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Equivariant surgery on essential annuli and
Moebius bands in 3-manifolds with respect to involutions

by

E. Luft (Vancouver)

Abstract. A complete classification is given for equivariant surgery on essential annuli and
Moebius bands in 3-manifolds with respect to involutions with at most isolated fixed points.

§ 1. Introduction. Suppose M is a 3-manifold that contains an essential annulus.
Equivariant surgery on it is possible with respect to an inyolution ¢: M — M with
at most isolated fixed points if there exists an essential annulus 4 in M with cither
Anitd = @ or 14 = A and with no fixed points of ¢ on 4. We prove that for o-in~
compressible essential annuli equivariant surgery is always possible (Theorem 3.6).
In contrast, equivariant surgery on incompressible tori in orientable, closed,
irreducible 3-manifolds with respect to orientation preserving involutions without
fixed points is not possible in general [3], [6]. An essential annulus 4 in a 3-manifold
M is d-incompressible if the components of 94 are in different components of aM,
or if 84 is contained in an incompressible component of dM and M is irreducible
(Proposition 3.1).

We also prove a relative version of equivariant surgery on an essential annulus
Ay = M with 84,04, = & (Theorem 3.2).

If M is irreducible and if the components of 8M that contain 94 are in-
compressible, we may assume that the annulus A obtained by equivariant surgery
in Theorem 3.6 is 2-sided in M (Propositions 3.4 and 3.5).

Our method of proof applies also to essential Moebius bands. The corresponding
theorems are given in §4.

The usual definition of an incompressible proper surface F in a 3-manifold M
to be essential requires that there does not exist a homotopy f;: (F, 8F) = (M, M),
0<r<1, fy: F— M the inclusion, and f,(F) = M. This definition is not suitable
for our surgery arguments. It follows from Corollary 2.3 that if M does not contain
fake 3-cells, then it can be replaced by the requirement that F is not boundary
parallel in M.

The method of proof of the above Theorems 3.2 and 3.6 is to move a given
essential annulus by an e-isotopy such that the new annulus and its image under
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the involution intersect transversally in 1-spheres and proper 1-cells, We may assume
that the I-spheres do not bound 2-cells and that the I-cells do not scparate. Then
either the intersection consists only of 1-spheres decomposing the given annulus
into annuli, or it consists only of 1-cells decomposing the given annulus into 2-cells,
The annuli or 2-cells are modified and rearranged to give an essential annulus with
the desired properties. If the given annulus is decomposed into 2-cells, extra care
has to be taken to avoid ending up with a Moebius band.

If we assume that the original annulus 4, is 2-sided in M and further that
its boundary components are not parallel in M, then Theorem 3.2, the relative
version of equivariant surgery on annuli, is also a consequence of the generalized
loop theorem [7].

In [5], the characterization of those 3-manifolds with subgroups Z@® Z @ Z in
their fundamental groups required to determine all involutions with some isolated
fixed points on orientable 3-dimensional flat space forms. This was accomplished
in (4). Theorems 3.2 and 3.6 were applied to perform equivariant surgery on essential
annuli.

There is a certain similarity between the methods of proof of this paper and
those in [3] to perform equivariant surgery on incompressible tori and Klein bottles.

If the involution has l-dimensional or 2-dimensional fixed point sets similar
but more delicate results hold [2].

I would like to thank the referee for his comments.

§ 2. Notation and preliminaries. We will work throughout in the PL category.
Our reference is [1]. A PL homeomorphism we simply call an isomorphism.

All 3-manifolds are assumed to be connected.

All involutions arc assumed to have at most isolated fixed points.

An (n—1)-manifold F contained in an n-manifold M is said to be proper if
FnoM = oF.

A surface is a compact, connected 2-manifold.

Let M be a 3-manifold and let F< M be a surface that is proper or Fe oM.
Suppose F is not a 2-sphere that bounds a 3-cell in M, or a 2-cell with F< acC,
Cc M a 3-cell, and with C—F = CnAM. Then F is said to be incompressible
in M, if for each 2-cell Bc M, with BAF = 9B, there is a 2-cell D < F, with
0D = 0B. The surface F is said to be d-incompressible (boundary-incompressible) if
for each 2-cell Bo M with BAF = 8BAF =1 a 1-cell and BAoM = BT,
there is a 2-cell D= F with /< 0D and DAOF = dD—1. The surface F is said to
be boundary parallel, if there is an embedding h: Fx [0, 11— M with h(Fx0) = F,
hFx100Fx[0,1]) = 0M. Finally the surface F is called essential if it is in-
compressible and not boundary parallel.

Note that if an incompressible proper surface F< M has components of oF
in at least two different components of M, or if 8F # @ and Fis d-incompressible
in M, then F is essential in A,

If §* is a l-sphere, then 4 = S*x[0, 1] is an annulus.

icm

Equivariant surgery on cssential annulf 125

Exampre. In Figure 1 an essential annulus 4 is exhibited in a handlebody
of genus 2 that is not d-incompressible. (Note: Incompressible proper surfaces in
handlebodies must have boundaries and are not @-incompressible.)

Fig. 1

LeMMA 2.1. Let M be an n-manifold, let F = M be a compact, connected, loca{ly
lat, proper (n—1)-manifold, let W, be a compact, connected n-manifold with
oW, = F,UFy, Fy, Fy connected (n—1)-manifolds such that Fyn Fy = 0Fg = 0Fy,
and let f: (W, Fy, Fo) = (M, 0M, F) be a map with

(f1 Yu: Hyy(Fo, 0Fo) — H,.(F, 0F)
i i i have coefficients in Z,.
is an isomorphism, where the homology groups e cog

Then F decomposes M into two connected n-manifolds Mo and W: M = MU W
and Mo W = 0MynOW = F such that W is compact and OW—F.is connected.
(Note: It is possible that oF = &.)

