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Two examples concerning small intrinsic isometries

by

John Cebb (Moscow, Id.)

Abstract. Borsuk, and Oledzki and Spiez, have given examples in certain cases of arc length
preserving embeddings (intrinsic isometries) whose images have arbitrarily small diameters. We
give two additional examples, one negative and one positive, and raise several specific ‘questions
concerning further possibilities.

Introduction. Basic definitions and properties are in [1], [2], and [3]. If X is
a metric space with metric g, then the intrinsic metric on X induced by ¢ is given
by o4(x, ¥) = least upper bound {length (L): L is an arc in X containing x and y}.
For o, to be defined it is necessary that each two points of X lie in some arc of finite
length; for g, to induce the same topology as g, it is necessary and sufficient that, for
each x € X and each &> 0, there is a neighborhood U of x in X, such that for each
y e U there is an arc L of length < ¢ in U containing both x and y. Spaces for which
the two metrics are compatible are called geometrically acceptable (GA). All sets
we consider will be GA. A mapping of X onto Y is an intrinsic isometry if it is a iso-
metry with respect to the intrinsic metrics; or equivalently, if it preserves all arc
lengths (Borsuk [2]). A mapping fof Xinto ¥is an intrinsic embedding iff: X — f(X)
is an intrinsic isometry; here the intrinsic metric on f(X) is defined using arcs
in f(X).

We will say that X is intrinsically small in Y if, for each & > 0, there is an intrinsic
embedding f3 X — ¥ such that £(X) has diameter <e in the original metric of Y.
The three previously known results concerning intrinsically small spaces are:

(1) E" is intrinsically small in E*** (Oledzki and Spiez [6]; Borsuk [1] earlier
obtained E*"); '

(2) Bach l-dimensional polytope in an E" or in Hilbert space is intrinsically
small in E® (Borsuk [1]);

(3) No subset of E" containing an open set is intrinsically small in E” (Borsuk [2]).
We will add two more cxamples: a certain compact 1-dimensional subset of E?
is not intrinsically small in E?; and bounded cylinders in E* are intrinsically small
in E®.
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ExaMpLE 1. A certain plane Sierpinski curve.

Let D denote the unit disk IxJ, where I = [0,1]. Let {D;: i=1,2,..} be
- a countably infinite collection of pairwise disjoint circular disks in int(D), with C,
the boundary of D, and d; its diameter, satisfying:

@ :g D, is dense in D,
(i) e(C,, Cy) > 4/10,
(iii) ignd, < 1/10. Then X = D~ lglint(Di) is the d.ésired example. That X
is GA follows from the fact, that, for each two points x and y of X,

o(x, ¥) S 0ulx, ¥) <(/2)o(x, ) ;

the latter inequality comes from replacing any part of the segment xp which passes
through a D; by the shorter arc in bdy(D,) with the same endpoints. X is a Sierpifiski
curve. Note that any arc in X which intersects both C, and C, must have
length > 4/10.

THEOREM 1. The space of Example 1 is a compact 1-dimensional planar GA.
set that is not intrinsically small in the plane.

Proof. Suppose X were intrinsically small in the plane: let f; X - E? be an
intrinsic embedding with diam(f(X)) < 1/10. If L is any line in E? which intersects
the interiors of all complementary domains of f'(Co) Uf(Cy), thenn(f (Co)) N 7(f(Cy))
contains an interval of positive length say 6, where 7 is the orthogonal prOJecmon

parallel to L of E* onto some E'c E% Choose n so large that Z length

i=nt .
(n(fC) < 8; and choose pe E* so that =~ (p) intersects £(Cp) and f EC?), and
does not intersect f(C,) if i > n. Let 4 be a smallest arcin =~ (p) having one endpoint
in f(C,) and the other in f(C,). .

