been studied by De Gryse and Osborne [D-O] who showed that the complements
of such Cantor sets are simply connected. We outline a simple proof of this fact in
Appendix 2.

The components of a defining sequence for a Bing—Whitehead Cantor set fall
apart in the same manner as the components of a defining sequence for a Bing Cantor
set. Hence, Bing-Whitehead Cantor sets exhibit the same degree of homogeneity
as Bing Cantor sets. If anything, the components of a defining sequence for a Bing—
Whitehead Cantor set seem to be even more loosely held together because the com-
plement of a Bing-Whitehead Cantor set is simply connected.

The goal of this paper is to show that even though the components of a defining
sequence for a Bing Cantor set or a Bing-Whitehead Cantor set fit together loosely,
such Cantor sets still fail to be strongly homogeneously embedded in 3-space.

2. Definitions and notations. We use R" and S" to denote Euclidean n-space
and its one point compactification, respectively. By 3-space we will mean either R®
or $3. If M is 2 manifold, we let Bd(M) and Int(M) denote the boundary and interior
of M, respectively. We let 7 denote the unit interval [0, 1] and B* denote a 2-dimen-
sional disk. By a solid torus we will mean a space homeomorphic with B?x S™*.
If X is a subset of a set Y, we let X° denote the complement of X in Y. A map will
denote a continuous function. A Bing link is an embedding of two solid tori in a solid
torus as shown in Figure 1. A Whitehead link is the embedding of a solid torus into
another solid torus as shown in Figure 2. All embeddings throughout this paper are
piecewise linear embeddings.

A disk with holes is a compact, connected, planar 2-manifold. Let f: H - M
be a map from a disk with holes into a manifold M so that f(Bd H) = Bd M. Follow-
ing [D-E], we say that f is interior-inessential if there exists a map f': H - BdM
such that

f|BdH = f|BdH.

Otherwise, f is said to be interior-essential. In addition, a closed subset S of M is
said to be geometrically central in M if whenever h: H — M is an interior-essential
map, then A(H)NS = @. Let T be the universal covering space for a solid torus.
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Let n: T— T be the projection map. If E is either a Bing link or a Whitehead link
in T, it is well known [D-E] that z~'(E) is geometrically central in T

3. Bing-Whitehead compacta and Cantor sets. Let M, be an unknotted solid
torus in 3-space. We inductively define M;, i > 0 by letting M, , be obtained from M;
by placing a Whitehead link in each component of M, or by placing a Bing link in
each component of M;. We inductively define M; i <0 so that M; is a Whitehead
link in M;_,. Let X = [\ M,. If all but finitely many of the M;, i> 0, are obtained
through a Bing construction, we call X a Bing compactum (or Bing Cantor set if it
happens to be a Cantor set). If all but finitely many of the M, >0, are obtained
through a Whitehead construction, we call X a Whitehead compactum. If infinitely
many of the M;, i> 0, are obtained through the Bing construction and infinitely
many of the M;, i>0, are also obtained through the Whitehead construction, then
we call X a Bing—Whitehead compactum (or Bing-Whitehead Cantor set if it happens
to be a Cantor set). Let X* = [} M{. We call X a continuum at infinity for the
compactum X. -

If X is a Bing compactum or Bing-Whitehead compactum, then there must be
an infinite number of Bing constructions in the defining sequence. In this case, we
let N, (k=1,2,3,...) be the M, with smallest subscript that has 2* components.
The components of N; will be denoted by Ny(1) and N,(2). The components of N,
that lie in N, (i), i = 1, 2, will be denoted by N, (i, f), j = 1, 2. In general, the com-
ponents of Ny, that lie in Ny, i, 03, ..., &), §€{1,2}, will be denoted by
Nieat Cys by i35 ooes s feet)s Bers € {15 2} A component of X may now be written
as a sequence of 1’s and 2’s, The sequence i, i,, I3, ... denotes the component that
is contained in Ni(i, i, i3, ..., i) for each k. In case the component of X consists
of a single point, we also let this sequence denote the“‘_point.

4. Some general facts. Let T be a solid torus. Let 7' be a Whitehead link and T
a Bing link in 7, respectively. In the next two lemmas we consider the manifolds
W=T-IntT" and B=T—IntT".

Lemma 4.1. The manifolds W and B are boundary incompressible; i.e., a loop
n the boundary is essential in the boundary if and only if it is essential in the manifold.

