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Homotopy separators and map])ings into cubes *
by

J. Krasinkiewicz (Warszawa)

Abstract. For some mappings, the homotopy separators are defined and studied. For
mappings into cubes, some notewort.hy homotopy separators are conkstrl,l,cted (Th. 3.1). Appli-

cations to dimension theory are given.

0. Introduction. This paper is a continuation of the author’s work [K]. For
cohvenience of the reader, all necessary definitions from [K] are recalled in the
following section. All spaces under discussion are assumed to be metrizable.
Therefore all cartesian products of manifolds (of positive dimensions) involve at
most countably many factors. For a given mapping f from a space X into a product
of manifolds one can. define separators of f'to be certain subsets of X. This was done
in the cited work. Here we study the most natural separators of f of the form
d~4(»), where g is a reasonably defined modification- of f (within the homotopy
class of f). They are called homotopy separators of f. It will be shown.that for
mappings into products of cells (= homeomorphs of cubes) the family of homotopy
separators has remarkable properties which fail for mappings into other products
of manifolds. The results have been used in constructions of interesting subcontinua
of the cubes I" presented in the last section of this paper.

1. Terminology and auxiliary lemmas. By a manifold we mean a compact
connected topological manifold of dimension > 1. A manifold will be denoted
by the letter M, usually with subscripts. Then &M or M denotes the boundary of M,
and M the interior of M. ‘ '

Let X be a space and consider two mappings f, ¢: X — M. Then g is said
to be an admissible deformation of f provided that there is a homotopy
H: (X,f~1(0M))x I - (M, 8M) such that Hy = f and H, = g. If in addition H
can be chosen so that H(x, ) = f(x) for each xe&f*(3M) then g'is called

v

* This paper was cbmpleteci during the author’s visit to University of Houston, 'U‘SA, in. 19.86.
The author wishes to express his gratitude to the Department of Mathematics for its hospitality.
ﬁ*
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More generally, a mapping (g,): X = [ M; is called an admissible
JaJ
(8-)deformation of (f}): X — I] M; provided each coordinate mapping g 5 XM,
JaJ

is an admissible (0-)deformation of f;: X — M. The mapping f = (f}) is said

to be essential provided that every admissible deformation of f is surjective, Every

subset ¥ of X such that f|¥: ¥ — H M; is essential is called a membrane of f
JeJ

By a separator of f'we mean every subset of X whose complement in X is not a mem-
brane of f. Note that the empty set is a separator of fiff f'is not essential, Note also
that every set of the form g ~*(y), where g is an admissible deformation of f, is
a separator of f. These special scparators of f will be called homotopy .s'eparc.ztors
of £ If g is a O-deformation of fand y e [] M, then g ~*(y) is said to be an internal
homotopy separator of f. Jad

The following lemma directly follows from Theorem 1.6 in [K].

1.1. LeMMA. Every open separator of a mapping f: X — H M) contains an in-
ternal homotopy separator of f. Jad

‘1.2. CoroLLARY. If f* X — M and Y is a membrane (separator) of f then
YNintf~Y0M) is a membrane (separator) of f as well (see [K], Prop. 5.9).

Given a mapping (f;): X — ,H]M” a mapping (g,): X - [] M; is said to be
] JaJ

an expansive deformation of (f;) provided (g;) is a d-deformation of ( f}) such that
J7{(0M;) = intgy'(0M;) for each jeJ.

' 1.3. ‘LEMMA. Let f: X —+ Q be a mapping into an n-cell, let f be an expansive
deformation of f, and let S be a separator of J. Then there exists an internal homotopy
separator S’ of f contained in S.

Proof. Since every separator contains a closed separator (see [K], Th. 1.10),
we may assume that S is closed. By 1.2 the set §' = $\intf~1(9Q) is a closed separator
of J. It follows that §’ is a closed separator of f, Since S' is disjoint from £~1(2Q)
there is a mapping r; X\S' - 3Q such that r(x) = f(x) for cach xef~'(0Q).
Also there is a mapping s: X — I such that s(f71 @) = (1) and A'“"‘l(O) = 5.
Identifying Q with the cone @ xJ/@ x(0), with v = Q' x (0) being the vertex and
z'=[z,1] for cach ze @, define a mapping g: X - Q by the formula

=7 for xe 8,
ate) = {[r(x), s(x)] for x ¢S,

As g is a d-deformation of fand ve () the set g~ v) = 8’ is the desired separator.

o The prgperty of mappings into cubes described in Lemma 1.3 is exceptional —~
1t is not valid even for mappings into the cixcle. Observe that an expansive deforma-

tion of a mapping finto a product of closed manifolds is si i
. simpl apy
homotopic to f. ‘ : imply a 1mppmg
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.1.4. Exampre. Let S* be the unit circle iii the complex plane C. Define
X ={zeCiz=(1+1/)™, te[l, w)}u{l}

z
fXoS f@=1n §={1}

Th@rlixS isa Vsej:;arator of evefy mapping homotopic to f but no (internal) hofnotdpy

separator of f is contained in S.

