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Proof. Proposition 4.1 and Theorem 4.4, By Corollary 3.7 we may assume
that if Fis an annulus it is 2-sided. If F'is a Lsided Moebius band, let Wbea regular
neighborhood of Fin M with Wl = &, Then A «« QW (W u")M) must be
an essential annulus (since (W M ) consists of two T-spheres it iy incompressible,
If it is boundary pacallel, M must be a solid torus amd dM is nol incompressible),
Thus A is 2-sided and Aned == €5, @
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On the Cauchy equation modulo Z
by

Karol Baron (Katowice) and Peter Volkmann (Karlsruhe)

Abstract. Assume that X is a real linear topological space (which always is assumed to be
Hausdorff) and let /4 X~ R be a function such that )

fltN-f)-fO)eZ

for all x, y € X. Some conditions are established under which f has the form g+ k, where g is a con~
tinuous linear functional on the space X and the function & takes integer values only. An application
to the Cauchy equation

Fx4) = f()+10)

for functions acting belween linear topological spaces is also given.

Let a function f: R - R be given and assume that
) fle+»)=fx)-f(»)eZ
for all x, y € R, where Z denotes the set of all integers. As follows from an example
of G. Godini [6, Bxample 2], it is not generally truc that such a function f must
be of the form g+ % where g is an additive function and k takes integers values only.
However, the following theorem has been proved in paper [L]:

TusoreMm 1. If the Cauchy difference f(x+y)—f(x)=f (), as a function of
two real varlables, is Lebesgue measurable and takes integer values only, then there
exists an additive function g: R - R and a Lebesgue measurable function k: R — Z
such that

@ I=gtk.
Tn the present paper, the following theorem will be shown:

THEOREM 2. Assume that X is a real linear topological space. '
If a function f: X — R satisfies condition (1) for all x,ye X and there exists

a set E< X such that
3 0 e Int(E—E)
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and
0 FACLV AT CEN Y

for every xe I, then there exist a continuous lincdr functional g: X -+ R and
a fimetion k: X — Z such that [ = g--k.

Remark 1. Tt is o well-known theorem of H. Sleinhaus ([13, Théoréme Vi,
of. also [11, Theorem 4.8]) which says that any Lebesgue measurable set F of positive
Lebesgue measure fulfils condition (3). In faet, it is true in a much more general
setting. Namely, any Chrisiensen measurable subset £ of an abelian Polish group
which is not Christensen zero set fulfils condition (3) (ef. [5] and [2, Theorem 2]
or [3, Theorem 7.30). It is also well known (cf. [7, Diflerence Theorem 10.4]) that
any subset E of a linear topological spuce which is of the second category and
satisfies the condition of Baire fulfils condition (3),

Before passing to the proof of Theorem 2 we are going to show that a version
of a theorem of M. R. Mehdi [10, Theorem 5] und Theoremy | may be obtained
using Theorem 2. Our version of Mehdi's theorem reads as follows,

COROLLARY 1. dssume that X is a real linear topological space and let Y be a real
locally convex linear topological space,

IFfi X Yis an additive function and there exists a set e X such that
condition (3) is satisfied and f () is a bounded subset of the space Y, then fis u bounded
Ilinear operator.

Proof. Let us fix arbitrarily a continuous functional A: ¥ R, Then Aof
is an additive functional bounded on a set £ fulfilling condition (3), and so there
exists a positive real number ¢ such that

ledlf ) <%
for every x e E. Hence and from Theorem 2 we infer that
cdof = g4k

where g: X - R is a continuous lincar functional and the funetion k takes integer
values only The function k: X - Z being additive must be 1he zero function. This
shows that

and 50 Ao f'is a continuous linear functional, Hence we infer that f'is o lincar operator
and, since each weakly bounded subset of the space ¥ is bounded (ef., o.g., [12,
Theorem 3.18]), f is a bounded lincar operator,

' Proof of Theorem 1. Taking into account the measurability of the Cauchy
difference and making use of 4 theorem of M. Laczkovich [9, Theorem 5], we can
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represent the function fas a sum of an additive function @: R — R and a Lebesgue
measurable function m: R — R:
S abm,
Of course, Cauchy differences of the functions f and m are equal. In particular,
mx+y)—mx)-m(y) e Z

for all x, ye R. Flence and from Lemma | given below we infer that there exist
a real constant ¢ and o Lebesgue measurable funclion £: R — Z such that

m(x) = ex+-k(x)

for every x ¢ R. This shows that (2) holds with the function g: R — R defined by
the formula
g(x) = a(x)+cx,

which, of course, is an additive function.

LemMa 1. If a Lebesgue measurable function f+ R - R satisfies condition (1) for
all x,ye R then there exists a real constant ¢ and a Lebesgue measurable function
k: R Z such that

S ) = cx-Hk(x)
Jor every xe R.