Proof. Consider the map f: (Wo, 8Wo, F1) = (M, MU F,0M) and the
commutative diagram

a ex
H,(Wy, F) =0~ H(W,, 0W,) = Z,— H,_(0W,, Fy) “‘g— H,_(F,, 0Fy) = Z,

I = = (f] )

2 ex
0 = H/(M, 3M) — H,(M, 0MUF) = H,.(0MUF, 0M) — H,_(F, 0F) = Z,

where e: (Fy, 0F,) — (0Wo, Fo), e: (F, 0F) - (M UF, 0M) are excisio;a maps and
the horizontal rows preceding the excision isomorphism. are portions of the
exact homology sequences of the triples (Wo, %o, F) and (M,38MUF, M)

respectively.
Let [W,] e H,(W,, 0W,). We conclude that 8(fxW,]) # 0 and that F de-
composes M into two connected nr-manifolds M, and W: M = M,uW and

MonW = 0MyndW = F. Then
H(M,30MUF) = H(M,, 0My) @ H(W, W) .
We may assume that fx [Wo] = (0, [W]), [W]e H,(W, 8W). Hence W is compact.
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Let F' = §W-F.
Consider the map f: (W, 0W,, Fy) » (M,0M, F) and the commutative
diagram

]
H(Wo, Fo) = 0 - H(W,, 0W,) = Z, = H,-1(0Wo, Fy) = Z,

ERINY (VAT

v
a ex
H(M, F) = 0 > HW, 0W) = Z; — H,(0W, F) «— H,,(F', 0F')

where e: (F/, 9F') — (0W, F) is an excision.

It follows from the definition of @ that H,.,(0W, F) = Z,. Hence

Hn—l(F’: aF’) = I{,,~1(0W, F) = ZZ

and therefore F’ is connected. B

Let W be a compact 3-manifold and let F W be a surface. The pair (W, F)
is called an f-cobordism, if 8W~F is connected and if the inclusion ¢ F— W
induces an isomorphism t,: 7,(F) - 7,(W). (Equivalently, (W, F) is an h-cobordism
if o2 F— W is a homotopy equivalence.)

A fake 3-cell is a contractible compact 3-manifold that is not a 3-cell, It is not
known if fake 3-cells exist. The closed 3-manifold obtained by capping off the
boundary ofa fake 3-cell by a 3-cell is a fake 3-sphere. If M is a compact 3-manifold,
then there is a unique 3-manifold B(M) such that M is the connected sum of P(M)
and a fake 3-sphere X, M = P(M) # X, and P(M) does not contain fake 3-cells.

If (W, F) is an h-cobordism and F is not a projective plane then there is an
isomorphism /: (Fx [0, 1], Fx0) — (B(W), F) (e.g. [1], Theorem 10.2).

An h-cobordism (W, P%), P* the projective plane, such that there is not an
isomorphism A: (P?x[0, 1], P*x0) — (W2, P?) is called a fake P*h-cobordism.
It is not known if fake P2-h-cobordisms exist.

THEOREM 2.2, Let M be a 3-manifold and let F< M be an incompressible proper

surface such that there is a homotopy f,: (F, 0F) — M, M), 0< 1<, withfy: F—~ M
is the inclusion and fi(F) < dM.

Then there is a compact manifold W= M with Fc W, WnoM = oW —F,
and (W, F) is an h-cobordism. ‘

 Proof. Let xoe F and let p: (M, %) - (M, x,) be the covering projection
with pymy (M, %0) = 7,(F, x) < 7, (M, x,). The map

f (FX [O’ I]= FX 1= (xm 0)) - (M» aM: x(])hf(xb t) = (f;‘(x)) t)’
lifts to a map

Fo (Fx10, 13, Fx 1, (xo, 0)) — (¥, M, %,) .

Let Fy = J(Fx0). Then f: F= Fx0 - F, is an isomorphism. The inclusior
“4: Fy — M induces an isomorphism ty: 7y (Fy, %o) — 1y (M, ). o
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By Lemma 2.1, there is a compact 3-manifold W, = M with F, <8W, and
with B—W;i?;’= Wy 0M is connected. Let F,, Fy, ..., F,, be the components of
p~Y(F) N Wo. If m > 0let W, be the closure of the component of Wo—(Fy U ... U'F,)

that contains Fy and let ¢5: Fy — Wy be the inclusion.
CLAIM. tox: 3(Fo, %o} — ny(Wy, Ro) is an isomorphism.
Proof of claim. Let tg: W, — M be the inclusion. Then
tow: T (Wy, %) = my (M, %)

is injective. Namely, let g: B* — int§f be a map of the 2-cell B into intM.with
¢(0B* cint W. We may assume that g is transversal with respect to oW, mn'tJVI
which consists of int F, and some of the interiors of the surfaces Fy, ..., F,. Since
the surfaces Fy, ..., F,, are incompressible in M, the map g can be modified by
a standard construction to a map g': B* — W, with g'|os = glop2. We ha}re
Le = low lox- Since ty is an isomorphism and w4 is injective, we conclude that tox
and iy are isomorphisms.

1t follows from Lefschetz duality (or the h-Cobordism Theorem [1], Theorexp
10.2) that exactly one of the surfaces Fy, ..., F, is in 0Wy, and that'it is isomorphic
to F,. Suppose this surface is'F;. Then p|: Fy — Fis an isgmorplnsmz Let x, e.Fl
with p(x;) = x,. We conclude that the inclusio_n_ iy : Fy — B induces an 1somorph1‘sm
it Ty(Fy, %) = ny (M, %), Let W, = Wy—W,. We rep'eat the preceding
construction with W, Fy, x, replacing W, Fo, %. After a finite number of steps
we will arrive at an h-cobordism (W, F) such that Wno§l = oW—=F,p|: F > F
is an isomorphism, and p~YF)nW = F. Define W = p(W). Then p|: W w
is an isomorphism and W has the desired properties. B

COROLLARY 2.3. Let M be a 3-manifold which does not contain fake 3-cells and
let F = M be an incompressible proper surface. If F = P? is a projective plane assume
in addition that M does not contain fake P*-h-cobordisms.

