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COROLLARY 1. There is no fixed ordinal y such that 8l = %,, for all sufficiently
large o.

Proof. By taking p =1 in the previous theorem, we have y = 0. If y =0
then for sufficiently large limit ordinal o, ¥, = Nay = M = IT N> Ny = N’
which is a contradiction. g

COROLLARY 2. If there is a fixed ordinal y such that NL"' = Rary Jor all sufficiently
large limit ordinals a, then y <o.

Proof. By taking f = w in the previous theorem, we have Y <,

'Remark. Patai’sNtheorcm [2, Theorem XIV] states that if therc is a fixed
ordinal y such that 2™ = x,,, for every a, then Y <.

By the remark preceeding Theorem 1, the h is of Patai’ impli
. , ypothesis of Patai’s theorem implic
the hypothesis of the Corollary 2 in this papaer, e
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Clifford theory for p-sections of finite groups’?
by

Morton E. Harris (Minneapolis, Minn.)

Abstract. Let X denote an arbitrary field of prime characteristic p # 0. Let N denote a normal
subgroup of the finite group G such that G/N is a p-group. Here, in this situation, we demonstrate
some basic results of Clifford theory for irreducible modules and blocks of X [G]. These results
extend and generalize work of several authors.

1. Introduction and statements. Our notation and terminology are standard
and tend to follow the conventions of [5]. In particular, all vector spaces encountered
in this article have finite dimension, all modules over an algebra are right and unital,
if n is a positive integer and ¥ is a2 module, then n¥ denotes the module direct sum
of n copies of ¥ and if 4 is a ring then U(4) denotes the multiplicative group of
units of 4. .

Throughout this paper, G denotes a finite group. IV is a normal subgroup of
G, K is a field with char(K) = p > 0 but is otherwise arbitrary and K[G] and K[N]
are the associated group algebras, Also W denotes an irreducible X[N]-module,
Io(W) = {ge G|W ® g=* W} denotes the stabilizer of W in G, Py(W) denotes
a projective cover of W and Irr(G| W) denotes the class of irreducible K[G]-modules
V such that W is a composition factor of (and hence a direct summand of) Vy.
Clearly Iq(W) is a subgroup of G containing N and Irt(G|W) is non-empty. Also
b denotes a block of K[N], Irr(b) denotes the class of irreducible K [N]-modules
in b, I;(b) = {g € G|b" = b} denotes the stabilizer of b and BI(G|b) is the set of
blocks of K[G] that cover b, cf. [6, Section 6]. Clearly I(d) is a subgroup of G
containing N and BI(G|b) is non-empty.

Our first main result is:

PROPOSITION 1, Suppose that I4(W)/N is a p-group. Then all K[G}modules

of Irx(G|W) are isomorphic.
This result seems only to be known in the case that the field X is “sufficiently

* Part of this research was completed while the author was a visitor at the Mathematics
Departments of the Technion, Haifa, Israel; Bar-Tlan University, Ramat Gan, Israel and the Uni-
versity of Kiel, Federal Republic of Germany. o
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large”, cf. [2, III, Corollary 3.16]. Moreover, Proposition 1 scems not to be an
immediate consequence of Clifford Theory (cf. [1, Sections 7 and 8]).

Clearly, Proposition 1 and a classical result of Clifford (cf. [4, V. Hauptsatz
17.3]) imply the following generalization of [5, VII, Theorem 16.10b]:

COROLLARY 2. Suppose that GIN is a p-group and let {W |1 < i< m} be a complete
set of representatives of the G-conjugacy clusses of irreducible K[NJ-modules, For
each W, choose a module V, of Irx(G|W)) for all 1 <i<m. Then

@ V.=V, ifand only if i =j for all 1<1i,j<m; and
) (Vi1 <i<m} is a complete set of representatives for the isomorphism types
of irreducible K[G]-modules.

In Section 3 below, we utilize Proposition 1 to present an alternate proof to
J. A. Green’s clegant proof of [3, Lemma 2.2.3].