Proof. Let ¢g: R = (—%,4] be the function such that
® S(x)—g(x)eZ
for every xe R. Then (cf. (1))
glx+y)~9(x)—g(r)e Z
for all x, ye R, from which we infer that also
(6 gx=p)~g(x)+9(») € Z
for all x, y& R. Moteover, because of the measurability of the function f, the
function g is also Lebesgue measurable. Hence cach of the sets
{xeR: - %»l—é<g(x)$-%~i~£%—l~}, je{0,1,...,5},
is Lebesgue measurable. Since the union of these sets gives the set of all reals, one of
these sots has a positive Lebesguc measure. Denote it by M and fix an xo € M. Then
lg(x)—g(x0)l <%
for every x e M. Hence (cf. also (6) and the definition of the function g)

9(x~2x0) = g(x) ~g(x0) € (=% %)
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for every x € M and, pulting L= M—xy, we get
ge)e (=44

for every x & E. Making usc of Theorem 2 (cf. also Remark 1), we infer that there
exist a real constant ¢ and a function k: R - Z such that

g(x) = ex-+k(x)

for every x e R. This (of. also (5) ends the proof.
Tn connection with Lemma 1 let us observe that similarly the following two
propositions may be proved (ef. also Remark 1)

PROPOSITION 1. Assume that X is a sepurable real Fespace.

If u Christensen measurable function [ X -+ R satisfies condition (1) for all
x,y€ X then there exist a continuous linear Sunetional g2 X ~ R and a Chrigtensen
measurable function k: X ~ Z such that f = g+ k.

PROPOSITION 2. Assume that X is « real linear topological Baire space.

If" a Baire measurable function 2 X — R satisfies condition (1) for all x,y € X,
then there exist a continuous linear Sunctional g X = R und a Baire measurable
Function f: X — Z such that f = g-+k.

At the end let us pass to a proof of our main theorem.
Proof of Theorem 2. Let
U= Intf"HZ+(~4, )
and observe that U is a neighbourhood of the origin. In fact (cf. (3) and (4)), we have
OeInt(E—E) cInt[f Y(Z+(~%, N~ (Z+(~% )] =U.

Moreover, as it follows directly from the definition of the set U, there are functions
k: U= Z and h: U— (=%, %) such that

0] F(x) = k(x)+h(x)
for every x e U. Fix a balanced neighbourhood We X of the origin such that
WaWel,

Then (cf. (7) and (1))
Mt y)—h(x)—h(y) e Z
for all x, ye W and
[A(x P == I(x) ~h(p)| < 304 = |
for all x, ye W. Hence
hx+y) = h(x)+h(y)
for all x, y e W. Making use of a theorem of Z. Daréezy and L. Losonczi (cf. {4,
Satz 4] or [8, Chapter XUI, § 6, Theorem 1] and observe that it holds in linear
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topological spaces aswell) we infer that there exists (exactly one) an additive function
g: X — R such that :

® h(x) = g(x)

for every x € W. Since the set g(W) is bounded, a well-known theorem of F. Bernstein.
and G. Doetsch (cf. [8, Chapter VI, § 4, Theorem 2] and observe that it holds in
linear topological spaces as well) gives us continuity of the function g and so g is
a continuous linear functional. We shall show that '

fx)—g(x)eZ
for cvery x e X and this will end the proof. Fix an x e X and let n be a positive

integer such that ;:-e W. Then (cf. (8), (7) and (1))

£e-9() =f<n~§>—g(n;§>
-[) oL )+

Theorem 2 has been proved.

Added in proof. Professor Ludwig Reich kindly informed us about J. G. van der Corput’s
paper Goniometrische functies gelcarakferiseerd door een functionaalbetrekking, Euclides 17 (1940),
55-75. In fact by using a theorem given there at p. 64, the proof of our Theorem 2 is very
easy (at last in the case X = R), and the condition (4) can be replaced by “‘f(x)eZ+
(—%-+8, 1—¢) for some £>0".
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Homotopy separators and map])ings into cubes *
by

J. Krasinkiewicz (Warszawa)

Abstract. For some mappings, the homotopy separators are defined and studied. For
mappings into cubes, some notewort.hy homotopy separators are conkstrl,l,cted (Th. 3.1). Appli-

cations to dimension theory are given.

0. Introduction. This paper is a continuation of the author’s work [K]. For
cohvenience of the reader, all necessary definitions from [K] are recalled in the
following section. All spaces under discussion are assumed to be metrizable.
Therefore all cartesian products of manifolds (of positive dimensions) involve at
most countably many factors. For a given mapping f from a space X into a product
of manifolds one can. define separators of f'to be certain subsets of X. This was done
in the cited work. Here we study the most natural separators of f of the form
d~4(»), where g is a reasonably defined modification- of f (within the homotopy
class of f). They are called homotopy separators of f. It will be shown.that for
mappings into products of cells (= homeomorphs of cubes) the family of homotopy
separators has remarkable properties which fail for mappings into other products
of manifolds. The results have been used in constructions of interesting subcontinua
of the cubes I" presented in the last section of this paper.

1. Terminology and auxiliary lemmas. By a manifold we mean a compact
connected topological manifold of dimension > 1. A manifold will be denoted
by the letter M, usually with subscripts. Then &M or M denotes the boundary of M,
and M the interior of M. ‘ '

Let X be a space and consider two mappings f, ¢: X — M. Then g is said
to be an admissible deformation of f provided that there is a homotopy
H: (X,f~1(0M))x I - (M, 8M) such that Hy = f and H, = g. If in addition H
can be chosen so that H(x, ) = f(x) for each xe&f*(3M) then g'is called

v
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