Then there is a homotopy f;: (F, 0F) —» (M, 0M), 0<t<], with. fo: Fo M
is the inclusion and f,(F) < M if and only if F is boundary parallel in M.

Proof. Theorem 2.2 and the A-Cobordism Theorem. M

A 3-manifold M is irreducible if each 2-sphere in M bounds a 3-cell in M.

Note. If M is irreducible and if it is not a fake 3-sphere, then M does not
contain fake 3-cells. ] r erence

Corollary 2.3 should be known, but we do not know a r s

Regular neighbourhoods in this paper will always be d'eﬁned via se:<1:101:’d
barycentric subdivisions of simplicial subdivisions. The following lemma will be
frequently applied.

LemMMA (2.4) ([3], Lemma 2.1). Let P be a polyhedron, let v: P~ P be an

isomorphism with ™ =.id, and let K be a simplicial subc{r’v.ision.. o
Then there is a subdivision X' of K so that ¢ is simplicial with respect to K'.
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PROPOSITION 2.5. Let M be a 3-manifold and let v: M — M be an involution.
Suppose that Fy = M is a 2-sided (1-sided), d-incompressible, incompressible proper
surface with 0F, # @ that is not a 2-cell.

Then there is a 2-sided (1-sided), 0-incompressible, incompressible proper surface
Fe M isomorphic to F such that

(0) There are no fixed points of ¢ on F.

(1) F and (F intersect transversally.

(2) If 0 is an open neighbourhood of FyUiF,, then we may assume that F< 0,

(3) There are no 1.spheres in FoF that bound 2-cells in F.

(4) There are no 1-cells I in FoF such that there is a 2-cell D < F with T 9D
and DOF = 9D—1.

If M is irreducible and the components of @M that contain boundaries of 1-cells
of (3) are incompressible in M, then there is an ambient isotopy on M that maps
Fy to F.

Proof. It follows from Proposition 2.6 of [3] that there is a 2-sided (1-sided),
d-incompressible, incompressible surface Fo M isomorphic to F, which satisfics
properties (0), (1), (2), and (3). Therefore we may assume that F, satiefies properties
©), (1), (2), and (3).
in FnuF, a 2-cell DcuF with DnFo = I and with DnduFy = dD—~1 = DnoM.
Since F, is d-incompressible, then there is also a 2-cell Dy < Fy with J< 8 D, and
with Dy 0F, = 9Dy—1I. Define F} = Fo— Dy.

Let Dx[0, e] be a sufficiently thin collar of D = Dx0 such that

Dx|[0,elnFy = Dx[0,e]lnFy=Ix[0,¢], and
DX[0, oM = aD—Ix[0, ¢] .

We must have Dxenu(Dxe) = &. Otherwise 1D = D, and hence o = I,
Consequently, there must be a fixed point of ¢ on I, a contradiction: there are no
fixed points of ¢ on Fy U iF,.

Define the proper surface F; = Fg—Ix[0,eJuDxe.

Then «(Dx g)nFy = &, and hence

FyouFy « FyniFy—(Tud).

The surface Fy is isomorphic to Fy and is 2-sided (1-sided), 8-incompressible,
and illcompre'ssible in M. At least two 1-cells have been eliminated from FyniF,,
In a finite number of steps we arrive at F.

Suppose now that the component of M that contains 01 is incompressible in M,
Then the proper 2-cell Dyu D determines a 2-cell B< dM with 8B = 8(Dyw D).
If M is irreducible, the 2-sphere Dy DU B bounds a 3-cell in M. Hence there
is an ambient isotopy on M that maps F, to F,. M
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LemMa 2.6, Let M be a 3-manifold and let Fy, F, = M be two proper surfaces
that intersect transversally. Let S Fyn\F, be a 1-sphere.

(1) If both Fy, Fy are 2-sided in M, then S is 2-sided in both Fy, F,.

(2) If S is 2-sided in both Fy, F,, then a regular neighbourhood V of S in M
is a solid torus.

§ 3. Equivariant surgery on essential annuli with respect to involutions. Note
that a @-incompressible, incompressible proper annulus in a 3-manifold is essential.
We have ihe following converse.

ProrosITION 3.1. Let M be an irreducible 3-manifold and let A =M be an
essential annulus. Suppose that 04 < R, R« M an incompressible component.
Then A is O~incompressible in M.

Proof. If 4 is hot d-incompressible in M, then there is a 2-cell B = M with
Bnd = 0Bn A is a nonseparating proper l-cell in 4 and BAoM = 8B—1.

Let Bx[—e¢,¢] be a regular neighbourhood of B= Bx0 in M with
Bx[—¢,elnd = Ix[—s,¢e] and Bx[—¢, elndM = ;979‘——Ix[~a, g]. Then

D=A-Ix[~¢,eluBx —guBxe

is a proper 2-cell in M with 0.D < R. Since R is incompressible there is a 2-cell Dy = R
with 8D, = 8D. Since M is irreducible, the 2-sphere DU D, bounds a 3-cell Cin M.
If Bx[—e, v] = C, then 4 is not incompressible, and if Bx[—e¢, ] c M—C, then 4
is boundary parallel in M. A contradiction. H

If M is not assumed to be irreducible or if R is not assumed to be incompressible,
it cannot be concluded that 4 is é-incompressible. The essential anulus of the
example in § 2 is contained in an irreducible 3-manifold M, but it is not d-incompress-
ible: dM is not incompressible. An example of a 3-manifold M with 0M incompress-
ible that contains an essential annulus that is not -incompressible can be constructed
as follows: Let F be a closed surface not a 2-sphere or projective plane, and let ¥
be a 3-manifold not a 3-cell with ¥ a 2-spherc. Choose an annulus 4, < F that is
not nullhomotopic in F and a 3-ccll € cint(d, X [0, 3]). Define

M= Fx[0,1]-C/oC = @Y.
Then dM is incompressible. The annulus 4 = 04, % [0, $]U 4o x %is essentialin M
but not d-incompressible.