Proof. We give a proof for W. The proof for B is similar. Let n: T'— T be
the projection map from the universal cover T of T. Let y be a loop in BAT. If y is
inessential in W, then there is a lift § of 7 to the universal covering space T. But
n~(T") is geometrically central in T. Hence, § is inessential in Bd T; and y is inessen-
tial in BdT.

Suppose that y is a loop in BAT” that is inessential in W. Let R and S be lifts
of 7" in Tthat are adjacent. Then there is a Lift § of y to the universal covering space T
so that 7 lies on Bd R and is inessential in the complement of Int(RuU S). The loop §
cannot go around Bd R in the meridional direction because it is inessential in the
complement of IntR. The loop # cannot go around R in the longitudinal direction
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because it is inessential in the complement of IntS. Hence § is inessential in BdR
and y is inessential in BdT".

LemMa 4.2. Let f be amap of the annulus S* x I into W or B so that the boundary ’
components of the annulus are sent into different boundary components of W or B.
Then the map f is inessential; i.e., f is homotopic to a constant map.

Proof. We give the proof for W. The proof for B is only slightly harder and is
not given. We assume that f(S* x {0}) is sent into BA7 and that £ (S*x {1}) is sent
into BAT". Since 7” is contractible in T, the map f lifts to a map f to the universal
cover Tof T. Let R and S be adjacent lifts of T’ so that f (S x {1}) is sent into BdR.
Since f|S* x {0} bounds homologically in the complement of Int(RuU S), we must
conclude that |S!x {1} bounds homologically in the complement of Int(RuS).
Since f|S* x {1} bounds homologically in the complement of Int R, it must be trivial
in the meridional factor of Bd R. Since f |S* x { 1} bounds homologically in the com-
plement of Int.S, it must be trivial in the longitudinal factor of Bd R. Hence, f|S* x {1}
is inessential in BAR. This implies that f|S*x {1} is inessential in BdT", and our
lemma is proved.

We now let M; be a defining sequence for a compactum X as described in Sec~
tion 3. We also let X* denote the continuum at infinity for X. This notation will
be used for the remainder of this section.

TueOREM 4.3. Suppose that v is a loop on BAM;. Then v is essential in Bd M,
if and only if v is essential in S3—(Xu X™).

Proof. This follows easily from general position and Lemma 4.1.

THEOREM 4.4. Suppose v, y, are loops in BAM;, BAM; (i # j), respectively,
such that y, and y, are homotopic in S° — (XU X ). Then vy, and y; are inessential
in BdM;, BdM;, respectively.

Proof. Let f: S'xI— S°—(XUX®) be a map so that f|S*x{r} =1y,.
We assume that f'is in general position with respect to the surfaces Bd M,. By Theo-
rem 4.3 we may assume that £ ~*(Bd M,) consists only of simple closed curves that
are essential in the annulus. Since i # j, there is an essential annulus 4 of S*xIso
that A4 is sent by f into M,—IntM,., for some k, the boundary components of
A being sent into different boundary components of M;—IntM,,,. Lemma
4.2 and Theorem 4.3 can now be applied to complete the proof.

LemMa 4.5. Let J be a meridional simple closed curve on some component T of M ;
and V be an open set that contains a component C of X\ T. ThenJ bounds a disk whose
intersection with XU X® lies in V.

Proof. Let D, be a disk in T whose boundary is J and whose intersection with
M., consists of meridional disks of the component of M, that contains C.
Modify D; on D, nM,;,, to obtain a disk D, in T whose intersection with M;, ,
consists of meridional disks of the component of M;, , that contains C, Continuing


Artur


110 D.G. Wright

inductively, we find a disk D, in T with boundary J whose intersection with M.,
consists of meridional disks of the component of M;,, that contains C. For large
enough %, we may assume that the component of M,,, that contains C lies in V.
Hence, D, is our desired disk.

TuroreM 4.6. A 2ssphere in S® cannot separate XU X®, and hence

S3—(XUX®) is irreducible.

Proof. Suppose S is a 2-sphere in §3— (XU X®). Let i be chosen s6 that M;:
has only one component whose boundary lies in the same complementary domain
of Sas X®. LetJ be a meridional simple closed curve of Bd M;. If S separates XU X,
then there is a component C of X that lies in the complementary domain ¥ of §
that does not contain X*. By Lemma 4.5, J bounds a disk whose intgrsection with
XU X® lies in V. Cutting this disk off on S shows that J is inessential in XU X®,
Hence by Theorem 4.3, J is inessential in Bd M;. However, this contradicts the fact
the J is a meridian of Bd ;.