Combining Proposition 1 with the basicresult [3, Lemma 2.2.3], and a well-known
result of Clifford (cf. Lemma 2.1), we immediately obtain a generalization of [2,
I, Corollary 3.15] and of [6, Theorem 12.17d2] which implies that the integer z
in this result always satisfies z = 1:

CoROLLARY 3. Suppose that Io(W)IN is a p-group and let X be a module of

Iee(Ie(W)|W). Then Xy =2 W, all modules of Trr(I(W)|W) are isomorphic to X,
X% is a module of Irr(G\W), all modules of Trr(G|W) are isomorphic to X% and'
W occurs as a composition factor in (X %)y with multiplicity 1.

Our next result generalizes [6, Theorem 12.17d1)]:

ProposSITION 4. Suppose that 1o(W)IN is a p-group. Let X be a module of

Iec(I(W)IW), so that Xy = W. Set V = X, so that V is an element of Ire(G| W),
and let Pg(V) denote a projective cover of V. Then

dimx (End,q,q]( W))

(a) o = =

‘ ‘ dimg (Endgprgqmy; (X))
is a positive integer; and ‘

(b) Py(W) & aPe(V).

The next result generalizes [5, VII, Theorem 16.10b), (c) and (d)]:

. COROLLARY 5. Assume that the hypotheses of Proposition 4 hold and that W'
is an absolutely irreducible K[Nl-module. Then k

(a) X is an absolutely irreducible K [Te(W)l-module;

(b) ¥ = X% js an absolutely irreducible K[Gl-module; and

(@ Py(W)® = Pe(V). ‘

ll){e?ltzt;'k 6. :{Vitl;lmgard to Proposition 4, there are examples in which X is
an avsolutely irreducible K[Io(W)l-module and W is not an absolutely irreducible
K[N]fm"d,”le (cf. IS, VI, Exercise 70]). 7 e

I\{ext Wwe give some consequences of the results above for block theory that,
genralize [2, V, Lemma 3.5] and [5, VII, Theorem 16,10(a)]: ‘
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. PROPOSITION 7. Suppose that Io(b)/N is a p-group. Then there is a unique block
B of G in BYG|b) and
() If W is an element of Irr(b), then N < Ig(W) < I5(b), Io(W)[N is a p-group,
all elements of Tre(G|W) are isomorphic and Trr(G|W) < Irr(B);
(d) If V is an element of Trr(B), then V is an element of Irti(G|W) for some W
in Irr(b); and . ’
(c) Assume that W, is an element of Irr(b) and V; is an element of Ier(G W)

_v/'r)r i=1 and 2. Then Vi = V, if and only if Wy ® g= W, for some g & Ig(D).

Remark 8. Assume the situation of Propasition 7. Then the Cartan invariants
of B are determined in the following setting. Let ¢ = [T¢()/N| and let

» X}

be a right transversal of N in I4(b). Also let W, and ¥; for i = 1 and 2 be as in
Proposition 7(c), so that Py(W)® & o, Ps(V7) for a positive integer o as in Propo-
sition 4 for i = 1 and 2. Then

. .
ayazdimy (Homye) (Po(V1), Pe(V2))) = j;ldim,((Home(PN(Wl), Py(W,®x)).

{2y = 1, x5, ..

COROLLARY 9. Suppose that GIN is a p-group. Then each block of N is covered
by a unique block of G and this correspondence induces a one-to-one correspondence
between BI(G) and the orbits of G on BI(N).

In Section 2, we present two general results that hold for arbitrary ficlds that
we require for the proofs of our main results given in Section 3.

2. Preliminary results. For the convenience of the reader, we present two general
results that we require in Section 3.

Since the results of this section hold for all fields, we shall, in this section,
let k denote an arbitrary field. As above, N is a normal subgroup of the finite group G
and %[N] and k[G] denote the associated group algebras, ctc. Also W denotes an
arbitrary k[N]-module, V' denotes an arbitrary k[Gl-module, b is a block of k[N]
and B is a block of k[G]. Moreover, Iq(W) = {ge G|W® g = W} and if U is
an irreducible k[N]-module then mult(U in W) denotes the multiplicity of U as
a composition factor of W.