Note that an incompressible proper annulus in a 3-manifold M that has its
boundary components in two different components of oM is essential and 8-in-
compressible. ‘

THEOREM 3.2. Let M be a 3-manifold and let v: M ~ M be an involution, Suppose
that Ay < M is an essential anmulus with 84,104, = D.
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Then either there is an essential annulus A < M with
AntdA =& and 04VwA = 04,0104,
or there are two disjoint annuli Ay, A, = M with
A=A, i=1,2, A, 04,) = 04,0104,),

and with no fixed points on AU A,.

Furthermore, if O is a given neighbourhood of A,V dy, we may assume that
A, Ay, A, <O respectively.

Note also that if Ay is a 2-sided (1-sided) then A must be 2-sided (1-sided)
respectively. If Ay, Ay occurs then Ay, Ay, A, must be 2-sided.

Proof. We apply Proposition 2.5. We may assume that there are no fixed
points of ¢ on A, that A, and ¢4, intersect transversally, and that there are no
1-spheres in 4,ned, that bound 2-cells in 4,.

Therefore Agnud, consists of disjoint I-spheres that decompose 4, and i4,
into annuli.

Our goal is to successively eliminate the 1-spheres from A, M ed,.

We call a regular neighbourhood V < int M of a 1-sphere S < 4, N A, a standard
regular neighbothood of § in M if the following properties hold:

D V=Vifi§=3S5, and ViV =@ if 15 % S.

(2) there are no fixed points of i on ¥, and

(3) 4oV, tdynV are proper annuli in V.

By Lemma 2.4, standard regular neighborhoods exist.

Note ¥ is a solid torus by Lemma 2.6,

Step 1. Suppose there are annuli A <id, and 4’ < Ao with Andy = 04 = 84"
and suppose further that there is a solid torus V,, with 0V, = 4’ U 4 and such that

there is an isomorphism 7: (4’ x [0, 1], 4’ x0) = (V,, A").

We show that at least two l-spheres of A,nid, can be climinated.

Let 04 = S, US,.

Case 1, 104 = 4.

Then necessarily ¢4 = A",

Let ¥y, ¥, be disjoint standard regular ncighborhoods of Sy, S, in M respectively
with either «V; = Vi = 1,2, or «F/, = V,. See Figure 2.
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HAy\ VD, 0uAy O V) subdivide 0F; into four annuli, i = 1,2. Let A¥ = a7V,
be the one of the four annuli with one boundary cemponent in 4 and the other

component in “A—A’. Define the proper annulus

A = Ay (A" OV " AU (Va0 )AL VAU A~ (AN (VU Ty)).

Then A} iy = AgOidy--04.

Case 2. A midd is single [-sphere,

Suppose that A A0A = 8. Necessurily o8 = ;. Let V'be a'st'andarfl regular
neighborhood of 8 in M. The proper annuli Ay "V, 1Ay V subdivide Vinto four
solid tori. Let ¥ be the solid torus with V¥ naV is the annulus with one component
in A and the other component in A, A’ and It ¥ be the solid torus with Vinav
is the annulus with one component in A and the other component in 4,. See Figure 3.

Fig. 3

Then cither oV} == V3, VinuVh =8y, or VinV{ =Sy, LV; = V¥

Let Ax[0,¢] be a sufficiently thin collar of A= Ax0 in M such that
0AXI0, 6 Ag— A" and Ax[0, 2]V = Ax[0, e]n VY = (AnoV)x [0, el

If oV} = V{, we may assume that A x ¢ and oA x g) intersect transversally in
a single L-sphere Sy in int P (First construct the collar in ¥ by means of the solid
Klein bottle V/i].)

Define the proper annulus

Al = Ay (A US, %[0, 6]US, x [0, ehudxe.
Then
il [,V‘{ = :, and

(A 1A = (DA W WD) Sy,
A if VeVl =S

" (.
Aoy = A iy (A D),

Case 3. Anidd = @, o

Let Ax[0,¢] be a sufficiently thin collar of A= Ax0 in M such that
9A% [0, 6] = A, A", Then necessarily 4 x eni(Axe) =@,

Define the proper annulus

Al = Ay (A0S, % [0, 51U S, x [0, eNuhxe.
Then dpidh = Agnidy—~(@40W0A).

4 — Fundamenta Mathematlene 1312


Artur


132 E. Luft

In all three cases 84y = 84,. Using the solid torus specified in the hypothesis
an ambient isotopy on M can be constructed that maps 4, onto 4p. Therefore A}
is an essential annulus with 04y = 84, and with 4N dy containing at least two
1-spheres less than 4, ned,.

Now let 4 <14, be one of the two annuli defined by the 1-spheres of 4, t4q
in td, such that one component of 84 is a component of dud, and the other
component is S = AnAy = dAdn A, Then § decomposes A, into two annuli
4" and A'":

do=A'vd" and A'NnA" =084'ndd" = §.

See Figure 4.

Fig. 4

We consider the proper annuli 4’'ud and 4”0 4.

Step 2 Suppose A’ U4 is boundary parallel.

Applying Step 1 we may assume that 4'ridy = S.

First assume that S = S.

Let V be ?..Sfalldal'd regular neighborhood of S in M. Then 8(d,n V),
(4o N V) subdivide 8V into four annuli, Let 4* be the one of these four annuli

;J.ith one component of 84* in 4 and the other component of 34* in 4. Sce
igure 4.

Case 1.1d = 4.
Define the proper annulus

dy=A"-Vnd"Yud*nd—(Vni).

There is an ambient isoto
Py on M that maps 4, to A5 There
essential annulus with v " o s,

045 iddy = 84, N 104,

and with Afned) =;40nLA0—
Thus we have eliminated a I-sphere from Ao nid,.
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‘Case 2. od = 4"

Then Agnidy = S and am A’. Let A** be the one of the precedmg
four annuli with A¥* A A* = @, Then 14* = 4* and 1A** = A**,
Define the proper annuli

Ay = A"=(Vadyud*0I-(Vnd) and
Ay = A= (VaA)YU A Uidg— (AU Ay N V).

