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Von Neumann’s paradox with translations
by

M. Laczkovich (Budapest)

Abstract. Let I and J be intervals with 7] < [J|< 2]I|. It is shown that there are disjoint de-
4 4
compositions I = () A;, J = | B; and there is a strictly increasing contraction f from I into J
i=t i=1 N

such that B; = f(4;) and B; is a translated copy of A; for { = 2,3, 4. This implies that von
Neumann's paradox can be realized by using four pieces. Also, an upper estimate is given for the

]
inner Lebesgue measure of the set () fi(Hy), where the sets Hyc R" are pairwise disjoint and
1=1

the maps fi; Hi— R" are Lipschitz. Using this estimate, it is proved that von Neumann’s paradox
cannot be realized by using two pieces and that four pieces can be used only if [J{< 2{1].

1. Introduction. A subset B of the real line R is called metrically smaller than
the set 4 = R if there is a bijection /' of 4 onto B such that |f(x)—f ()| < |x—y]|
for every x, y€ 4. The following theorem ([5, p. 115]; [11, p. 105]) is known as
von Neumann’s paradox Let 1, J be intervals with |7] < |J|. Then there are decom-

positions [ = U A, T = U B; such that B is metrically smaller than 4; for every
i=1

i=1,..,n More exaclly, von Neumann proves that B; = f,(4;), where f; is a strictly
increasing contraction on I (i =1, ...,n). (A function f: 4 — R is a contraction
if [f() =~/ (M) <glx—yp]| holds for every x, ye 4 with a constant g<1.)

In this paper we present a similar paradoxical decomposition which uses only
one contraction and three translations.

THEOREM 1. Let 1, J be intervals with |J| < 2|1|. Then there are decompositions
4 4
I=U 4, J=\J B, such that B, is metrically smaller than A, and B, is congruent
1=1 i=1

to 4; for i =2,3,4. More exactly, B, = f(A,), where [ is a strictly increasing
contraction on I, and B; is a translated copy of A; for i=2,3,4.
n

It is well known that if |I] < [J| then there are no decompositions I = U 4;,

J= U B; such that B, is congruent to 4; for every i = 1, ..., n,i.e., Jis not equxvalent
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2 M. Laczkovich

by finite decomposition to Z. This is obvious by the existence of a Banach measure
[2, p. 257], but can also be proved effectively, without using the axiom of choice
([9, p. 222] or [8, p. 72], see also [11]). This easily implies that the upper bound
on |J| in Teorem 1 is sharp, even if we use more parts to be translated.
TrEOREM 2. Let I, J be intervals, and suppose that there are decompositions

n n

I=\) A4, J=\B such that By is metrically smaller than A 1 and By is congruent
i=1 i=1

to 4; for i=2,..,n Then |J| <2{I|.

Indecd, let J = [a, b] and let [, d] be the closed convex hull of B,. Since B, is
metrically smaller than 4, and diam 4, < |Z[, it is easy to see that d—¢ < |I]. Then
[a, c]u (d, b]is equivalent by finite decomposition to a subset of 7, since [a, clu(d, b]
< U Byu{c} and there are congruences that map B, into 4; (i > 2) and ¢ into a point

i=2
of 4;. This implies that [«, c+b~d] is equivalent by finite decomposition to a subset
of I. Hence c¢+b—d—a<|I| and [J| = b—a<d—c+|I|<2|I|. W

Theorem 1 implies that von Neumann’s paradox can be realized by four-piece
decompositions.

THEOREM 3. Let I, J be intervals with |J| <2|I|. Then there are decompositions
4 4

I=\ 4;,J = Bysuch that B, is metrically smaller than 4, for everyi = 1,2, 3, 4.
=1 =1

Indeed, we can take an interval J' with |J| < |J’| <2|1|, apply Theorem 1 for
the intervals J and J' and then use a contraction which maps J' onto J. We remark
that von Neumann’s proof requires at least 33 pieces in the decompositions.
Obviously, Theorem 3 is much weaker than Theorem 1 and, accordingly, is much.
casier to prove. In the next section we give an independent proof.