5. The homeomorphism. Now suppose that X is a Bing or Bing—Whitehead
Cantor set as described in Section 3. The points of X are denoted by sequences of 1’s
and 2’s. We define a homeomorphism # of the Cantor set by sending the point

iy, 0y, 03, iy, is5, Igs - 1O the point iy, iy, iy, i3, g, i5y .

THEOREM 5.1. The homeomorphism h cannot be extended 0 §° (RY).

Proof. Suppose the homeomorphism % extends to a homeomorphism H of S?
to itself. This gives rise to a second defining sequence H(N)) for X. For sufficiently
large k, j>2k implies H(N;) misses X* and N; misses H(X®). Let
A=Nyu(,1,1,..,1), 4; = Ny.(1,1,1,..,1,0), and

Lij).

We use a tilde to denote the image of the above sets under the homeomorphism
H; e.g, H(4)=A. We denote by bars the intersection of the above
sets with the Canfor set X; e.g, 4 = XnA. Notice that H(A) = A and
H(A;j) = 4;;. We may suppose that the surfaces Bdd, BdA,, and Bd4;; are in
general position with respect to the image under H of these surfaces. We now show
that we may assume that any intersections of the surfaces Bd 4, Bd4 ;» and BdA4;;
with any of their images under H give rise only to simple closed curves that are
essential in each of the containing surfaces. First note by Theorem 4.3 that a simple
closed curve in the intersection of any two of the above surfaces is either essential
or inessential in both. We use the irreducibility of 8§~ (XUX®) to remove any
inessential simple "closed curves.

Now each of Bd4; and Bd 4, must meet both Bd 4, and Bd4,. This is because
Ay VA, c 4y, 4, Udycdy, 4,04, A, and 4,,Ud,, c4,. Hence by
Theorem 4.4 Bd 4, and BdA, do not meet any of the sets Bd4 or Bd 4;;. Hence,
we may conclude that 4, UA,, WA, and A, uAdy, A,

A = Nyein(1, 1, 1, .,
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Let D be a disk which lies in 4,, whose intersection with 4,, is the boundary
of D and a longitude of 4,,, and which meets 4, , precisely in two meridional disks
of A,,. We assume that D is in general position with respect to Bd4,. Now consider
the curves in DNBd 4. Because Bd A, separates 4, from 4,,, DnBd 4, contains
a simple closed curve J that is homotopic in S*—(XUX®) to either a longitude
of A or a meridian of 4;,. So J is homotopic in S*— (XU X™®) to an essential
curve yq in Ay;, i = 1 or 2. If J were inessential in Bd 4, then y, is inessential in
§3— (XU X*), a contradiction to Theorem 4.3. Hence, J is essential in Bd 4,. Let 74
be a simple closed curve of Bd4; nBd4;. Then y, is essential in Bd 4, and misses J.
So y, and J are homotopic in BdA;. Now y, is essential in Bd Ny, 2, Py s essential
in Bd Ny, 4, and y, is homotopic to y; in S*—(Xu X ). This, however, contradicts
Theorem 4.4 and the theorem is proved for S°.

We consider S to be the one point compactification of R3. If the homeomor-
phism /4 could be extended to R, then % could be extended to S3 by sending the
point at infinity to itself. Hence, the theorem is also true for R®.

Appendix A

Let X = () M; denote a compactum as described in Section 3. We assume that
the sequence M; (i>0) has infinitely many Whitehead constructions. Let n, be
the number of consecutive Bing constructions placed in M, before the first White-
head construction. In general, let »; be the number of consecutive Bing constructions
between the (i—1)st and ith Whitehead constructions in the sequence M;. Let G be
the decomposition of 3-space consisting of points and components of X.

THEOREM (Ancel-Starbird). The decomposition G is shrinkable if and only if

©

: in-
the series —2—z diverges.

i=1
Proof of divergence implies shrinkability.

Dermirion Al. Let R, R,,:., R, By, B, ..., B, be disjoint meridional
disks in a solid torus 7. Let R = |J R; and B = |J B;,. We say that (R, B) is
a k-interlacing collection of meridional disks if each component of T—(Ru B) has
exactly one R, and one B; in its closure. It may be helpful to think of the disks in R
and B as being colored red and blue, respectively.

DeriNiTIoN A2. Let R and B be disjoint sets and T a solid torus. We say that
(R, B) is a k-interlacing for T if there are subsets R and B’ of R and B respectively
so that (R, B') is a k-interlacing collection of meridional disks, but it is impossible
to find such subsets that form a (k+1)-interlacing collection of meridional disks.

