On derivatives of functions defined on disconnected sets, I

by

A. C. M. van Rooij and W. H. Schikhof (Nijmegen)

Abstract. Let \(X \) be a subset of \(\mathbb{R} \) without isolated points, let \(\mathcal{B}(X) \) be the first class of Baire on \(X \) and let \(\mathcal{B}^0(X) \) be the set of all functions \(X \to \mathbb{R} \) that have primitives on \(X \). Then \(\mathcal{C}(X) \subseteq \mathcal{B}^0(X) \subseteq \mathcal{B}(X) \). For a Lebesgue measurable set \(X \) it is shown that \(\mathcal{B}^0(X) = \mathcal{B}(X) \) if and only if \(X \) is negligible.

1. Introduction. Let \(X \) be a subset of \(\mathbb{R} \). Differentiation of a function \(f : X \to \mathbb{R} \) usually is considered only in case \(X \) is a (closed or open) interval of \(\mathbb{R} \). The definition, however, makes very good sense in more general situations. Whenever \(a \) is a non-isolated point of \(X \) one can define \(f'(a) \) to be \(\lim_{x \to a} (f(x) - f(a))/x \), if only the limit exists. Thus one obtains a function \(f' \), the "derivative" of \(f \), defined on a subset of \(X \).

The purpose of the present paper is to study, for a given set \(X \), the space of all functions on \(X \) that are derivatives. In particular we investigate the relations between \(\mathcal{B}(X) \), the space of all derivatives on \(X \), and \(\mathcal{B}^0(X) \), the first class of Baire on \(X \). (A function \(X \to \mathbb{R} \) belongs to \(\mathcal{B}(X) \) if it is the pointwise limit of a sequence of continuous functions \(X \to \mathbb{R} \).) If \(X \) is an interval, it is elementary that \(\mathcal{B}(X) \) is a proper subset of \(\mathcal{B}^0(X) \). It is not overly difficult to show that the inclusion \(\mathcal{B}^0(X) \subseteq \mathcal{B}(X) \) is valid for every set \(X \subseteq \mathbb{R} \) that has no isolated points (Th. 2.1), but there are non-trivial cases in which the inclusion is not proper. (E.g., it follows from our Th. 3.4 that \(\mathcal{B}(Q) \) contains all functions on \(Q \).) Our basic question is: for what sets \(X \) do we have \(\mathcal{B}(X) = \mathcal{B}^0(X) \)?

If \(X = \mathbb{R} \) and if \(a \) is an interior point of \(X \), then the characteristic function of \(a \) is an obvious example of a function belonging to \(\mathcal{B}(X) \) but not to \(\mathcal{B}^0(X) \); as a consequence, we are mainly interested in sets \(X \) that have no interior points. For such an \(X \) our question is non-trivial. For Lebesgue measurable sets we give an answer in Th. 4.4.

Our techniques and results are similar to the ones of O. Petruska and M. Laczkovich in [5]; there, however, the basic problem is how to determine the sets \(X \) for which \(\mathcal{B}(X) \) and \(\mathcal{B}^0(X) \) have the same restrictions to \(X \).

In Part II of this paper we study the structure of \(\mathcal{B}(X) \). (See [7].)
Historical remark. It may be worth observing that our central question has been answered first in p-adic analysis. In fact, the following theorem is proved in [8]. Let X be a subset of the field Q_p of the p-adic numbers. Suppose that X has no isolated points. Let $\mathcal{D}(X)$ be the set of all derivative functions $X \to Q_p$ and let $\mathcal{D}^0(X)$ be the set of all pointwise limits of sequences of continuous functions $X \to Q_p$. Then $\mathcal{D}(X) = \mathcal{D}^0(X)$.

This result has been one of the starting points for the investigations laid down in the present paper.

Notations and elementary facts. Let $X \subset R$. The closure, the interior and the complement of X relative to R are denoted \bar{X}, $\text{int}X$ and X', respectively. (Instead of $Y \cap X$ we also write $Y \setminus X$.) X' is the set of all non-isolated points of X.