TuzoreM 2.1 (Clifford). Assume that W is an irreducible k[N]-module and set
T = Io(W), so that N <T<G. Then the following five conditions hold: ‘

(2) If XeIrr(T|W), then X®eI(G|W) and Xy & (mult(W in (X)W

(b) If X e Ire(T|W), then X is isomorphic to a submodule of (X% and (X%)r
has precisely one composition factor in Yrr(T|W) (and that  composition factor 1s
isomorphic to X); : : ‘ .

(c) Suppose that X, Y Irx(T|W). Then X° = Y¢ if and only if X2 Y;

(d) Suppose that Ve li(G|W). Then V ‘X% for some X elu(T|W); and
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@) If Xel(T|W),

PAHY = Po(EO) then Endyrn(X) 2 Endye(WC) (as algebras) and
T & Pa .

Proof. Let X'eIrr(T|W) and let ¥ be an irreducible constituent of ‘the head
H(X®) of X°. Since Homy, (XS, V) = Homy (X, Vi) by [5, VII, Theorem 4 5]
we conclude that X is isomorphic to a submodule of Vr and hence Ve Irr(G[I;V),
Set ¢ = |G:T| and let gy = 1, gy, ..., g, be a right transversal of 7' in G. Then b.
?1 Ttheorem of Clifford ({4, V, Hauptsatz 17.3]), there are positive integers e, f s’ucl)ll
tha

t
Vy & e(JGD1 W®g) and XyxfWw.
Consequently f< e, On the other hand,
dim, (V) = erdim, (W) < dim, (X%) = if dim, (W),

so that e<f. Thus e = f; ¥ = X%e Irr(G|W) and (a) holds.
We have seen that X is isomorphic to a submodule of (X%)r. Since

S=mult(W in Xy)

and ¢ = mult(W in (X¢ it i i

e mult(W in (X' v), (b) also holds. Moreover, it is clear that (c) is demon-

» _LetZUe Irr(G|W) and choose a submodule Z of Uy such that Z o W. Set
= ,; t = Zk(T], so that P is a submodule of Ur. As k[N]-modules we have

it =] I;Z ®.t =z for all teT. Thus Py = «W for some positive integer o, Let X
e a k[T]-irreducible submodule of P, so that Xy = W for some positive integer
ghfoiefﬁ ;1; S Ir(xi“(?g/.). As (0) # Homyr (X, Up) = Homyg, (X€, U) by [5, VII
.5] an is an irreducible k[G]- > U and

orem ible k[G]-module by (2), we have X® = U and

For (e), let X e Ir(T|W). Then, by [5, VII, Theorem 4.5],
Homyq) (X%, X€) & Homyr (X, (X%)y).
Since Homye, (X, (X°)r) & Homygn(X, X) by (b), we have
Endyr)(X) = Bndyg, (X9)

as algebras. Clearly, P1(X)® is a projecti
s projective k[Gl-module w7 i et
K{T}-module and Io(Py(W)) = 7. Since [Ghmodule, y(W) is a projective

Homyr (Py(W)", X) = Homy, (Py (W), Xy) # ),

we conclude that Pr.(X)|Py (W)™ by [5, VII, Tl
lude » V1I, Theorem 10.92)). Then [5, VI,
9.6(a)] implies that Pr(X)% s indecomposable. As . 15 VAL, Theoren

Homy)(Pr(X)°, X%) & Homyr,(Pr(X), (X®);) # (0)

¢
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by we have Pp(X)¢ = Pr(X%) by [5, VII, Theorem 10.9(a)] which completes our
proof of this Theorem.

For the next result, let f be the primitive central idempotent of k[N] that
determines b, let ¢ = |G:Iz(B)|, let {x; = 1, x5, ..., x;} be a right transversal of

t .
I;(B) in G and set x = 5 f™. Also let e denote the primitive central idempotent
i=1i

of k[G] that determines B.

LEMMA 2.2. dssume that W is a non-zero module in the block b of k[N] and that V"
is a non-zero module in the block B of k[G]. Then

(@) B covers b if and only if Vy has a composition factor in b; and

(b) If a composition factor of W lies in B, then B covers b.