1.5. CoroLLARY. Let 2 X —» [] Q; be a mapping into a product of cells and
JjeJ

let Y be a subset of X interseéting every internal homotopy separator of f. ThenY
is a membrane of every expansive deformation of f. )

Proof. Suppose there is an expansiize deformation’ f = (f;) of f such that ¥
is not a membrane of f. By Lemma 1.5 in [K], for each jeJ, there is a separator
S; of f; such-that- () §; = X\Y. By 1.3 there exist internal homotopy separators.

£iae: Jei - o

S;c S, of f;, jeJ. Then () S;is an internal homotopy separator of f disjoint -
Jsl ,
from Y. This contradiction complétes the proof.

1.6, Remark. Keeping the notation of Example 1.4 and setting ¥ = X\S§_
shows that in general 1.5 is not valid for mappings into other products of manifolds.

2. Cross-sections of homotopy separators. It is well known that for a given
space X we have dim X > n iff X admits an essential mapping into the n-cube I”
Let us adopt the following result (see [A-P], p. 531) as a definition of strongly
infinite-dimensional spaces, briefly: SID. A space X is SID iff it admits an essential
mapping into the Hilbert cube I® = Ix I'x.... Spaces which are not SID are called
weakly infinite-dimensional, briefly: WID. L

The aim of this section is to show that the sets intersecting all internal homotopy
separators of a given mapping must have dimensions at least as large as the di-
mension of the target space. C '

2.1. TuroreM. Let f: X — [] M; and let Y be a subset of X. If either
Jjel )
(@) J is finite and dim ¥ <dim T M;, or
o Jed

(ii) J is infinite and Y is WID, ,
then there exists an internal homotopy separator of f. disjoint from Y.

Proof. For each jeJ let Q; < M, be a closed cell with dim Q; = dim M and
let n=Z2dimM, (n= coif J is infinite). Let Xo =" (] Q)= N f7*(Qp.
jeJ JeJ

and let Y, = ¥ n X,. Since Y, is a closed subset of Y it follows that dim'Y, <n
(for n = co this means that ¥; is WID). It follows that there is no essential mapping
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H Q; be given by ¢(x) =

By 1.5 there exist a - deformatlon Vi Xy~ H Q; of ¢ and a point ve H 9,
such that

from Y, onto I". Let ¢: X, — S () for each xe X,

Yoy~ i(v) =

Since Xonf7 '(0Q) = ¢;'(@Q,) we infer that y;(x) = ¢,(x) = fi(x) for cach
x'e Xonf;1(00Q;). Since the sets are closed in X, it follows that there is a well-defined
map

Uy Xof710Q) - 94
given by

for xef7(20)),
for xe X, .

= Jfix)
“pj(x) - {'/jj(x)

Since X, Uf; 1(0Q,) is a closed subset of f;4(Q,), the mapping ; extends to
a mapping

Uy f7UQ) = Q.
X — M; be a mapping given by the formula

‘_ f(x) for 3»¢7‘WI(Q)5
g;(x) = {Tﬁ! (x) for xefj 1(Qj)

Finally, for each jeJ, let g;:

Then g = (g,) is a é- deformatlon of f. Moreover, Yn 97w = Yoy~ i) =
which completes the proof.

3. Singular homotopy separators. The essential ideas used in the proof of the
following result come from a paper by R, Pol [P].

3.1. THEOREM. Let (fy, /) X = QxR be a mapping, where X is compact,
Qy is a product of cells and R is an arbitrary space. Let Z < R be a set which admits
a continuous surfection onto the Cantor set. Then for every expansive deformation
Jo of for X = Qy there exists an internal /wmotopy separator S oj Jo such that

() YaSA /(N> Z= Y is a membrane of Jg.

Proof. There exists an expansive deformation got X =
Jo is an expansive deformation of 7y
Let @ denote the set of all d-deformations of gopandlet ae 0, (if Q= H Q

ther; we denote §; = H QJ) be any point. It follows from 1.5 that for every Yc X
we have

(1) Yno7(a) # & for each p& & = ¥ is a membrane of Jo-

Qs of fp such that

icm
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Since & = Q%, and the space Q% in separable and metrizable, there exist a set
Zy<Z and a continuous surjection

Zy3z—> Y,ed.
Let ¥: fr '(Z,) — Oy be given by

Yx) = @ pam(®)
i.e. ¥ acts on fy '(2) as @,. If follows that  is continuous.