There ate ambient isotopies on M that map 4, to 4;, i = 1, 2. Therefore
Ay, 4, are disjoint essential annuli with ¢4, = 4;, i = 1,2, with

0(141 UAz) = 3A0UL5A0 s

and with no fixed points of ¢ on 4, U4,.

Next assume that oS  S.

Let V be a standard regular neighborhood of S in M with VneV = &. Then
(4o V), 8(1don V) subdivide 8V into four annuli. Again let A* be the annulus
with one component of d4* in A and the other component in A,—A’. Let 4**
be the annulus with A**nA* = @.

Define the proper annulus

A = Ao—(A’chu(VnAo)u(anAo))uA*uZ—(Zm V)
A a T AT

There is an ambient isotopy on M that maps Agto Ap. Therefore Ap is an
essential annulus with 844 = 104, and with 4 nidy = 40 LAO—-(S uis).

We have eliminated two 1-spheres from AontAo

Since one boundary component of each is a boundary component of 4, they
are also incompressible, and therefore essential.

Step 3. Both proper annuli AU and 4" U4 are not boundary parallel.
We may assume that 14 =4,

If 1S s S, define 4p = AU A

If S = S, define as in Step 2, Case 1, the essential annulus

Apy = A= (Vrd" VAYO A~ (PN A).

Then A4y satisfies ,
04yl dp = 04, U1dA4,

and AornAo c Adgnidy—(SuS).

After a finite number of steps we arrive at the annulus A or the annuli A4,,
A, with' the desired properties.

Note that & proper annulus in M is 2-sided (1 -sided) if and only if its boundary
is 2-sided (1-sided) in: OM..

4
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If td; = 4, 1= 1,2, applying Lemma 2.4 there is a regular neighborhood
W, of 4;, 1 = 1,2, with «W; = W, and with no fixed points if ¢ on W,. If 4, is
1-sided then W; is a solid Klein bottle (see proof of Proposition 3.4). But a solid
Klein bottle does not admit a fixed point free involution. H

If A, is 2-sided in M and if the components of dd, are not parallel in oM,
the generalized loop theorem of [7] proves also Theorem 3.2 as follows: Pushing
off 4, from the fixed points of : and cutting out an e-invariant regular neighbourhood
of the fixed point set, we may assume that ¢ has no fixed points. Let p: M — M/
be the natural projection. Then p(d,) < M| is a singular annulus. It can be replaced
by an essential annulus. This lifts to an essential annulus 4 in M with Anid = @
(this argument was pointed out by the referee).

CoRrOLLARY 3.3 If in addition A, is O-incompressible in M we may assume that
A, Ay, A, respectively are d-incompressible in M.

Proof. The same four steps of the proof of Theorem 3.2 may be applied with
the following modifications.

Step 1. Suppose there are annuli 4 < 14y and 4’ & 4, with AN Ay = 04 = 34’
and suppose further that there is a 2-cell Da M with Dndy = 0DNA' = I is
a nonseparating proper l-cell in 4’ and DnAd = aD—1.

Step 2. Suppose 4’ud is not d-incompressible.

Then the annuli 4y, 4, 4, constructed in the four steps will be incompressible
and d-incompressible,

PrOPOSITION 3.4. Let M be an irreducible 3-manifold that is not P2x[0, 1],
P2 the projective plane, and let A = M be a 1-sided incompressible annulus such that
the components of OM that contain 04 are mcamprewble Let W be a regular

neighborhood of Ain M. Then & = oW —(Wn 6M) is a 2-sided essential annulus
in M.

Proof. Let MO = [0, 1]x[—1, 1J/(0, x) ~ (1, —x) be a8 Moebius band and let

= [0, 11x0/(0,0) ~ (1,0)c MO .

Then (W, 4, 4) = (MOx[0,1], MO x [0, 1], $*x [0, 1]) and W IM=MO x0
uMOx1.

Suppose that 4 is not incompressible. Since M is irreducible and since the

components of 83/ that contain 84 are incompressible these components must

be two distinct projective planes and we must have M = P?x x [0, 1], which is
excluded.

Suppose 4 is boundary parallel. Then M is a solld Klein bottle and 0M is not
incompressible, a contradiction. B

PROPOSITION 3.5. P2x [0, 1] does not admit an involution.
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Proof. Suppose s P2?x[0,1] > P*x[0,1] is an involution. Then i:
(P2x 0, 1]) — 0(P?% [0, 1]) is fixed point free. Since a projective plane does not
admit a fixed point free involution, we must have «(P? x 0) = P2 x 1. If ¢ has isolated
fixed points xg,..,x, let Cy, .., C,cint(P2x[0, 1]) be disjoint 3-cells with
xeimtC; and «C; = Cp, i =1,...,k (Lemma 2.4). Let

M =P*x[0, 11-(C,U..uCy .

Then M — M/i| is a 2-sheeted covering. Since n(M) = Z,, the order of =,(M]i|)
must be 4, It follows from the Lefschetz Fixed Point Theorem that ¢ must have
fixed points. Since d(M/i]) contains the projective planes PZx 0 and 8C,/i|, we
conclude that w,(M/i|) =2Z, ® Z,. A contradiction: Z, ® Z, cannot be the
fundamental group of a 3-manifold ([1], Theorem 9.13). &

THEOREM 3.6. Let M be a 3-manifold and let o: M — M be an involution. Suppose
that Ag = M is a d-incompressible essential annulus.

Then there is a 0-incompressible essential annulus A = M with either Anid = &
or 14 = A and with no fixed points of ¢ on A.

If 14 = A, then A is 2-sided in M.

If M is irreducible and if the components of 8M that contain 04 are incompressible,
we may also assume that A is 2-sided in M.

Furthermore, if O is a given neighborhood of Agutd, in M, we may assume
that A =O.