$C(X)$ is the space of all continuous functions $X \to R$, $\mathcal{D}(X)$ is the first class of Baire on X.

Let X be the domain of a function g; let $a \in X^*$. If

$$\lim_{x \to a} \frac{g(x) - g(a)}{x - a}$$

exists, we say that g is differentiable at a and denote by $g'(a)$ the value of the limit. Thus we get a function g' whose domain is a subset of X^*. If $A \subset X^*$ and if f is a function defined on a set that contains A, then by

$$g' = f \quad \text{on} \quad A$$

we mean that $g'(a) = f(a)$ for all $a \in A$. In a similar way we use expressions like

$$\frac{|g' - f|}{1} \leq 1 \quad \text{on} \quad A.$$

If $g: X \to R$, $a \in X^*$ and g is differentiable at a, and if $Y \subset X$ and $a \in Y^*$, then the restriction function $g|Y$ is differentiable at a and $(g|Y)'(a) = g'(a)$. (Keep in mind the difference between $g|Y$ and $(g|Y)'$.)

If X is the domain of g and g is differentiable at all points of X^*, then g is continuous.

By $\mathcal{D}(X)$ we denote the set of all functions $f: X \to R$ for which there exists a $g: X \to R$ with $g' = f$ on X^*. Thus, if X is discrete, then every function on X belongs to $\mathcal{D}(X)$.

For $f: X \to R$ we define a function ϕf on $(x, y) \in X \times X$: $x \neq y$ by:

$$\phi f(x, y) = \frac{f(y) - f(x)}{y - x}.$$

If f is a Lipschitz function if ϕf is bounded. The Lipschitz functions on X form a set called Lip(X).

For $f: X \to R$ we put $\|f\| = \sup \{|f(x)|: x \in X\}$. (Possibly, $\|f\| = \infty$.) Similarly, $\|\phi f\| = \sup \{\|\phi f(x, y)\|: x, y \in X, x \neq y\}$.

The characteristic function of a set A is denoted 1_A. We will not keep track of the domain of definition of such a function: $1_{[0,1]}$ may have as its domain R or $[0, \infty)$ or, indeed, any subset of R.

Our measure-theoretic terms (such as "negligible", "outer measure") always refer to the Lebesgue measure, which is called λ.

2. We prove $C(X) \subset \mathcal{D}(X) \subset \mathcal{D}^0(X)$ for all $X \subset R$.

Theorem 2.1. Let $X \subset R$. Then $\mathcal{D}(X) \subset \mathcal{D}^0(X)$.

Proof. (The theorem is an elementary extension of Lemma 5.5.1 of [5], which is the special case $X \subset X^* \subset [0, 1]$.)

Without restriction, let $X \subset [0, 1]$. There exists a countable $Y \subset X$ such that $X \setminus Y$ is closed in X and dense in itself. Let $Y = \{y_1, y_2, \ldots\}$. By [5], Lemma 5.5.1, the restriction of f to $X \setminus Y$ is the pointwise limit of a sequence g_1, g_2, \ldots in $(C(X), Y)$. By the Tietze Extension Theorem each g_n has an extension f_n in $C(X)$ with $f_n = f$ on (y_1, \ldots, y_n). Then $f = \lim f_n$ pointwise on X. ■

Theorem 2.2. Let $X \subset R$, let $f \in C(X)$ be bounded. Then there exists a $g \in C(R)$ such that $g' = f$ on X and $\|g\| = \|f\|$.

Proof. For $a \in X$ define

$$h(a) = \inf \sup \{|f(x)|: x \in X \cap (a - \epsilon, a + \epsilon)\}.$$

Then $h: X \to R$ is upper semicontinuous. Let J_1, J_2, \ldots be the components of $R \setminus X$. Extend h to a function $h: R \to R$ by interpolating linearly on each bounded J_i and making f constant on J_i if J_i is unbounded. Then f is upper semicontinuous and bounded, hence locally Lebesgue integrable. Let $g: R \to R$ be an infinite Lebesgue integral of f. Then $\|\phi g\| = \|f\|$ if $\|f\| = \|g\|$. If $a \in X$, then δ and δ are continuous at a, so g is differentiable at a and $g'(a) = f(a) = h(a) = f(a)$. ■

Theorem 2.3. Let $X \subset R$. Then $C(X) \subset \mathcal{D}(X)$.