Length(4) < 1/10, since_its endpoints are in f(X). If 4 <f(X), then £~ *(4)
would be an arc in X from C, to C; of length < 1/10 (since intrinsic isometries and
their inverses preserve arc length [2]), which would be a contradiction, 4 will be
modified to. produce a similar contradiction. ‘

Note that the set of boundary curves of the compllmenmry domains of X,
{Ci:i=0,1,2,..}, is exactly the set of simple closed curves in X which do not
separate X, Since f is an embedding, f(X):is a Sierpiniski curve (Whyburn [7]);
hence {f(C):i=0,1,2,..}, being the simple closed curves of f (X) which do not
separate f(X), is. also the set of boundary curves of the complimentary domains
of f(X). [Whether or not f (CO) is the “outer boundary” is immaterial.] Let

= {f(C): 4nf(C) # B},

let U be the component of E*—{) {f(C)): f(C;) € €} whose closure contains f (X ),
and let o be the set of the closures of the components of AnU.
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If He o/, then H is a non-degenerate subsegment of 4 f (X ), and each of its
ndpomts lies in an element of %. They must lie in different elements of %; for if
both were in the same f (C), then H would be shorter than either subarc of f(C))
connecting them, and f~*(H) would be an arc in X containing two points of C;
and shorter than either subarc of C; between them. But ‘this is contrary to the
construction of X. Hence cach H e & has its endpoints on different elements of o
and has length > the minimum distance between elements of ¥; since % is finite,
o is finite also.
- Let ¢: [0,1]—~4 be a parameterlzatmn with | @(0) = Anf(C,) and
(1) = Anf(Cy). Let aj, By, 0<j <k, be the peints of [0, 1] such that {¢([e;, B;]):
0<j<k} =, and 0 =oy<fy<ay<..<y<p, =1 Definie a path ¢
[0, 1] = @*usg* [where “** denotes ‘union of all the elements of’] as follows:

Case 1. @' = ¢ on [a, §;], 0<j<k.

Case 2. If B;<ay4q, then o([B;, 0y.1]) intersects only one element of %, say
f(C). Hence @(B)ef(C;) and ¢(a;41) €f(C), and there are two arcs in f(C)
connecting them; define ¢’ on [B;, 24 1] to be a homeomorphism onto one of these
arcs, having length < (n/2)d;.

Thus ¢'([0, 1]) is a path in [ nF(X)]U E* from f(Co)tof (C1) and it contains
an arc B from f(C,) to F(C,). Length(B) < 2/10, since B may be partitioned into
a finite collection of subarcs, each of which is either-a subseg,ment of 4 or a subarc
of some f(C); the sum of the lengths of the first type is < 1/10 (since length(4)

<1/10), and the sum of the lengths of the second type < 1/10 also (since the
sum of the circumferences of all the C;’s'<1/10). Hence f ‘l(B) is an arc m X
from C, to C; of length<2/10, which is impossible. W =

. Similarly, in higher dxmensxons we have

TurOREM 2. Each E", for n 22, n 4, contains a compact (n— 1) dzmenszonal
GA set that is not mtrznszcally smaII in E".

Proof. The example and proof are almost 1dent1ca1 to Example 1 and Theorem 1;
some differences. only will be noted. D, will be the unit n-cell I”, and the Dy’s will
be round n-célls: That X and f(X) are (n— 1)-dimensional Sierpifiski curves, and
that the complimentary domains of £ (X) form a null sequence, follow from Cannon’s
generalization [4] to higher dimensions of Whyburn’s characterization [7] of the
2-dimensional Sierpifiski curve. (This is also the source of the restriction that
n #4.) The & is chosen so that m(f(Co)) nn(f(Cy)) contains an (n-1)-ball of
(n—1)-volume >8. Bach n(f(C)) lies in an (n—1)-ball -of radius < (n/2)d;, and
hence has  (n—1)-volume < K,.,d/" 1, for some constantx K,,_I. Smcc 3. d;

converges, so does Y K, di "; hence somé tallend U n(f (C,)) will' hot cover

n(f(Co))Nn(f(Cy)), and p may be chosen as before
" The rest of the proof follows as in Theorem 1. W
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ExaMpLE 2. Cylinders in E>.

THEOREM 3. Each bounded cylinder over a simple closed curve of finite length
in E? is intrinsically small in E°. .