The following two lemmas are quite simple and the proofs will not be given,
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LemMa A3. If k>0 and (R, B) is a k-interlacing for a solid torus T so that
each of RnT and BT is the union of finitely many disjoint meridional disks of T,
then it is possible to put a Whitehead link T" in T so that (R, B) is a (2k—1)-interlacing
of T' and each of RnT" and BNT’ is the union of finitely many disjoint meridional
disks of T'.

LemMa A4. Let k>0 and (R, B) be a k-interlacing for a solid torus T so that
each of RnT and BT is the union of finitely many disjoint meridional disks of T.
Then it is possible to put two solid tori Ty and T, so that Ty UT, is a Bing link in T,
(R, B) is a (k—1) interlacing of each T;, and each of RnT; and BNT; is the union
of finitely many disjoint meridional disks of T;.

Note. We agree that (R, B) is a 0-interlacing of T in case T misses either R or B.
With this agreement, Lemma A4 makes sense for £ = 1. Also, it is clear that if
(R, B) is a 0-interlacing of T, then (R, B) is a O-interlacing for any solid torus con-

tained in 7.
(-}

We assume now that the series Z% diverges. We show how to construct

i=1
a homeomorphism / of 3-space, fixed outside M, so that the components of (M)
are small for some integer r. We may assume, without loss of generality, that the B®
factor of M, is small. Let (R, B) be a k-interlacing of M, so that each of Rn M,
and BnM, is the union of finitely many disjoint meridional disks of M, and so
that any connected subset of M, that misses R or B is small. Choose 7 so that the

. n; .
partial sum ZE; is larger than k/2. We now choose the homeomorphism 4 so

i=1
that 2(M;.,) is embedded,in £(34;) as in Lemmas A3 and A4 through the nth White-
head construction. Let M, be the set obtained with the nth Whitehead construction.

A little arithmetic reveals that (R, B) is an m-interlacing of each component of
M, where m equals the maximum of zero and

2n+1 ]_c_ _’5_ _i_
2 2! 2"
i=1 i=1

But n was chosen so that m is equal to zero. Hence, the components of A(M) are
all sm.all. Th?, proof that divergence implies shrinkability now follows by applying
the Bing shrinking criterion’ [C] and the above argument to components of M;.

Proof of shrinkability implies divergence.

DEFINmpN A.S. Let Hbe a properly embedded disk with holes in a solid torus T’
so that the inclusion map is interior-essential; i. e., the inclusion maps on BdH

cannot be extended to a map of H into BAT. We call H a meridional disk with holes
for the solid torus 7.
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TeEOREM A6. Let H be a properly embedded disk with holes in a solid torus T.
Then H is a meridional disk with holes if and only if the inclusion f: H — T lifts to
a map J from H to the universal cover T = B?*x R and f (H) separates T into two un-
bounded complementary domains.

Proof. We assume that H is a meridional disk with holes and choose an orien-
tation of H which induces an orientation on the boundary curves of H. Let
P1s V25 T3» s V5 De the oriented boundary curves of H that are nontrivial in BdT.
Since H is embedded in 7, the nontrivial boundary curves of H are parallel in BdT;
i.e., y; = *£7; in the first homology of BdT. If any one of these is nontrivial in the

k

longitudinal factor then we must have ). y; = 0 in the first homology of BdT.
i=1
k
Because the fundamental group of BdT is abelian, )’ y; = O implies that the inclusion
. i=1

map on BdH can be extended to a map of H into BA7. This contradicts the fact
that the disk with holes H is a meridional disk with holes.

Hence we may assume that all of the boundary curves of H must be either trivial
or meridional simple closed curves of BdT. Therefore, the inclusion map f: H—» T
lifts to a map f: H — T from H to the universal cover T of 7. Now T'is homeo-
morphic with B>x R. We may choose an identification between T'and B> x R so that
under this identification {0} x R is in general position with respect to f(H). The
orientable surface f (H) separates T = B2x R into two components. Hence, under
an orientation of f (H) and {0} x R we find that the algebraic intersection number

k

must be 0 or +1. Linking theory then shows that } y; is the algebraic intersection
i=1

k
number. We have already established that )y, is not zero. Hence, the algebraic
i=1

intersection number is +1 which is the same as showing that f(H) separates the
universal covering space into two unbounded complementary domains.