Proof. Let $f \in C(X)$. Put $U = \{x \in R: \text{there exists a positive } \delta \text{ such that } X \cap (x - \delta, x + \delta) \neq \emptyset \text{ and } f \text{ is bounded on } X \cap (x - \delta, x + \delta)\}$. This U is an open subset of R containing X.

Let J be a component of U. Choose a family $(a_n)_{n \in \mathbb{Z}}$ of elements of J such that $a_n < a_{n+1}$ $(n \in \mathbb{Z})$ and $J = \bigcup_{n \in \mathbb{Z}}[a_n, a_{n+1}]$. For each n, the restriction of f to $[a_n, a_{n+1}]$ is bounded. By applying the previous theorem to each of these restrictions one easily finds a function $g_n: J \to R$ with $g'_n = f$ on $J \cap X$.

Carrying out this construction for every component of U one obtains a function $g_n: U \to R$ with $g'_n = f$ on X. Let g be the restriction of g_0 to X. Then $g' = f$ on X^*. ■

Unless X is discrete, $\mathcal{D}(X)$ always contains discontinuous functions. The classical example for $X = R$ is $f: x \to \sin^{-1} x (x \neq 0), f(0) = 0$. From this, by translations
and restrictions one obtains examples for every X that contains an interval. For an X with empty interior we have:

Theorem 2.4. Let $X \subset R$, $\hat{X} = \emptyset$. Then $1_{(a \mid b)} \in \mathcal{B}(X)$ for every $a \in X$.

Proof. Take $a \in X$. For every $n \in \mathbb{N}$ choose $p_n, q_n \in X^n$ such that $a - n^{-1} < p_n < a - (n + 1)^{-1}$ and $a + (n + 1)^{-1} < q_n < a + n^{-1}$.

Define

$$g(x) = \begin{cases} p_n & \text{if } x \in [a) \cup (-\infty, p_n) \cup (q_n, \infty), \\ q_n & \text{if } n \in \mathbb{N}, x \in (p_n, p_{n+1}), \\ q_n & \text{if } n \in \mathbb{N}, x \in (q_n, a), \end{cases}$$

Then $g'(x) = 1_{(a \mid b)}(x)$ for every $x \in X$.

3. Our main theorem. In this section we show that $\mathcal{B}(X) = \mathcal{B}(X)$ if X is Lebesgue negligible. Recall that λ is the Lebesgue measure.

For $A, B \subset R$, $\text{dist}(A, B) = \inf \{|a - b| : a \in A, b \in B\}$.

Lemma 3.1. Let $A \subset R$ be closed, let $X \subset A^c$ be negligible and let $e > 0$. Then there exists an open set $U \subset R$ such that

$$X \subset U \subset A^e,$$

$$\lambda(U \cap [s, t]) \leq \varepsilon(s - t)^2 \text{ if } s \in A, t \in [s, \infty),$$

$$\lambda(U \cap [t, s]) \leq \varepsilon(s - t)^2 \text{ if } s \in A, t \in (-\infty, s).$$

Proof. Choose open intervals J_1, J_2, \ldots such that $J_n \subset A^e$ for all n whereas $\bigcup_{n \in \mathbb{N}} J_n = A^e$. For each n, $\text{dist}(A, J_n) > 0$, so we can choose an open set $U_n \subset R$ with

$$X \cap J_n \subset U_n \subset J_n,$$

$$\lambda(U_n) \leq \varepsilon 2^{-n \cdot \text{dist}(A, J_n)^2}.$$

Put $U = \bigcup_{n \in \mathbb{N}} U_n$. Of course, U is open and $X \subset U \subset A^e$.