Proof. We may suppose the cylinder is of the form Cx[0, r], where C is
a circle in E% Let & > 0 be given. The desired intrinsic embedding will be constructed
by a sequence of “paper foldings”; functional notation will not be used.

Step 1. Subdivide C into an even number 2n of equal subarcs, each of
length < ¢/4. Let P and Q denote two half-planes containing the z-axis and forming
an angle of m/n. Choose two points, a and b, in the xy-plane such' that

(i) acP and be Q,

(ii) d(a, b) = the length of each subarc of C,

(iif) b is closer to the z-axis than a is,

(iv) a is closer than &[4 to the z-axis.

Reflecting the segment ab about the half-planes P and Q in a “kaleidoscope”
fashion produces a star-shaped simple closed curve intrinsically isometric to C.
Let o’ and b be the points r units directly above a and b respectively; kaleidoscop-
ing the rectangle abb’'a’ produces a cylinder intrinsically isometric to Cx [0,r] It
is contained in the cylinder of radius &/4 about the z-axis.

Step 2. Rotate the rectangle abb’a’ about the edge ab through a small angle,
moving o'b’ toward the z-axis; this moves a’ outside of the angle PQ, and moves
b’ inside PQ. Pick a point ¢’ between o’ and & close to P such that ¢’b’ misses P.
Rotate the triangle ac’a’ about its edge ac’, moving a’ toward the z-axis, until o’
lies on the plane P; the entire edge aa’ will lie on P, and vertical projection on the
figure abb’c’a’ is one-to-one.

Step 3. Slide the figure abb'c'a’ rigidly toward the z-axis until &’ lies on the
plane Q, keeping ab in the xy-plane and aa’ in the plane P; b will be moved outside
of the angle PQ. Pick a point ¢ between a and b close to Q such that ac misses Q.
Rotate the triangle cbb’ about its edge cb’, moving b away from the z-axis, until b
lies on the plane Q; the entire edge bb' will lie on Q, and vertical projection on
the figure acbb’c’a’ will be one-to-one. Kaleidoscoping the figure achb’c'a’ produces
a cylinder intrinsically isometric to the original cylinder on which vertical projection
is one-to-one.

Step 4. Following [6], we reflect in two “mirrors”: the xy-plane will reflect
upward, and the plane z = &2 will reflect downward. The part of the cylinder
with 0<z<¢/2 remains unchanged; the part with g2 <z<2¢2 is reflected
downward; the part with 262 < z<3¢/2 is reflected upward; etc. The resulting
folded cylinder has diameter < £/2 in the vertical direction and also in the horizontal
direction; hence its diameter in E® is<e. n

Questions. Borsuk [3] States the underlying question: are there general embedding
theorems for intrinsically ‘small embeddings, analogous perhaps to the embedding
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of n-dimensional spaces into E2"*1? Since so little is known, some very elementary
questions are of interest.

QUESTION 1. Is every planar Sierpifski curve GA? (Each has non-GA embed-~
dings in E>.)

QUESTION 2. Is Theorem 1 true for other planar GA Sierpinski curves — some,,
all, or the standard middle-thirds one?

QUESTION 3. The proof of Theorem 1 is a modification of a proof that a planar
disk is not intrinsically small in the plane; Borsuk [2] has shown that each intrinsic
isometry of a planar disk in the plane is in fact an isometry. Is this true for some
or every planar GA Sierpifski curve?

QuesTION 4. 1-dimensional polyhedra in E® are intrinsically small in E*
(Borsuk [1]); what about universal curves in E* (spaces homeomorphic to the space
M2 of [5, p. 122]) — are some or all of them intrinsically small in E3?(Something
like M3 would be a possible generalization of Example 1.)

QUESTION 5. The embedding of Theorem 3 is a paper folding — a piecewise
isometry on a triangulation of the cylinder. Are there small paper foldings of some
other elementary polyhedra in E® — a 2-sphere, torus, or a “book with three pages”
(three disks with an edge in common)?

QUESTION 6. Are there small intrinsic embeddings of any of these three, paper
foldings or not?
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