We also show that the upper bound on |J| in Theorem 3 is sharp. This is an
immediate corollary of the following, more general theorem. We denote by A, and
2y the n-dimensional Lebesgue outer and inner measures, respectively.

THEOREM 4. Let Ay, A, ... be a finite or infinite sequence of pairwise disjoint

subsets of R", and let, for every i, f;: A, —+R" be a Lipschitz function with Lipschitz
constant M;. Then

&"( Li)fi(Ai)) < MA}:(LIJ Ai) ’
where

M =max (3 M, sup M/,
i i

4
I;Iow suppose that I, J are intervals and there are decompositions I = U 4,
i=1

J = | B; such that each B, is metrically smaller than A;. Then B, = f{(4)), where
i=1
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f; is a Lipschitz function with Lipschitz constant 1. Hence, by Theorem 4,
W = 4, () <342,(D) = 2]I].

Also, if one of the maps is a contraction then the inequality is strict, since then there
exists ¢ <1 such that

Vi<i@+3) I <2/1].
Taking M, = M, = 1 in Theorem 4 we obtain the following corollary.

THEOREM 5. Let Ay, A, be disjoint subsets of R" and let f;: A; — R" be maps
such that | f(x)—fiDI<|x~y| (x,yed;, i=1,2). Then

_)fn(fl(Al) Ufz(Az)) 4,40 4,).

In particular, von Neumann’s paradox cannot be realized using two-piece
decompositions. We do not know, however, if a three-piece von Neumann paradox
exists.

We shall use the following notation. We denote by € = Cu {0} the closed
complex plane. By a linear fractional transformation we mean a function

ax+
o) = — " :
fractional transformations is denoted by L. Each g € L is a permutation of C (i.e.,
a bijection of € onto itself), and under the operation of composition L forms a group.
The unit element of L (the identity map on C) will be denoted by j. If tlle coefficients
of g € L are real, then g is also a permutation of the extended reals R = Ru {c0}.
(Note that R only contains one infinite element.) We denote by L, the set of linear

[bl (xe C), where a, b, ¢c,de C and ad—bc # 0. The set of all linear

ax+b .
fractional transformations ¢(x) = i with ad—bc = 1. Then L, is a subgroup

of L, The composition of the maps o« and f will be denoted by of, so that
aB(x) = a(B(x)). By a decomposition we mean a unjon of pairwise disjoint sets.

2. Proof of Theorem 3. The proof is based on the following theorem of Robinson
(I7, p. 2541; [11, p. 46]). Suppose that o, B, y, & are independent rotations of the unit
sphere S (i.e., they are free generators of a free subgroup of the group of rotations

4

of ). Then there is a decomposition . =LU Sy such. that
k=1

a(S10Sy) = 8y, B(S1US) = Sa, (83U Sy) = Sy

In the next lemma we transform this decomposition into K and from that
we infer a four-picce von Neumann paradox.

P(S3USy) = S,

Lemma 1. Suppose that the real numbers ay, by, ¢, d, (k=1,2,3,4) are
) ax+by
algebraically independent over the rationals and let oy (x) = fx_—l—gk *k=1,23,4.
3 e - - .

1*
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4 M. Laczkovich

. v 4
Then there is a decomposition R = \J H,, such that
k=1

1) w(H,VHy) = H, w(H VHY)) = Hy, ay(HyUH,) = Hj,
w(Hy UH,) = H, .
Proof. The transformations oy, a,, ag, 0, generate a frec subgroup of L
(see [5, p. 107)).
Let

Ak = [lk+ibk,
Ck = -Ck+f[lk N

.Bk = Ck+idk,

Dy, = a,—ib, (k=1,2,3,4).