Take $s \in A, t \in [s, \infty)$. If $n \in \mathbb{N}$ and $U_n \cap [s, t] \neq \emptyset$, then $J_n \cap [s, t] \neq \emptyset$, so $\text{dist}(A, J_n) \leq \text{dist}(s, J_n) \leq t - s$. Thus,

$$\lambda(U \cap [s, t]) \leq \sum_{n \in \mathbb{N}} \lambda(U_n \cap [s, t]) \leq \sum_{n \in \mathbb{N}} \lambda(U_n) \leq \varepsilon 2^{-n \cdot \text{dist}(A, J_n)^2}.$$

In the same way one shows that $\lambda(U \cap [t, s]) \leq \varepsilon(s - t)^2$ for $s \in A$ and $t \in (-\infty, s)$.

Lemma 3.2. Let $X \subset R$, $\lambda(X) = 0$. Let A_0, A_1, \ldots be closed subsets of R, $\emptyset = A_0 \subset A_1 \subset \ldots$ and let $c_1, c_2, \ldots \in R$. Then there exists an absolutely continuous function $g : R \to R$ such that

$$g'(x) = c_n \text{ if } n \in \mathbb{N} \text{ and } x \in X \cap A_n \cap A_{n+1}^c,$$

$$|\|g\|_1 \leq \sup \{|c_n| : n \in \mathbb{N}\}.$$

In addition, if $c_n \geq 0$ for every n, then for g one can choose an increasing function.

Proof. Put $\gamma_n = \sup \{|c_k| : k \leq n\} (n \in \mathbb{N})$. The preceding lemma enables us to choose open subsets U_1, U_2, \ldots of R such that for each n

$$X \cap A_n^c \subset U_n \subset A_n^c + 1,$$

$$2^{n-1} \lambda(U_n \cap [s, t]) \leq 2^{-n(t - s)^2} \text{ if } s \in A_{n+1} \text{ and } t \geq s,$$

$$2^{n-1} \lambda(U_n \cap [s, t]) \leq 2^{-n(s - t)^2} \text{ if } s \in A_{n+1} \text{ and } t \leq s.$$

As each $X \cap A_n^c$ is negligible, we can choose the U_n in such a way that

$$|c_n| \cdot \lambda(U_n) \leq 2^{-n} (n \in \mathbb{N}).$$

For $n \in \mathbb{N}$, let $V_n = U_n \cup U_{n+1}$. As $\Sigma |c_n| \cdot \lambda(V_n)$ is finite, the function $\Sigma c_n \cdot \lambda(V_n)$ is Lebesgue integrable, hence has an indefinite integral, g, that is absolutely continuous. If $(c_n : n \in \mathbb{N})$ is bounded, then g is Lipschitz and $|\|g\|_1 \leq \sup \{|c_k| : k \in \mathbb{N}\}$. If $(c_n : n \in \mathbb{N})$ is increasing.

Take $k \in \mathbb{N}, a \in X \cap A_k^c \cap A_{k+1}$, then $g'(a) = c_k$. We have $a \in X \cap A_n^c = U_n$, so there is a positive $\delta \in (a - \delta, a + \delta) \subset U_n$. We are done if we can show that

$$|g(x) - g(a) - c_k(x - a)| \leq (x - a)^3$$

for all $x \in (a - 3\delta, a + 3\delta)$.

Thus, let $x \in (a - \delta, a + \delta)$. (The case $x \in (a - \delta, a]$ can be handled similarly.) As $[a, x] \subset [a, a + \delta] \subset U_n \subset V_n$ for all $n < k$, we have

$$|g(x) - g(a) - c_k(x - a)| = |\left(\sum_{n > k} c_n \chi_{V_n} - c_k \chi_{[a, x]} \right) dx|$$

$$= |\left(\sum_{n > k} c_n \chi_{V_n} - c_k \chi_{[a, x]} \right) dx|$$

$$\leq |\left(\sum_{n > k} c_n \chi_{[a, x]} \right) dx|$$

$$\leq |\sum_{n = k}^{\infty} c_n \chi_{[a, x]} dx|$$

$$\leq |\sum_{n = k}^{\infty} |c_n| \cdot \lambda(V_n \cap [a, x]) dx|$$

$$\leq \sum_{n = k}^{\infty} |c_n| \cdot \lambda(V_n \cap [a, x]) dx.$$
LEMMA 3.3. Let \(X \subset \mathbb{R} \) be negligible, \(f \in \mathcal{B}(X) \), \(||f|| \leq 2 \). Then there exists an absolutely continuous function \(g : \mathbb{R} \to \mathbb{R} \) for which
\[
||f - g'|| \leq 1 \text{ on } X,
\]
\[
||\Phi g|| \leq 1.
\]