Proof. By Proposition 2.5 we may assume that there are no fixed points of ¢ on
Ao, that 4, and 14, intersect transversally, that there are no 1-spheres in 4o Nedo
bounding 2-cells in 4y, and that there are no I-cells in 4yned, separating A,.
Consequently, 4, nid, consists either of 1-spheres that decompose 4, into annuli,
or of nonseparating 1-cells that decompose 4, into 2-cells. In the first case we must
have 84,104, = &. Corollary 3.3 proves the theorem in this case. Hence we
may assume that 4, ned, consists of nonseparating proper 1-cells. Our goal is to
successively eliminate the l-cells from 4o nedg.

Note that if J < 4y nid, is a 1-cell, we must have Tnu = @, since ¢ has no
fixed points on 4,. Therefore if donidy # @, it must consist of more than one
1-cell.

Let D < 1d, be a 2-cell with DAy = Iy Uy, Iy, I, proper 1-cells in Ag and edo,
and with DnaM = bﬁ—(}‘l U—TZ) The cells I, I, decompose A, into two 2-cells
D' and D": = D'uD" with D'AD" = 9D = oD = Ljul,.

Then A’ = D’uD and A" = D'"u D are either both proper annuli or both
proper Moebius bands. Since 4, is d-incompressible, both A’ and A" must be
d-incompressible. Since 4, is incompressible, at least one of 4, A" must be in-
compressible.

Step ‘1. Suppose both 4’ and 4’ are proper annuli. We may assume that 4’
is incompressible. Therefore 4’ is a d-incompressible essential agnulus.


Artur


136 E. Luft

Case 1. jul) =TI ul, and 1D = D"
Define A = A'. Then 4 is a d-incompressible essential annulus with ¢4 = 4.

Case 2. ([,ul)) =I,ul, and +D = D",

Let C,;, C, be disjoint regular neighborhoods of Iy, I, in M respectively with
1€y = C, and with 4,nCy, tA;nC; are proper 2-cells in the 3-cell €, i=1,2.
The annulus A} = 6Ci——(Cm6]vf ) is subdivided by the four proper I-cells
(doutdo) N AF into four 2-cells. Let B < 8C; be the one of these four 2-cells that
meets D' and D. See, Figure 5.

Fig. 5

Define the annulus

4, = D'—(D'n(C,UC))UBYUBfUD—(DN(C,UCy)).
Then
Ainidy = dgnidy— (VL) .
There is an ambient isotopy on M that maps 4’ onto 4,. We have removed two
1-cells from Ayned,.
Note it is not possible that (I; UL} N u(I; W ,) is a single [-cell, say 7,. Namely,

then necessarily «f; = Iy, and consequently there must be a fixed point of ¢ on
I, < 4, a contradiction.

Case 3. (Lul)nl,ul,) = Q.

If eDcint D", define 4, = 4'.

Next suppose 1D = int.D". Let D x [0, &] be a sufficiently thin collax of D = D x 0
in M with Dx[0,e]ndy =0Dx[0,¢], I; x[0,e]l= D', and Dx[0, e]aM =
OD~(I; ul)x [0, ¢].

Then DxenuDx¢) = @. Define the proper annulus

A, = D'—0Dx[0, e]luDxe,
! D'—I; x[0,eluDxeul;xe,

if DxenD'" =6, and
if DxenD"=1I,xe.
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Then A, nid; < Ay N edo— (I wely).

There is an ambient isotopy on M that maps 4’ onto 4,. At least two 1-cells
have been removed from A4y ed,.

Step 2. We may now assume that for all 2-cells D c1d,, both 4’ and A"
are Mocbius bands.

Agned, must contain more than two l-cells. Namely otherwise, there is
a Dcidy with 10D = 8D and ¢|p,,, is & fixed point free involution on DueD.
Since a Moebius band does not admit a fixed point free involution, DueD must
be an annulus, and 4" and 4 determined by D are annuli, a contradiction.

Yet Dy, D,c=ed,y be two consceutive 2-cells with Dyndy, = Iul, and
Dy Ay = I,0l3, Iy, Ip, Iy 1-cells. The three 1-cells Iy, I,. J; decompose 4, into
three 2-cells. Let D' < Ay be the 2-cell with I3, I, <D’ and D'nl, =@ Sce
Figure 6.

Dy

Fig. 6

Define 4’ = D' Dy D,. Since 4, is d-incompressible, 4 is d-incompressible.
Since both D, and D, define Moebius bands, 4" must be an annulus.

Claim. A’ is incompressible.

Proof of Claim. Suppose 4'is not incompressible. Then 4’ has a compressing
2-cell B such that B~A’ = 0B is a nonscparating 1-sphere on 4'. We may assume
that A’ intersects td, transversely. There is a 2-cell B, = B such that

BoﬁAo = aBoﬁAo =]

conclude that either D, or D, respectively delermine annuli instead of Moebius
bands, a contradiction.
Thus A’ is a 9 incompressible essential annulus. .
Define D = D;u D,. The construction of Step 1 can be applied again.

Case 1. 4(f,ul;) = I;uly and o, = D', .
Define 4 = A’. Then 4 is a 8 incompressible essential annulus with 14 = 4.
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Case 2. ([july) =, ul; and o, = A,— D"

Let C;, Cs be disjoint regular neighborkoods of Iy, Iy in M respectively with
iCy = Cy and with 4y N C;, tdon C; are proper 2-cells in the 3-cell ¢, 7= 1,3,
The annulus A} = 6-6’:- (C;ndM) is subdivided by the four proper [-cells
(Ao Utdo) 0 AF into four 2-cells. Let B} < dC; be the one of these four 2-cells that
meets D’ and D, Define the annulus

4, = T (D AGUT) 0 Bl UBUD- DRG0 Cy).