Then the system of numbers 4,, By, C,, D, (k = 1,2,3,4) is algebraically
independent over Q. Indeed, each of the numbers s by, oy, dy, is algebraically
dependent on this system. Hence if this was algebraically dependent over Q- then
the degree of transcendence of the system by, ¢, dy (kK=1,2,3,4) would be
less than 16 which is impossible [10, p. 201]. Therefore there is a field automorphism ¢
of C such that

o) = 4, o) =B, o) = G, od)=D, (k= 1,2,3,4).
We define ¢ (o) = 0.
Let
Akx—l-Bk
=—— (k=1,2,3,4).
h) =T 3,4)

Since D, = A, and C, = — B,, each B, represents a rotation of the Riemann sphere
S through the stereographic projection. That is, if 7: § — € is the stereographic
projection then g, = n~!f, 7 is a rotation of § for every k = 1,2, 3,4 [6, p. 55].
Ap(x)+B, a,p:-l—b,i’
Cip(X)+Dy, ¢ [ckx+dk
= g (x) hence B, = poyp™* and g, = 7~ pap~'x. This shows that the rotations
0, are independent, because if g} ... ol =Jj, where i,..,i,=1,2,3,4 and
By, ., g€ Z then off ... off = (p’:njyr“‘qo = j. Therefore, by Robinson’s theorem,

We have for every xe C and k = 1,2, 3, 4 B (x) =

there is a decomposition § = |J S, such that
k=1

0:1(8108,) = S, 02051V S,) = 8, @s(S30Sy) = 8, 04(S3 U S,) = Sy

We put

Hy= (7 'n(S)nR (k=1,2,3,4).

Using the facts that all the maps involved are bijections and o (R) = (R, it is
easy to check that (1) holds. M

icm
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Now we turn to the proof of Theorem 3. Let 7, J be intervals with |Jj<2|1].
1+2¢
We may assume that J = [0, 2]. Let >0 be fixed such that [I] > " Then

there are algebraically independent real numbers a,, by, ¢, d, (k = 1,2, 3, 4) such
ax+b,
X+ d, v
lx(x)~1l<e (xe[0,1], k=1,2,3,4), and
([0, INDcay([0, 1D =[—¢, 1+e] (k=2,3,4).

(One has to choosc a;, and d, close to 1, b, and ¢, close to zero. Also, the coefficients
of &; have to be chosen first such that [0, 1] < int [a,([0, 1])] and then we pick
the coefficients of a5, o3, ay.) 4

By Lemma 1, there is a decomposition R = {J H, such that (1) holds. Let
denote the translation B(x) = x-+1. L ‘
We define

that the functions o, (x) = have the following properties:

oty (x) Jif xe(H{ H,) N[0, 1],
N Jas(®) if xe(H;wH)N[0,1],
IO =057 if xe pH,OH) (1, 2],
aB7(x)  if xeB(H;UH)N(,2].
Then g is a one-to-one map from J = [0, 2] into «y([0, 1]). Let A(x) = af *(x) for

xeay([0, 1]); then A is a one-to-one map from o, ([0, 1}) into J. By Banach’s theorem
[1] there is a decomposition J = Pu Q such that

g(x) if xeP,
s0) = {h“l(x) =a,(x) ifxeQ

is a bijection from J onto x,([0, 1]). Let

B, = [(HiuH)N[0,1]]uQ, B,=pHVH)"({1,2InP,

By = (H;UH)A[0,1]nP and B, = B(H,UH)N(1,2]nP.
4
Then J = | B, is a decomposition. Also, s(x) = o (x) for xe B, and k= 1,3
k=1
and s(x) = o f~(x) for x€ B, and k = 2, 4.
1+2¢
1—¢