Proof. Put \(X_+ = \{ x \in X : f(x) < 0 \} \), \(X_0 = \{ x \in X : -1 < f(x) < 1 \} \) and \(X_- = \{ x \in X : f(x) > 0 \} \). Each \(X_+ \) is an \(F_\sigma \)-subset of \(X \) (II, Th. 4, p. 142); hence the intersection of \(X \) with an \(F_\sigma \)-subset \(Y_1 \) of \(R \). Choose closed subsets \(B_1, B_2, \ldots \) of \(R \) with \(Y_{n+1} = B_1 \cup B_2 \cap B_{n+1} \cup \ldots \), \(Y_0 = B_1 \cup B_2 \cup \ldots \) and \(Y_1 = B_1 \cup B_2 \cup \ldots \). For each \(n \), choose \(c_n \in [-1, 0, 1] \) such that \(B_n \subset Y_{c_n} \).

By Lemma 3.2, applied to \(A_n = B_1 \cup \ldots \cup B_n \), there exists an absolutely continuous function \(g \) on \(R \) with
\[
g'(x) = c_n \text{ if } n \in \mathbb{N} \text{ and } x \in X \cap B_n \cap (B_1 \cup \ldots \cup B_{n-1})^c,
\]
\[
||\Phi g|| \leq 1.
\]

Take \(x \in X \). Let \(n = \min \{ m \in \mathbb{N} : x \in B_m \} \). Then \(g'(x) = c_n \). As
\[
x \in X \cap B_n \subset X \cap Y_{c_n} = X_{c_n},
\]
we have \(|f(x) - c_n| \leq 1 \), whence \(|f(x) - g'(x)| \leq 1 \).

Now we have enough machinery to prove our theorem.

THEOREM 3.4. Let \(X \subset \mathbb{R} \) be negligible Then \(\mathcal{B}(X) = \mathcal{B}(\mathbb{R}) \).

Even stronger: for every \(f \in \mathcal{B}(X) \) there exists an absolutely continuous \(g : \mathbb{R} \to \mathbb{R} \) with
\[
g' = f \text{ on } X,
\]
\[
||\Phi g|| = ||f||.
\]

(Partially converses are obtained in Theorems 4.2 and 4.4.)

Proof. I. We already know that \(\mathcal{B}(X) \subset \mathcal{B}(\mathbb{R}) \). (Theorem 2.1.)

II. Let \(f \in \mathcal{B}(X) \), \(||f|| \leq 1 \). Applying Lemma 3.3 to \(f \) we obtain a \(g_1 \in C(\mathbb{R}) \) with \(|f - g_1'| \leq \frac{1}{2} \) on \(X \) and \(||\Phi g_1|| \leq \frac{1}{2} \). By Theorem 2.1, \(g_1(x) = \lim_{x \to \infty} \Phi g_1(x+n^{-1} \times x) \) for \(x \in X \). Thus, \(f - (g_1' + g_2') \in \mathcal{B}(\mathbb{R}) \) and \(||f - (g_1' + g_2')|| \leq \frac{1}{2} \), so there is a \(g_2 \in C(\mathbb{R}) \) with \(|f - g_1' - g_2'| \leq \frac{1}{3} \) on \(X \) and \(||\Phi g_2|| \leq \frac{1}{3} \). Continuing in this fashion we find \(g_1, g_2, \ldots \in C(\mathbb{R}) \) such that for all \(n \)
\[
|f(x) - \sum_{k=1}^{n} g_k'(x)| \leq 2^{-n} \quad (x \in X),
\]
\[
||\Phi g_n|| \leq 2^{-n}.
\]