The proof of the other direction of the theorem is much easier and is left to the
reader.

Note. We have shown that the nontrivial boundary curves of a meridional disk
with holes H in a solid torus T must be meridional simple closed curves of T" whose
algebraic sum in the first homology of BAT is +1.

Lemma A7. Let H, and H, be disjoint meridional disks with holes in a solid
torus T. Let W, and W, be the closures of the complementary domains of Hy  H, in T.
Let P be a compact planar 2-manifold properly embedded in T—H, v H,. If P sepa-
rates H, from H, in W,, then W;nP contains a meridional disk with holes.

Proof. By lifting W, to the universal covering space of T, we see that the lift
of W;nP separates the universal covering space into complementary domains at
least two of which are unbounded. Hence, some component of the lift of W;nP
must separate the universal covering space into two unbounded complementary
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domains. The projection of this component into W;nP is the desired meridional
disk with holes of W;nP.

DerNiTION A8. We define a k-interlacing collection of meridional disks with
holes by replacing meridional disks in Definition Al by meridional disks with holes.

DermNITION A9. Let R and B be disjoint sets and T a solid torus. We say that
(R, B) is a k-interlacing for T if there are subsets R" and B’ of Rand B, respectively,
so that (R', B) is a k-interlacing collection of meridional disks with holes, but it
is impossible to find such subsets that form a (k+1)-interlacing collection of meri-
dional disks with holes.

Note: Definition A9 generalizes Definition A2.

Lemma Al10. Suppose R and B are disjoint 2-manifolds properly embedded in
a solid torus T so that (R, B) is a k-interlacing for T. If T' is a Whitehead link in T
that is in general position with respect to Ru B, then (R, B) is an m-interlacing for T’
where m > 2k—1.

LemMa All. Suppose R and B are disjoint 2-manifolds properly embedded in
a solid torus T'so that (R, B) is a k-interlacing for T. If Ty and T, are solid Tori that
Jorm a Bing link in T and are in general position with respect to RU B, then (R, B)
is an m-interlacing for either Ty or T, where m>k—1.

We give the proof of A10. The proofof A1l is similar. We first need a definition.

DeriniTioN Al2, Let D; and D, be disjoint meridional disks with holes in
B?x R each of which separates B?x R into two unbounded complementary domains,
We say D, is less than D,, and write D; < D,, if D, lies in the complementary domain
of B>x R—D; whose R coordinates are bounded below but not above.

Proof of Lemma AIO. Since (R, B) is a k-interlacing for T, there are disjoint
meridional disks with holes R;, R,, ..., Ry, B, B,, ..., B, so that JR; = R'=R,
UB;= B'<B, and (R, B') is a. k-interlacing collection of meridional disks with
holes for T. Let B> x R be the universal cover of T, The lifts of R; and B; separate
B*xR into two unbounded complementary domains. Let R(j) and Byj)
(—'— 00 <j <o) be the lifts of R;and B; (1< i < k), respectively. Without loss of gener-
ality we may suppose that the subscripts have been chosen so that R, (0) < B(0)
<Ry(0) < B,(0) <...< R(0) < B,(0) and for each i (1<i<k) and integers r<s
we have both R(r) < R(s) and B(r) < By(s). Because the union of all ifts of T
Is geometrically central in B®x R, each R,(j) and B,(j) must meet a lift of T’ in
meridional disk with holes. By relabeling, if necessary, we may assume that R,(0)
meets a given lift 7 of 7" in a meridional disk with holes, but all other lifts of R,
and B; that are less than R,(0) do not meet 7" in a meridional disk with holes. We
claim that B,(0) must also meet 7* in a meridional disk with holes. For some 1 =0
By(n) u{ﬂst meet 7" in a meridional disk with holes. If n = 0, our claim is vaIid’.
Otherwise, since B,(0) separates R;(0) from B,(n), we can apply Lemma A7 to see
that B,(0) meets 7" in a meridional disk with holes. “
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Let H, = R,(0), H, = B,(0) be meridional disks with holes in T*. Let W, and W,
be the closures of the complementary domains of H, U H, in T". By Lemma A7
and the fact that each of B;(0), R,(0), B,(0), ..., R,(0) separates R,(0) from B,(0)
in B, x R, we see that each of B,(0), R,(0), B,(0), ..., R,(0) meets both W, and W,
in a meridional disk with holes of T". By choosing these disks with holes inductively,
we obtain (R, B"), a (2k— 1)-interlacing collection of meridional disks with holes