and

Let y be a linear function such that y(«,([0, 1])) = I. Since |I| >

Joy ([0, 11)| < 1428, we have y' > —1—L Then ys is a bijection between J and 1.
—&
Let A, =ys(B) (k=1,2,3,4), fi=0u) " (k=1,3), and fi = (yup™)~*
1
(k = 2,4), then fi(4,) = B, (k =1,2, 3,4). Since (yoy)’(x) > 1—:—3-(1—5): 1 for

every x € [0, 1], we have 0 <fy (x) < 1 for every x € I, and hence each f; is a con-
traction. This completes the proof. B )
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3. Proof of Theorem 1. The idea of the proof is that we find a linear fractional
transformation o, and translations o,, @3, &y such that a decomposition theorem

similar to Lemma 1 holds. Unfortunately, the complete analogue of Lemma 1 cannot
4

hold. Indeed, if R = {J H; is a decomposition such that (1) is satisfied then
i=1

o304 (Hy U Hy) e Hy and ayy(Hs W Hy) < H, . However, if oy and o, are translations
then o0 = a4ty, and hence Hyu H, = @. Therefore, H,UH, = R, and H, =
a,(R) = R, Hy = o,(R) = R, which is impossible. Therefore we have to replace
Lemma 1 by a weaker statement.

LEMMA 2. Let the real numbers a, ¢, d, e be algebraically independent over the
ad—1 ax+b

rationals and put b= ———. Let «,BeL; be defined by o(x) = —— and
¢ ex+d

B(x) = x+e. Then there are decompositions R = X, U X, and R = X;0X, such

that the sets a(Xy), P(X3), X5, B*(X,) are pairwise disjoint.

This is an immediate consequence of Lemmas 3 and 4 below. In the proof
of Lemma 3 (which is a variant of [11, Theorem 4.5, p. 37]) we use an idea of Robin-
son. He observed that in a free group of rotations of S, the subgroup of those
rotations which leave a- given point fixed is commutative and hence it is eyclic.
Unfortunately, two linear fractional transformations do not necessarily commute
if they have a common fixed point. They do commute, however if they have two
common fixed points. What we have to prove in Lemma 4 is that, in the group
generated by o and f, if two clements have a common fixed point, then they have
two common fixed points.

Let X be a non-empty set and let Sy denote the group of permutations of X.
We say that a subgtoup GeSy is locally commutative provided that whenever iwo
elements of G have a common fixed point then they commute.

Lemma 3. Let X be a non-empty set, let the group G Sy be locally commutative,
and suppose that G is freely gencrated by the elements a, b e G. Then there are decom-
Ppositions X = X, 0X, and X = X, 0 X, such that the sets a(Xy), b(X,), X, and
b*(X,) are pairwise disjoint.

Proof. Let i denote the unit element of G (the identity map on X). Every
reG, r # i has a unique representation r = 5™ ... " 4", wherc the exponents
are integers, k, % 0 for t=2,...,p and n, # 0 for ¢ =1, ...,p—1. This will be
called the canonical represemtation of r. The number [k1l+1711|+ AR
is the length of the representation. Putting x ~ yif y = r(x) for some r & G, we deﬁne
an equivalence relation on X. Let E be an arbitrary equivalence class. Since #(E) =
for every r e G, it is enough to prove that there arc decompositions E = EluE2
and E = E; U E, such that the sets a(E,), b(E,), E; and b>(E,) are pairwise disjoint.

Suppose first that, for every xe E and re G\{i}, r(x) # x.

Let an element v € E be chosen, Then for every x e E there is a unique r, € G

icm
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such that r,(v) = x. The elements of the sets E; will be selected according to the
values of k; and n,; in the canonical representation of r,. We put the element x
into E; if ky = 0 and ny # 0, into E, if r, = i or k; # 0, into Ej if ky =0 and
ny <0, and into E, if r, =i, or k; # 0, or k; = 0 and n, > 0. It is easy to check
that £ = E,UE, = E3UL,,, If xea(E,), then the canonical representation of
r; has kg =1. Also, if x € b(E,) then we have k; = 0 and n; = 1, if xe E, then
k; = 0 and ny <0 and, finally, if x e b*(E,) then &k, = 0 and #, > 2. This proves
that a(E,), b(E,), E; and bX(E,) are pairwise disjoint.