We may assume \(g_k(0) = 0 \) for all \(n \). The series \(\sum_{n=1}^{\infty} g_n \) then converges locally uniformly on \(\mathbb{R} \); let \(g \in C(\mathbb{R}) \) be its sum. Then \(||\Phi g|| \leq 1 \). (In particular, \(g \) is absolutely continuous.)
point of \(X\). In particular, if \(X\) is not negligible, then \(X \cap X_e \neq \emptyset\). Evidently, one always has \(X_e \subseteq X\) and \(X \cap X_e = X^*\).

Lemma 4.1. Let \(X \subset R\), \(f \in \text{Lip}(X)\), and suppose that \(f' = 0\) a.e. on \(X\). Then \(f' = 0\) on \(X \cap X_e\).

Proof. Take \(a \in X \cap X_e\). Put \(\mathcal{E} = \|\phi f\|\).

\(f\) extends to a function \(\mathbf{g} : R \to R\) with \(\|\phi \mathbf{g}\| = \mathcal{E}\). (Extend \(f\) to \(X\) by uniform continuity; then interpolate linearly on the bounded components of \(R \setminus X\) and make \(g\) constant on the unbounded components.) The sets \(Y = \{x \in R : \mathbf{g} \text{ is not differentiable at } x\}\) and \(Z = \{x \in R : \mathbf{g} \text{ is not differentiable at } x \text{ or } f'(x) \neq 0\}\) are negligible. Define \(A = Y \cup Z \cup \{x \in R : \mathbf{g}(x) = 0\}\). Then \(A\) is Lebesgue measurable, \(g' = 0\) a.e. on \(A\), and \(X \subset A\).

For \(b \in (a, \infty)\) we have (2), Th. 18.16):

\[
|g(b) - g(a)| = \int_a^b |g'(d)| \leq \int_a^b |g'(d)| \leq K \cdot \lambda([a, b] \setminus \mathcal{A})
\]

so

\[
|g_\mathcal{E}(a, b)| = K \cdot (b - a) \cdot \lambda([a, b] \setminus A).
\]

Now \(a \in X \cap X_e \subset A\); therefore, \(\lim_{b \to \infty} g_\mathcal{E}(a, b) = 0\).

Similarly, \(\lim_{b \to \infty} \phi f(a, b) = 0\), whence \(g'(a) = 0\). As \(a \in X^*\), we infer that \(f\) is differentiable at \(a\) and that \(f'(a) = 0\). ■

This lemma yields a partial converse to Theorem 3.4.

Theorem 4.2. The following conditions on a set \(X \subset R\) are equivalent:

1. \(X\) is negligible.
2. For every bounded \(f \in \mathcal{B}(X)\) there exists a \(g \in \text{Lip}(X)\) with \(g' = f\) on \(X^*\).

Proof. (a) \(\Rightarrow\) (b), see Theorem 3.4.

(b) \(\Rightarrow\) (a) Suppose \(X\) is not negligible. Choose a in \(X \cap X_e\). By the lemma, \(1_{\{a\}}\) cannot have a Lipschitz primitive. ■

If \(X \subset R\) and \(X = \emptyset\), then for every \(a \in X\) we know \(1_{\{a\}} \in \mathcal{B}(X)\) (Th. 2.4).

Thus, if \(\hat{X} = \emptyset\), then (a) and (b) are equivalent to:

(i) For every bounded \(f \in \mathcal{B}(X)\) there exists a \(g \in \text{Lip}(X)\) with \(g' = f\) on \(X^*\).

Theorem 4.2 leaves the possibility that on a non-negligible set \(X\) every (bounded) \(\mathcal{B}-\)function has a primitive. For many sets this possibility is ruled out by the following lemma.