Consider ¥ Y(a). Since ¥~ (@)nfx }(2) = @7 *(@)nfr (2) for cach zeZ,,
by (1) we have

(2) Yy~ @A fr(¥)>Zy=>Y is a membrane of fp.

Observe that.fx “(Ze)\y~ () is not a membrane of g since is a d-deformation
of gl fx 2(Z,). From 1.5 we infer that there is an internal homotopy separator S
of fp disjoint from fr '(Zo)N\Y~Y(a). Thus Snfx(Z) =¥~ Y(a), and (2) implies
that S satisfies (x).

3.2. Remark. Let us make a comment about the set Z in the Theorem ‘What
is really needed from Z is to assure that every separable metric space can be obtained
as a continuous image of a subset of Z. The Cantor set C enjoys this property ~—
hence the hypothesis about Z. One might wonder if such a sct Z must already contain
a copy of C. The answer is “no”. We shall show that there exists a 0-dimensional
separable metric space Z which admits a continuous surjection onto C and such that
every compact subset of Z is countable. To this end consider a decomposition of I
into two disjoint sets 4 and B containing no Cantor sets. One of them, say A4, has
the cardinality ¢. Hence there is a surjective function o: 4 — C (not continuous).
Define Z to be the graph of this function, i.e. Z = {(s,1)e Ax C: a(s) = t}.
Restricting the projection A x C— C to Z we get a desired set.

Let us adopt the following convention: dim X > oo denotes that X is SID.

3.3. THEOREM. Let X be a separable metric space with dimX z n+1,
n=1,2,.., 0. Then there exists a mapping f: X — I and a closed membrane A
of f such that

() YocdA f(Y)> C=>dimY >n

Proof. By the assumption there exists an essential mapping from X into
"1, Then it is not difficult to construct a metric compactification X* of X and
a mapping (g, h): X* — I"x I such that X is a membrane of this mapping. Choose
g: X* — I" to be an expansive deformation of g: X* — I". Then, according to 3.1,
there exists an internal homotopy separator § of g such that

(i) Yo SA h(Y)> C= Y is a membrane of g.

Put4 = Sn Xand f = h|X: X - I. By (i) the condition () is satisfied. So, it remains
to show that 4 is a membrane of £. But S is a separator of g: X* — I", hence 4 is
a separator of g|X: X — I". Since (g|X, h|X): X — I"x I is essential the conclusion
follows from Theorem 6.1 in [K].
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A similar but even simpler reasoning combined with Theorem 2.1 in [K] gives
the following.

3.4, COROLLARY. Let p: I"*1 — I be projection onto the first fuctor. Then
there exists a contimum A< I' such that
(D) pld) = L
(ii) dimA = n,
(i) Yed&p(Y)> C=>dimY = n,
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Characterizing strong countable-dimensionality
in terms of Baire category

by

Elibieta Pol (Warszawa)

Abstract. The main result of this paper is the following theorem: a metrizable compactum X
is a countable union of finite-dimensional compacta (i.e. X is strongly countable-dimensional)
if and only if for almost every continuous mapping f: X — I into the Hilbert cube I® we have
S (X)n QR0 = @, where Q"° is the product of the rationals.We give also a characterization of strongly
countable-dimensional compacta in terms of the Baire category in the space of cuts defined by Hu-,
rewicz.

1. Introduction. In this paper we show that metrizable compacta which are
countable unions of finite-dimensional compacta (i.e. strongly countable-dimensional
compacta) ¢an be characterized in terms of Baire category in the function spaces
or the spaces of cuts introduced by Hurewicz. Let us describe the results in some
more details. ’

Let us recall that X is countable-dimensional if X is the union of countably
many zero-dimensional subspaces. A theorem of Nagata (see [8], Theorem V.5
and its Corollary) states that the subspace N, of the Hilbert cube I®, consisting
of all points having only finitely many rational coordinates, is universal for
countable-dimensional metrizable separable spaces X, i.e. any such X can be
embedded in N,,. In [9], we strengthened this result to the effect that the embeddings
of a metrizable separable countable-dimensional space X into N, form a dense
subset in the function space C(X,I”) of all continuous mappings of X-into I%,
endowed with the sup-metric. However, in contrast to the classical finite-dimensional
case, generally, the set of embeddings is not residual. .

More specifically, the main result of this paper is that the set of embeddings
of a metrizable compactum X into N, is residual (equivalently, is of the second
category) in C(X, I?) if and only if X is strongly countable-dimensional. Natural
examples of countable-dimensional compacta which are not strongly countable-
dimensional can be found in [1], Chapter 10, § 3 or [3], Example 1.12.

This theorem provides a characterization. of strongly countable-dimensional
compacta in terms of the function space. An “internal” characterization of strongly
countable-dimensional compacta in terms of the Baijre category in the space of cuts
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