Suppose now that g(u) = u for some veE and ge G, g # i. Then every
xe E is a fixed point of some re G, r # i. Indeed, if x = d(u) then dgd~'(x) = x.
By assumption, each group G, = {se G: s(x) = x} is commutative. Also, as
subgroups of the free group G, they are free [4, p. 96]. Therefore G, is cyclic for
every x € E. Let 5, denote once of the generators of G,. Let v € E be such that s,
has the smallest length among the elements s, (x € E), and put s = 5,. Then the
canonical representation of s is such that the product ss does not cancel. Because
if it did then one of the elements asa™*, a~lsa, bsb™!, b~ 'sh would have smaller
length than that of s which is impossible since they are (one of) the generators of
the groups G,,, Gu-1,, Gy, and G-y, respectively. For every x € E there is an re G
such that x = r(v). This r is not unique since rs"(v) = r(v) = x for every n.
However, we can select an r, such that x = r,(v) and the product r,s does not
cancel. Indeed, if x = r(v) then rs" will have this property for  large enough, since
it ends with the same factor as 5. Having selected r, for every x € E, we define the
sets E; (i =1,2,3,4) in the same way as above. Then obviously E = E,UE, =
E; U E,. We prove that a(E)nb(E,) = &. Suppose that a(x;) = b(x,) for some
xy € E; and x, € E,. Then ar, (v) = br,,(v) and hence (br,,)~*(ar,,)(v) = v. Since s
generates G,, this implies that (br,,)”*(ar,,) = s" for some integer n and thus
ar,, = br,,s". Suppose that n > 0. Since r,,s does not cancel, the canonical representa~
tion of the right hand side begins with a b, while that of ar,, begins with an a, which
is impossible. If # < 0 then we write ar,,s™" = br,, and get the same contradiction.
Similar arguments show that a(E,), b(E,), E; and b*(E,) are pairwise disjoint. M

LEMMA 4. Let r/ze numbers a, ¢, d, e bé algebraically independent over the rationals
a 1 X+ b
i . Let a,fel; be fleﬁned by a(x) = —::i and B(x) = x+e
P
(xe ©), and let G denote the group generated by o and p. Then G is freely generated

by o and B, and G is locally commutative,

and put b =

Proof. Z[x,...,x,] will denote the ring generated by Z and the numbers

X{y ey &,. The field generated by @ and the numbers Xy, ..., x, will be denoted

Ax+B
by Q(xy, .., x,). It is easy to check that if ge G then o(x) = C ok where

A,B,C,DeZla,b,c,d,e] and AD—BC = 1. Substituting b = T we can
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P
see that each of 4, B, C, D can be written in the form of ot where Pe Z[a, c, d, e]

and k is a non-negative integer. Let o = o' ™ ...
ki 0fori=2,..,pandn;, % 0fori=1

o*® B2, where k;, n; are integers,
s p—lifp>1,and ky 5 0orny # 0
ﬂig as above. We show that C = 0 implies p = [ and
Cx+D .

o = f". Indeed, if C = O then this must be an identity since , ¢, d, ¢ are algebraically
independent over Q. That is, for every y € L, and for every translation §(x) = x+u,

! !

A
y* 8% is of the form i , where A'D' = 1. In particular, the

if p=1. Let o(x) =

the map y¥ 6™ ...