Lemma 4.3. Let \(X \subset R\). Suppose that \(X\) is a Baire space and that \(X \subset X_e\). Let \(\{c_1, c_2, \ldots\}\) be a countable dense subset of \(X \cap X_e\). Then

\[
\sum_{n=1}^{\infty} 2^{-n} \cdot 1_{\{c_n\}} \notin \mathcal{B}(X).
\]

Proof. Suppose we have an \(f \in \mathcal{C}(X)\) with \(f' = \sum_{n=1}^{\infty} 2^{-n} \cdot 1_{\{c_n\}}\) on \(X^*\). For \(p \in N\), put

\(A_p = \{ x \in X : y \in X \text{ and } |x - y| < p^{-1}\} \text{ and } \{f(y) - f(x) \leq |y - x|\}.\)

Now \(1 \leq f' < 1\) for every \(x \in X^*\). Hence, the sets \(A_p\) form a countable relatively closed cover of \(X\). Therefore, we can choose a \(p\) such that the interior of \(A_p\) in \(X\) is non-empty. There exist \(a, b \in R\) with \(\emptyset \neq (a, b) \cap X \subset A_p\) and \(|b - a| < p^{-1}\). Put \(J = (a, b) \cap X\). If \(x, y \in J\), then \(|f(y) - f(x)| \leq |y - x|\); so \(f \in \text{Lip}(X)\).

Furthermore, \((f')_J = 0\) a.e. on \(J\). By Lemma 4.1, \((f')_J = 0\) on \(J \cap J_e\), so \(f' = 0\) on \(J \cap J_e\).

However, \((a, b) \cap X \neq \emptyset\) and \(X \subset X_e\), so \((a, b) \cap X_e \neq \emptyset\). Then \((a, b) \cap X\) is not negligible, whence \(\emptyset \neq ((a, b) \cap X) \cap (a, b) \cap X_e = (a, b) \cap X_e\). Then \((a, b) \cap X_e\) (which is \(J \cap J_e\)) contains a \(c_n\). Contradiction. ■

This gives us the converse to Theorem 3.4 for measurable sets:

Theorem 4.4. For a Lebesgue measurable subset \(X \subset R\) the conditions (a)-(g) are equivalent:

1. \(X\) is negligible.
2. \(\mathcal{B}(X) = \mathcal{B}^1(X)\).
3. \(X\) has empty interior. \(\mathcal{B}(X)\) is uniformly closed in \(R^2\).

Proof. (a) \(\Rightarrow\) (b), Theorem 3.4.

(b) \(\Rightarrow\) (a) Suppose \(X\) is not negligible. By the regularity of the Lebesgue measure, \(X\) contains a compact set \(Y\) of positive measure. Put \(Z = Y\). Then \(Z \subset X \subset Z_e\). By Lemma 4.3 there exist \(c_1, c_2, \ldots\) in \(Z\) such that \(\sum_{n=1}^{\infty} 2^{-n} 1_{\{c_n\}} \notin \mathcal{B}(Z)\). A fortiori, \(\sum_{n=1}^{\infty} 2^{-n} 1_{\{c_n\}} \notin \mathcal{B}(X)\).

On the other hand, by Theorem 2.4, for each \(N \in N\) we have that

\[
\sum_{n=1}^{\infty} 2^{-n} 1_{\{c_n\}} \notin \mathcal{B}(X).
\]

Thus, \(\mathcal{B}(X)\) is not uniformly closed.

Comment on Condition (g). It is known that if \(X\) is an interval, then \(\mathcal{B}(X)\) is uniformly closed. ([3], p. 92; [6], Th. 14.2.)

Further we observe that our Theorem 4.4 closely resembles Theorem 4.19 of [5] which says (without any measurability assumptions) that \(\{f \in \mathcal{B}(X) : \exists m \in N\}

|\{f(X) : f \in \mathcal{B}(X)\} = \{f \in \mathcal{B}(X) : f \in \mathcal{B}(X)\} \text{ if and only if } X\) is negligible.