Then Ajntd, = dgnidg—( VI, WIE). There is an ambient isotopy on M
that maps 4’ onto 4,. We have removed three 1-cells from Ay ned,,.
Again it is not possible that (J; U L) NI, ULy) is a single 1-cell,

Case 3. (LhulL)nWl,uly) =@,

It is not possible that ¢/, = I,. Otherwise D; oDy == dD; = &D, and tpyuip,
defines a fixed point frce invelution on Dy uiD,. Since a Mocbius band does not
admit a fixed point free involution, D; U¢D, must be an annulus. Therefore D,
does not determine Moebius bands, a contradiction. Similarly, oI, = I, is not
possible. Consequently, tD<int D’ or 4D < A4y~ D"

If tDc dy— D', define 4, = 4"

Next suppose ¢D < int D', Let D x [0, &] be a sufficiently thin collar of D = D x0
in M with Dx[0,e]lndy = aDx[0,¢], [;x[0, ¢l D', and Dx [0, e]nOM =
0D~ (I;ul)x|0, ¢].

Then DxenuDxe) = &. Define the proper annulus

if DxenD” =&, and

y ={57—6Dx[0,s]ubx1;,
' if Dxen D" =

Btllx[o, sluDxeul,xs,

Iyxe.

Then A;nid, c Agnidy— T v,

There is an ambient isotopy on M ihat maps 4’ onto 4;. At least two 1-cells
have been removed from 4, id,.

Therefore, in a finite number of steps we arrive at the d-incompressible essential
annulus 4 with cither Anud = @ or 14 = 4 and with no fixed points of ¢ on 4.

If ed = 4, 4 must be 2-sided in M. Namely otherwise, by Lemma 2.4, there
is a regular neighborhood W of 4 in M with ¥ = W and with no fixed points
of ¢ on W. But W is a solid Klein bottle. Tt does not admit a fixed point free in-
volution, a contradiction.

Suppose Anid = @ and 4 is I-sided in M. If M is irreducible and if the
components of 6M that contain 04 are incompressible, let W be a regular neigh-

borhood of 4 in M with WruW = @. By Proposition 3.4, A = W~ (W M)
1s a 2-sided essential anmulus in M with Anud = @. Since 4 is d-incompressible,
so is A. Replace 4.by 4, W
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CoROLLARY 3.7, Let M be an irreducible 3-manifold and let : M — M be an
involution. Suppose thut Ay M is an essential annulus such that the components
of OM that contain 84 are incompressible.

Then there is a 2-sided essential annulus A < M with either Anid = @ or
WA = A and with no fixed points of ¢« on A.

Furthermore, if O is a given neighborhood of Agutd, in M, we may assume
that A <= Q.

Proof. Proposition 3.1 and Theorem 3.6, H

Note also that if the 3-manifold M is orientable cach proper annulus in M
is 2-sided.

§ 4. Equivariant surgery on essential Mochius bands with respect to involutions.
Again note that a d-incompressible, incompressible proper Moebius band in
a 3-manifold is esscutial. Also again we have the following converse.

ProvOSITION 4.1. Let M be an irreducible 3-manifold and let MO < M be an
essential Moebius band. Suppose that 9MO = R, R < 8M an incompressible coniponent.
Then MO is d-incompressible in M.

Proof. If MO is not d-incompressible, then as in the proof of Proposiiion
3.1 it follows that MO is boundary parallel, a contradiction. B

Again if M is not assumed fo be irreducible or if R is not assumed to be in-
compressible, it cannot be concluded that MO is d-incompressible. If for example
V=10, 1]x[~1, 1] x[~1, 1J}0, x,») ~ (1, =x, —y) is the solid ?orus, thep
[0, 11 [~ 1, 11x0/(0, x, 0) ~ (I,—x, 0) is an cssential Moebius band in V that is
not d-incompressible. Similarly as in cage of the annulus examples can be constructed
of essential Mochius bands MO in 3-manifolds M that are not irreducible and
with R incompressible such that MO is not d-incompressible.

TimoruM 4.2, Let M be a 3-manifold and let v: M — M be an involution. Suppose
that MOy < M iy an essential Moebius band with MO, MO, = 3.

Then one of the following three propertics holds.

(1) Either theve is an essential Mocbius band M 0 = M with MONMO = .@

AMO = MO, or there is a 2-sided essential annulus A < M with 14 = A and with
no fixed points of v on A. If MOy is 2-sided (1-sided) so I MO. . .

(D) MOy is Y-sided in M and there is u 2-sided cssential annylus A in M with
0d = MO, VMO, and Anid = 34 = dhd. .

(a1 A/(l) is « S()(I)l(l torus. There is an essential Moebius band MO‘CM with
MO = 8MQy and MO MO = S Is a single nonseparating 1-sphere in MoO.

Proof. We apply Proposition 2.5, We may assume that there are no fixed
points of & on.MO,, that MO, and MO, intersect transversally, and that there
are no l-spheres in MO, MO, that bound 2-cclls in MO,.


Artur


140 E. Luft

Therefore MO, MO, consists of disjoint I-spheres. If MO, is 2-sided in M
then cach 1-sphere separates MO, into an annulus and a Mocbius band (Lemma 2.6),
If MO, is 1-sided in M then it is not possible that a l-sphere separales one and
not the other of MO, and (MO, (otherwise MO, must be 2-sided in M, a contra-
diction).

Our goal is to successively eliminate the I-sphercs from MO, MO,

Step 1. Suppose there is a 1-sphere in MOy eM O, that separates MO,

Then there is a unique annulus A < MOy with AAMO, = AN MO, = §
a single 1-sphere and 84 = SUIMO,. Neeessarily o5 = §. Consider the annulus
A4 = Auid. Note 4 is incompressible.

Case 1. The annulus A is not boundary parallel, Then A4 is an cssential annulus
with t4 = 4 and with no fixed points of ¢ on A. Purther 4 must be 2-sided in M
(see remark in proof of Theorem 3.6).

Case 2. The annulus 4 is boundary parallel. Then the incompressible Moebius

band MO = MO— AU 4 is not boundary parallel and therefore essential. Applying
Lemma 2.4, let ¥ be a regular neighborhood of S in int M such that

V=V, MO,nV, MOnV

are proper annuli in ¥, and such that there are no fixed points of ¢ on V. Then V'
is a solid torus and MOy N V). 8eMO, N V) subdivide 8V into four annuli. Let
A* < @V be the one of the four annuli with one boundary component in 4 and the

other component in MOO‘-*—TZ. Define the cssential Moebrus band

MO, = MOy—(Au(MO,nV)ud*ud.