. e =1

absolute value of this function at x tends to infinity, as x — 0. Let @ (x) = —-and
x

0(x) = x+2. Putting y = wdw, we obtain 9* = ws*w for every ke Z, and hence

PSR § = 5 pEM w62 ., T

Now it is easy to check that if p>lorp=1landk, # 0then the value of the right-
hand side at x has a finite limit as x — co. (This argument is due to von Neumann
[5, p. 107].) This contradiction shows that C = 0 implies ¢ = " indeed.
Since either C # 0 or g = ™ with n; # 0 implies that ¢ is not the identity
map, we have proved that G is freely generated by a and f.
Ax+B A'
Now let ¢, 7€ G, g(x) = et D’ 7(x) =
have a common fixed point . We may assume that neither ¢ nor 7 is the identity.
Suppose first that 4 = 0. Then C = C’ = 0 and hence ¢ = f" and 7 = "
Thus ¢ and 7 are translations and then they commute. :
Next let u be finite. Then ¢ and © cannot be translations and hence, by our
preceding argument, C# 0 and C'# 0, Thus from o(¥) =u we obtain

+B’
D and suppose that ¢ and ¢

A—D+. /4
- ——.-é-gi where 4 = (D—A)*+4BC = (D— A)*+44D~4 = (A+ Dy*—
A'— D'+ JA
and the value of /4 is chosen appropriately. Similarly, u = 20—;1/* , Where

= (4'+D")*—4. Thls implies that C'./A—C./& =reQ(a,c,d,¢) and
hence computing r% we obtain VA4 =seQ(a,c, d, e). Suppose first that

VA¢Q(a, c,d,c). Then /47 = :/ij = t./d, where te Q(a, ¢, d, e).

. A—D+./4 A' =D+t /4 A-D A’ D
S = = , : ——— ]
ince u 3G oYel we have G Ve and
1 t A-D-/4 A’—D’—JZ’
—— H - = i ]
¢ ence 2C Xl which shows that the other fixed

points of ¢ and 7 also coincide, This implies ¢ and © commute, Indeed, let ¢/’ be the

icm
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. Then the fixed points of 7 = £&~! and

0 = ExE* are 0 and oo. Therefore #(x) = ¢;x and 6(x) = ¢;x. In particular,

# and 0 commute and hence so do ¢ and .

Now let /4 e Q(a, ¢, d,¢). We prove that in this case 4 = 0. Indeed, let

= (A+D)*~4 = T? where TeQ(a,c,d. €). As we saw in the beginning of
>
the proof, A+ D = {», where Pe Za, ¢, d, e] and k 0. Then P?~4c® = T2,

and hence P2w402" = §% where SeZa,c,d,e]l. Thus (P—S)(P+S) = 4c*,

4
from which P—8 = z¢", P+ 8§ = ; ", where z = 41, 42, or +4, n,m=0 and

z 2 ‘ o, 2 . .
n+m = 2k. Therefore P = 5 " - and A+D = 5 c* "—i»_»c" ", Again, this
z

must be an identity. In other words, if g = o " ...a* ", then for every

()—f{1x+ldleL1 and for.every translation &(x) = x+4e;, we have m(x)

- dly

=yhgm yor 310 (x) = At By , where 4D —B,C;=1 and 4,+D;= ic';“"
lex'i" DL

—l-%c'{'". Let ¢, be an arbitrary non-zero real number and put a; = d; = e; = 0
z

1 iy N »
and by = — ‘1 Then 9(x) = — .C?;C’ 8(x) = x and hence m(x)="x or n(x)
1

1

ix
In the former case we have 4, = D; = 1 or A; = D; = —1, while in the

X Z oy 2 k—n
latter case Ay = D, = 0. Since the valug of A;-+ D, must be equal to 3 i | + P

and ¢, was arbitrary, we obtain that :; kg S =" =2, —2 or Ofor every ¢ # 0.

Hence A+ D =2, -2 or 0. Now A+.D =0 is impossible. Indeed, 4+D =0

would imply /4 = +2ie Q(a, ¢, d, ¢) contradicting the assumption that ¢, ¢, d, e
are algebraically 1ndopcndcnr over Q. Therefore A+D = +2 and 4 = 0.