Proof. Either (i) xe = e and B covers b or (ii) xe = 0 and B does not cover b.
Assume that ¥y has a composition factor in 5. Then (0) # Vf< Vx = Vex, so that
xe % 0 and B covers b. Assume that B covers b and choose an irreducible k[G]-sub-
module X of ¥. Then X € Band (0) # X = Xe = Xx. Restricting to N and applying
[4, V, Hauptsatz 17.3], we obtain an irreducible k[N]-submodule Y of Xy and
an integer j with 1 <j <t such that ¥7™ # (0). Then Yxj'f# (0), Xy has an ir-
reducible k[N]-submodule in (b) and (&) follows. Assume that W has a composition
factor in B. Since W% = W€, we have (0) # WS = WCxe, whence xe 5 0 and

are done.

3. Proofs of our main results.

A proof of Proposition 1. Assume the hypotheses of this Proposition
and let ¢ = [I(W)/N] so that ¢ is a p-power. Clearly, Theorem 2.1 implies that
it suffices to assume that G = I4(W). Let X and ¥ be K[G]-modules of Irt(G|W).
Then there are positive integers r and s such that Xy & rW and Yy & sW. Setting
V = (rsW)% and applying [5, VII, Lemma 4.15b], we have ¥ & ((sX)y)® = s((X»)°)
= s(X ® K[G/N]) where the K[G]-module structure of K[G/N] is given by

K

(Ngg, = Ngig,. Since the K[G]-module K[G/N] has precisely ¢ composition
factors each of which ist he trivial K[G]-module by [5, VII, Theorem 5.2a], it
follows that all composition factors of ¥ are isomorphic to X. Similarly all com-
position factors of ¥ are isomorphic to Y and the Jordan-Holder Theorem
completes the proof. ‘

An alternate proof of [3, Lemma 2.2.3]: Clearly, by Theorem 2.1, the
following lemma is equivalent to [3, Lemma 2.2.3] and combined with Proposition
1 generalizes [2, III, Corollary 3.15]. Our proof of the following result differs
significantly from J. A. Green’s elegant proof of [3, Lemma 2.2.3] and uses
Proposition 1.

LevMA 3.1. Assume that K is an arbitrary field of characteristic p > 0, that N
is a normal subgroup of G such that G[N is a p-group, that W is an irreducible
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K[N}-module and that V is an irreducible K[G}-module. Then mult(W in V) = ¢
or 1

Proof By Theorem 2.1, we may assume that Io(W) = G and that Vy o eW
for a positive integer e. It suffices to demonstrate that e = 1. Let L denote an

algebraic closure of K. Then ¥, =t @ U, where Uy, ... U, are pairwise non-isomorphic
imy
ureducible L[G]-modules for some positive integer r by [S, VII, Lemma 1.15].
8
Similarly Wy, = @ X; where X, ..., X, are pairwise non-isomorphic irreducible
i=1

L[N}-modules for some positive integer s. Hence
Vv = (V) = e(jg 9] '=‘="®1 ((Un)-

Since Uy, ..., U, are pairwise non-isomorphic, we may assume by Proposition 1
that U, is not in Irr(G|X,) if i>1 and U, is in Irr(G|X,). Hence

mult(X; in (Uy)y) = e.

It is now apparent that we may assume that X = L is algebraically closed from
the beginning. We now proceed by induction on |G/N]. Clearly we may assume that
N # G. Let M be a maximal subgroup of G such that N< M. Then MG and
IG/M]| = p. Choose X in Irr(M|W). Then Xy = W by the inductive hypothesis
and I5(X) = G by Proposition 1 since I;(W) = G. Moreover, ¥ is a module in
Irr(G| X) by Proposition 1. Now [S, VII, Theorem 9.9(a)] and Proposition 1 imply
that ¥y = X and hence ¥y & W which concludes our proof.