Then MO, MOy = MOy itMOy—S. One l-sphere has been removed from
MO, ntMO,. Note dMO, = 0MO,.

Applying Step 1 a finitc number of times we cither arrive at property T of the
theorem or at the following.

Step 2. MOyniMO, = § a single 1-sphere and S docs not separate MO,l
and not «MO,.

Applying Lemma 2.4, let ¥ be a regular neighborhood of § in int V such that
V=V, MOV, 1MO, 0 V are proper Mocebius bands, and there arce no fixed points
of von V. Then ¥is a solid torus and. the two l-spheres d(MO, V), JaMO, V)
subdivide 0V into two amnuli 4%, 14*. Consider the incompressible 2-sided amulus
A'= MO~V MOG) v A* Ui (MOy,~ (V' MOy)). If 4’ is not boundary parallel
it is easy to modify 4’ to obtain the 2-sided essential annulus A of property II of
the theorem. If 4’ is boundary parallel, it follows that M is a solid torus and we
have arrived at property III of the theorem. M

_Examere. Let V= [0, 1]x[~1, 1]x[~1, 1)/0, x, ») ~ (1, —x, —y) be the
solid torus and let MO = [0, 1]x[—1, 1Tx 0/(0, x, 0).~ (1, —x, 0) be an essential
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Mocbius band in V. Define the fixed point free involution ¢ V - ¥V by
W, x,p) = (11, y,%).
Then MONMO = § is a nonseparating [-sphere in MO.

CoroLLARY 4.3, If in addition MO, is d-incompiessible in M only properties (L)
or (I1) hold and we may assume that the annulus A and the Moebius band MO are
d-incompressible.

Proofl. In Step 1 of the prool of Theorem 4.2 cither the annulus 4 or the
Moebius band MO' must be d-incompressible. Tn Step 2, the annulus 4 must be
d-incompressible. Property X cannot hold since a Moebins band in a solid torus
is not d-incompressible, B

TrmoreMm 4.4, Let M be a 3-manifold and let o: M — M be an involution. Suppose
that MOy = M is a d-incompressible cssential Moebius band.

Then there is either a 0-incompressible essential annulus or Moebius band F < M
with FuF = @ or there is a 2-sided O-incompressible essentiol annulus A < M with
tA = A and with no fixed points of v on A.

Furthernore, if O is a given neighborhood of 4,Utd, in M, we may assume
that 4 < 0.

Proof. By Proposition 2.5 we may assume that there are no fixed points of ¢
on M,, that MO, and MO, intersect transversally, that there are no 1-spheres
in MO, tMO, bounding 2-cells in MOy, and that there are no [-cells in
MO, N MO, separating MO, Consequently cither 0MO0,NdMOq = @ and
MO, MO, consists of 1-spheres or MO, ni1MO, consists of nonseparating 1-cells
that decompose MO, into 2-cclls,

In the first case Corollary 4.3 proves the theorem. If property 11 holds, let W
be a regular neighborhood of Awid, 4 the 2-sided d-incompressible essential
annulus with 4 ed == 94, such that oW = W. Lot A" < dW be an annulus tl?at
is proper in M. Then A’ is a 2-sided d-incompressible esseniial annulus with
A'ned = @,

Tn the second case the proof of Theorem 3.6 applics. If MO MO, #_QJ
we actually can obtain an annulus with the required properties. Step 1 of the
proof alone will do. ®

COROLLARY 4.5. Lot M be an irreducible 3-manifold and let o2 M — M be an
imvolution. Suppose that MO, < M is an essential Mocbius band such that the component
of OM that contains OMQOy iy incompressible.” .

Then there is either a 2-sided essential annulus or Moebius band Fo M with
FouF = @ or there is a 2-sided essential annulus 4 < M with 14 = A and with no
Jixed points of ¢ on A.

Furthermore, if O is a given neighborhood of Ao ViAo in M, we may assume
that 4 < O,
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Proof. Proposition 4.1 and Theorem 4.4, By Corollary 3.7 we may assume
that if Fis an annulus it is 2-sided. If F'is a Lsided Moebius band, let Wbea regular
neighborhood of Fin M with Wl = &, Then A «« QW (W u")M) must be
an essential annulus (since (W M ) consists of two T-spheres it iy incompressible,
If it is boundary pacallel, M must be a solid torus amd dM is nol incompressible),
Thus A is 2-sided and Aned == €5, @
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On the Cauchy equation modulo Z
by

Karol Baron (Katowice) and Peter Volkmann (Karlsruhe)

Abstract. Assume that X is a real linear topological space (which always is assumed to be
Hausdorff) and let /4 X~ R be a function such that )

fltN-f)-fO)eZ

for all x, y € X. Some conditions are established under which f has the form g+ k, where g is a con~
tinuous linear functional on the space X and the function & takes integer values only. An application
to the Cauchy equation

Fx4) = f()+10)

for functions acting belween linear topological spaces is also given.

Let a function f: R - R be given and assume that
) fle+»)=fx)-f(»)eZ
for all x, y € R, where Z denotes the set of all integers. As follows from an example
of G. Godini [6, Bxample 2], it is not generally truc that such a function f must
be of the form g+ % where g is an additive function and k takes integers values only.
However, the following theorem has been proved in paper [L]:

TusoreMm 1. If the Cauchy difference f(x+y)—f(x)=f (), as a function of
two real varlables, is Lebesgue measurable and takes integer values only, then there
exists an additive function g: R - R and a Lebesgue measurable function k: R — Z
such that

@ I=gtk.
Tn the present paper, the following theorem will be shown:

THEOREM 2. Assume that X is a real linear topological space. '
If a function f: X — R satisfies condition (1) for all x,ye X and there exists

a set E< X such that
3 0 e Int(E—E)
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