4.5. The proof of the implication (g) \(\Rightarrow\) (a) is applicable to any set \(X \subset R\) that contains a compact set of positive measure. Thus, if \(X \subset R\) and if \(\mathcal{B}(X) = \mathcal{B}(X)\), then the inner measure of \(X\) is 0. It would be more interesting to know if the outer
measure of X has to be 0, i.e., if the measurability condition of Theorem 4.4 is redundant. We do not have an answer to this question. All we can offer is an example to show that the condition that X have inner measure 0 does not imply

$\mathcal{B}(X) = \mathcal{P}(X)$.

Example 4.6. By [2], p. 146, there exists a set $X \subset R$ such that neither X nor X^c contains an uncountable closed subset of R. For this X, both X and X^c have inner measure 0. (Regularity of the Lebesgue measure.) Then $X = R$. We show that X is a Baire space, so that (by Lemma 4.3) $\mathcal{B}(X) \neq \mathcal{P}(X)$.

Let U_1, U_2, \ldots be open subsets of R such that every $U_n \cap X$ is dense in X. Then each U_n is dense in R, so $\bigcap_{n=1}^{\infty} U_n$ is a dense G_{δ} subset of R. For every interval J of R, $J \cap \bigcap_{n=1}^{\infty} U_n$ is an uncountable Borel set, therefore contains an uncountable closed subset of R ([4], p. 151.) and therefore is not contained in X^c. It follows that $\bigcap_{n=1}^{\infty} (U_n \cap X)$ is dense in X.

References

Received 15 June 1984; in revised form 18 November 1986

**On derivatives of functions defined on disconnected sets, II*

by

A. C. M. van Rooij (Nijmegen)

Abstract. Let X be a totally disconnected subset of R without isolated points, let $\mathcal{B}(X)$ be the first class of Baire on X and let $\mathcal{P}(X)$ be the set of all functions $X \to R$ that have primitives on X. Then $\mathcal{B}(X) \subset \mathcal{P}(X)$. We show that $\mathcal{B}(X)$ is a “large” subset of $\mathcal{P}(X)$. Thus, $\mathcal{B}(X)$ contains all approximately continuous functions on X; and if $f, g \in \mathcal{B}(X)$ are such that $f(x) < g(x)$ for all x in X, then between f and g there is an element of $\mathcal{B}(X)$.

5. How large is $\mathcal{B}(X)$? We now know that, at least for certain sets X with empty interiors, $\mathcal{B}(X)$ is a proper subset of $\mathcal{P}(X)$. Our present purpose is to show that it has to be a large subset. (Th. 5.6, Th. 6.1.)

Let $Y \subset X \subset R$. We call Y a clopen subset of X if it is both relatively closed and relatively open.

We will make use of the following observation. If $X \subset R$, $X = \emptyset$ and if \mathcal{Y} is an open cover of X, then there exists a cover of X by countably many pairwise disjoint subsets Y_1, Y_2, \ldots, each of which is clopen in X and contained in an element of \mathcal{Y}. (As X^c is dense in R, \mathcal{Y} has a refinement \mathcal{Y}' consisting of clopen subsets of X. By using the Lindelöf property of X one obtains a countable subcover $(Y_n)_{n \in N}$ of \mathcal{Y}'. Now set $X_n = Y_n \cup (V_1 \cup \ldots \cup V_{n-1}) \ (n \in N)$.)

Lemma 5.1. Let $X \subset R$, $X = \emptyset$. Let A be a relatively closed subset of X. Let $\psi \in C(X), \psi(0) = 0$, for all $x \in A$, $\psi(x) > 0$, for all $x \in X \setminus A$. Let $h \in C(X)$. Then there exists a f in $C(X)$ with

$|f(x)| < \psi(x)$ for all $x \in X \setminus A$.

$f(x) = 0$ on $X^c \setminus A$.

Proof. For $x \in X \setminus A$, let $U(x) = \{ y \in X \setminus A : |h(x) - h(y)| < \psi(y) \}$. By the above remark, there exists a family $(Y_n)_{n \in N}$ of pairwise disjoint clopen subsets of $X \setminus A$, covering $X \setminus A$, and a family $(s_n)_{n \in N}$ of elements of $X \setminus A$, such that $Y_n \subset U(s_n)$.

* This paper is a continuation of [7], using the same notation.