Sinice ¢! JA—~CJA € Qla, ¢, d, €), Jd -lies in Qld, ¢, d,e) and hence

= (, too. Therefore both ¢ and « have On]y one fixed point, u. This, again, 1mpl1es

1 S 1
that they commute. Indeed, let A(x) = poet and put = AgA™*, ¥ = JzA™"

Then the only fixed point of # and ¢ is.co.and hence they arc translations. Thus 1
and 2 commute, whence ¢ and = commute as well. This completes the proof of
Lemma 4. W
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Now we turn to the proof of Theorem 1. Since the assertion of the theorem
is obvious if |J|<|I| (take A; =1 By =J if {Ji<|I| and 4, = B, =& if
/1 = |1]), we may suppose |I| <|J|. Also, we may assume that I = [0, 4] and
J =10, 2v], where 0 < g< v<u.

We show that there are real numbers a, b, ¢, d, e such that a, ¢, d, e are
algebraically independent over @, ad—bc¢ = 1, and the transformations o (x) = (L\«j‘»b

I

and B(x) = x+e have the following properties: a([0,s]) = [0, 4], A([0, v])
W BX[0, v]) < [0, u], and 0 < (¢ 1) (x) <1 for every x e [0, u].

. 1-6
First we choose 6 e (0, 1) such that 5 >v and if a,de(1—8, 1+6) and

b, ce(—5, 5) then

v+b

p < u. Next we find 7 & (0, §) such that if @, de (1—n, 1 +1)
52

then lad—1| < 5 Then we choose a, ¢, d, e such that they are algebraically

independent over @, and satisfy the inequalities 1<a<1+ 121, —-0<c< %i

i u—v
l-y<d<l—-and 0 —
# 2an <e< 3

Then we put b = ad—

1
and observe that b > Osince ad—1 < (1 + %’) (l - —g) —

.2 N
—1<0and ¢<0, and also b<é for ]ad—l]<~2—, and |¢]| > é

1
(ex+d)?

‘ b
[0, v]. Thus 0 < «(0) = y and a(v) =

Since o'(x) = and d+cvo>(1-9)~dv >0, ois strictly increasing on

av+b ‘ .
y <uimply ([0, v]) = [0, ©]. The inclusion

: . o oot
B0, oD U B*([0,v]) < [0,u] is obvious by e>0 and wv+2e<u. Finally,

- —dx+b 1 1
a”i(x) = — cand (@™ (x) = (71352

P If x>0 then a—cyx>a>1, and

hence 0 < (a™ Yy (x) < 1.

By Lemma 2, there are decompositions R = X; U X, and K = X, U X, such
that the sets a(X}), f(X,), X5 and B3(X,) are pairwise disjoint. Let y denote the
translation y(x) = x+v. We define

x if xe X3n[0, ],
B(x) if xe X,n[0, 0],
o™i x) if xey(X;) N (o, 20],
By %) if xey(X)n(v, 20].

g(x) =

icm
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Then g is a one-to-one map from J = [0, 2v] into J = [0, u]. Since the identity
is a one-to-one map from I into J, there is a decomposition J = Pu @ such that
@ =, oo
is a bijection from J onto I. Now we put By = p(X)n (v, 20lnQ, B, =4Pu
U [X3n 10, 0]], By = X4 [0,0]n Q, and By = (X)) (v, 20]n Q. Then J =k913k
is a decomposition, §|p, = «p™*|y, and s is a translation on each B, (i = 2,3, 4).

Therefore ihe sets A, = s(B) (i = 1,2,3,4) and the function f = ya~t satisfy
the requirements of Theorem 1. M

4. Proof of Theorem 4. For an arbitrary function. f we denote by N(f, y) the
number of clements (possibly infinite) of the set £~*({y}). It is well known that
if A= R" is a Borel sct and if f1 A—R" is a Lipschitz function with Lipschitz
constant K then the function N(f;, ») is measurable and

[ N(f, y)dy S K"1,(4)

R
[3, 2.10.11, p. 176]. This is true for Lebesgue measurable sets as well since a Lipschitz

function maps null sets into null sets.
Now let the sets 4, functions f; and numbers A, and M be given as in Theorem 4.