N k k

where R” < {J R,(0) and B” < {J B,0). Projecting this interlacing from 7% down
i=1 i=1

to T', we see that the conclusion of Lemma Al0 is true.

o0
[P
We now show that if the decomposition is shrinkable, then E 5 diverges.
© i=1
: : n
Suppose that 2~: converges. Let k be a positive integer so that k/2 is greater
i=1

than Z;—: +1. Let (R, B) be a k-interlacing for M, so that each of Rn M, and
i=1

BN M, is the union of finitely many disjoint meridional disks of M,. We further
assume that RuU B is in general position with each M; for i > 1. Let M, be the set
obtained with the nth Whitehead construction. By Lemmas Al0 and All, (R, B)
is an m-interlacing for some component of M, where m is greater than or equal to

onti I_C_ _’ﬁ_ _1_
2 2 gi+r |”
i=1 i=1

But k& was chosen so that this number is positive for any choice of #. Hence for all i
some component of M; must be large enough to meet both R and B. But this con-
tradicts the fact that the diameter of the components of M, tend to zero as i gets

w
n.
large. This contradiction arose from the supposition that E E:— converges. There-
i=1

@
: :n- .
fore we conclude that 2—: diverges.
" i=1

Appendix B

TuroreM. (De Gryse-Osborne). Let X be a Bing—Whitehead compactum in
3-space. Then the complement of X is simply connected.

Proof. Let M; be a defining sequence for X as described in Section 3 so that
X = [} M;. Let y be a loop in the complement of X. Choose  sufficiently large so
that y lies in the complement of M,. Without loss of generality we may assume
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that M, is obtained from M, by placing'a Whitehead embedding in each com-
ponent of M,. Let Ty, Ty, ..., T}, be the components of M,. Choose disjoint open
3-balls U;, Uy, ..., Uy in 3-space so that T, is contained in U; as an unknotted solid
torus. The loop y contracts in 3-space. By general position we may assume that it
bounds a singular disk so that for each i, 1 < i<k, the singular disk bounded by y
meets T} in a finite collection of meridional disks. However, a meridian of BdT;
bounds a singular disk in U;— M, ., [Wh]. Hence, y bounds a singular disk in the
complement of M,.,, and our theorem is proved. '
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Polynomial growth trivial extensions
of simply connected algebras

by

Jerzy Nehring and Andrzej Skowreonski (Toruft)

Abstract. Let 4 be a finite-dimensional, basic, connected algebra over an algebraically closed
field. Dznete by T(4) the trivial extension of 4 by its minimal injective cogenerator. We show that,
if A4 is simply connected, then the following conditions are equivalent: (i) T(4) is nondomestic of
polynomial growth, (i) T(4) is nondomestic of finite growth, (iii) there exists a tubular algebra B
such that T'(4) =~ T(B), (iv) 4 is tilting-cotilting equivalent to a canonical tubular algebra. Iso-
morphism classes of such algebras are also determined.

Introduction. Let K denote a fixed algebraically closed field, and 4 a finite-
dimensional K-algebra (associative, with an identity) which we shall assume to be
basic and connected. We shall denote by mod A the category of finite-dimensional
right A-modules. We recall that A4 is called simply connected (in the sense of [2])
if it is triangular, that is, the ordinary quiver of 4 has no oriented cycles, and such
that, for any presentation 4 =~ KQ/I of A as a bound quiver algebra, the fundamental
group =n(Q, I) of (@, I) [18] is trivial. In the representation-finite case, this notion
of simple connectedness coincides with the notion introduced in [6]. Further, 4 is
called domestic [20] if there exists a finite number of (parametrising) functors
F;: modK[X] — modA4, 1<i<n, where K[X] is the polynomial algebra in one
variable, satisfying the following conditions:

(2) For each i, F; = — ® 0;, where O,

K[X]
finitely generated and free as a K[X]-module.

(b) For any dimension d, all but a finite number of isomorphism classes of
indecomposable 4 -modules of K-dimension d are of the form F,(M), for some i and
some indecomposable right K[X]-module M.

A is called n-parametric if the minimal number of such functors is n. Moreover,
for a dimension d, denote by u,(d) the least number of functors F;: modK[X] —
— modd, 1<i< puy(d), satisfying the above condition (a) and the following con-
dition:

() All but a finite number of isomorphism classes of indecomposable
A-modules of K-dimension d are of the form F(S) for some i and some simple
right K[X]-module S.

is a K[X]-4-bimoduie which is
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