A proof of Proposition 4 and Corollary 5. Assume the hypotheses
of Proposition 4. Clearly, Theorem 2.1 implies that we may assume that G = Io(W)
and V= X. Since Py(W)® is a projective K[G]-module, it suffices by [5, VII,
Theorem 10.9(a)] to show that the head of Py(W)® satisfies: H(Py(W)®) = aV.
Now Py(W)SJ(KIN]) is a K[G]-submodule of Py(W)® and

Py(WYT(KINT) < Py(W)°T(KIG)) .
Note that Py(W)/(Py(W)J(KIN)) = W and hence
Py(W)HPy(W)T(KIND) 2 (Py (W) Py(W)I(KIND)® x WO
Consequently,
H(Py(W)® = H(W®).

Since (W€)y = |G/N|W, we conclude that H(W®) = BV for some positive integer f§
by Proposition 1. Then Proposition 1 and [5, VII, Theorem 4.13a)] complete the
proof of Proposition 4 : ’ '
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Next, as in Corollary 5, we have dimg(Endgqy (7)) = 1. Then Proposition 4
forces

dimy (Bndygrom (X)) = 1. and  Py(W)¢ & Po(¥).
Since Elld[([(;](XG) = Elldx[[a(W)J(X) by Theorem 2.1(@), we are done.

A proof of Proposition 7 and Corollary 9. Assume the ]1ypdthescs
of Proposition 7 and let B e BI(G|b). Then, as is well known, if ¥ e Irr(b), then
N<I(Y) <€ 1;(b), and hence all elements of Irr(G|Y) are isomorphic by Propo-
sition 1. Also if V is an clement of Ier(B), then ¥y possesses a composition factor W
in Irr(h) by Lemma 2.2(a). We assert: B .

(3.1) If W is an clement of Irrf), U is a composition factor of Py(W), V. is
an clement of Irr(G|W) and X is an element cf Irr(G|U), then ¥V and X belong
to the same block of G.

To see this, observe that Homgy, (Py (1), Py (W) # (0) since Uis a composition
factor of Py(W). Since Py(W)|(Py(W)%)y, we conclude from [5, VII, Theorem 4.5]
that Homge(Py(U), Py(W)®) & Homyp (Pu(U), (Py(W)°)y) # (0). Thus
Homy;(Pe(X), Ps(V)) # (0) by Proposition 4(b) and (3.1) holds.

Now Lemma 2.2(a) and [5, VII, Theorem 12.4] imply that B is unique and
that Proposition 7(a) and (b) and Corollary 9 hold. Next let W, and ¥, be as in
Proposition 7(c) for i = 1 and 2. Suppose that W, ® g & W, for some geG.
Thus g € Io(b) and Py(W,)® 2 (Py(W; ® 9))¢ = (Py(W)) ® 9)° = Py(W,)°. Then
Proposition 4(b) implies that Pg(Vy) & Pg(V,) and hence V; = V,. Conversely
assume that V; & ¥, and let X, be an element of Irr(Io(W))|W)) so that (X )y = W;
and V; = (X))¢ for i = 1 and 2 by Corollary 3. Set s = |G:Iz(Wy)| and choose
a right transversal {x; =1, x,, ..., x5} of Iz(W;) in G. Then

(Vi)N = ((Xl)G)N [~1 j(-;gl(Wl @x).

Note that W, ® x; is an element of Iir(b™) for all 1 <j<s. A similar result holds
for (Vy)y. Since (Vi)y 2 (V2)y, the Jordan-Holder Theorem implies the desired

conclusion.

A proof of Remark 8. Assume the hypotheses of this remark. Let
r = |G:I4(b)| and choose a right transversal {yy= 1,95 «, o} of Ig(b) in G.
Thus {x, 3]l Si<g, 1 <j<r}isaright transversal of N in G. By [3, XII, Theorem
4.5), we have Homgey(Py(W1)% Py(W)°) = Hompwy(Py(Wy),
r 1
@
j=1 i=1
Since W, ® x;; is an element of Trr(®f) for all 1€i<qg and 1<j<r, the
desired conclusion follows directly.

7 — Fundamenta Mathematicae 131.3

r g
(Py(W2) ® x, yj)) = Homgm (Py(W1), j=®1 iS_Bl Py(W, ® x; )
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