Suppose that the statement of the theorem is not true, that is,

Al W‘(“i’)) > MU 4D

Then 2,(\U4,) >0 since otherwise A,(Ufi4 ) = 0. Hence we have M < . There
i ]

are measurable sets A, Bsuch that UA4; =4, B U fi(4), and M An(A) <2p(B). In
particular, 1,(4) is finite. : !
Let # denote the family of those measurable sets X = 4 of positive measure
for which ¥ = Uf,(4,n X) is measurable and 4,(¥) < M2,(X). Let A beamaximal
i

disjoint subfamily of # and let X, be the union of the elements of 4~ .lThen A

is countable, and hence X, is measurable. Also, either X, = @ or 2,(Xo)>0 and

in both cases, Y, = Ufi(4,;0X,) is measurable and 4,(Yo) < MA,(Xg).- Then
1

we have
A‘n(B\ YO) Z An(B) ""')'n( YO) > M)'II(A) _MA’M(XO) = ‘M}’J!(A\XO) ' v .

Let g, be an extension of f; to R" such that g, is a Lipschitz function with
Lipschitz constant M, [3, 2.10.43, p. 201], and let Ay = gilusxo-

Since B\Y, < UfidN\Xo) = Uh(4N\X,), we have Y. N(#i,») 1 for every

i i i
yeB\Y,. On the other hand,
J Z N(hh J’)dy < Z _r N(hia y)dy < 2 Ml" n(A\XO)
NYo' 1 TRt i

S2MA(ANX,) < 22,(B\Yo)
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and hence 3, N(/;, ») <1 on a positive measure subset of B\ Yy. This implies that

there is a k and there is a closed set C'< B\ Y, such that 4(C) >0 and for every
ye€ C we have
1 ifi=k,
N 3) = {0 ik,

We put D = i; '(C). Then D is measurable, and 2,(D) > 0 since A(D) =0
would imply 4,(C) = 4,((D)) = 0.

We prove that D = A,\X,. Obviously, D = AN\X, since ANX, is the domain
of f.. Let x € D and suppose that x ¢ ANXo. Since h(x) e Ca B\ Y, = L¢} h(ANYY),

we have i (x) = h;(x;) with some x, €ANK,. If i =k then x, = x, € AN\X,, and
heace x # x;. Thus N(h, h,(x)) > 2 which is impossible since h(x)e C.If i # [,
then we get N(h;, by(x)) = 1 which also contradicts h(x)e C.

Therefore D < 4;\X, and, consequently, Dnd, = @ for i # k. This implies
that Uf{(4;n D) = fi(D) = hy(D) = C, where C is measurable and

0< 4,(C) < M 2,(D) < MA(D).

In other words, D e 4. However, Dn X, = @, and hence D is disjoint from the
elements of " which contradicts the maximality of . This contradiction completes
the proof. &
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An atriodic tree-like continuum with
positive span which admits a monotone
mapping to a chainable continuum

by

James F. Davis* (Richmond, Va.) and W. T. Ingram (Houston, Tex.)

Abstract. In this paper an example of an atriodic tree-like continuum with positive span is
constructed. It is shown that there is a monotone mapping of this continuum onto a chainable
continuum such that the only nondegenerate point inverse under the mapping is an arc.

1. Introduction. The following problems appear in the University of Houston
Mathematics Problem Book. The first was raised by Howard Cook, the second
by Cook and J. B. Fugate.

ProBreM 92. If M is a continuum with positive span such that each of its proper
subcontinua has span zero, does every nondegenerate, monotone, continuous image
of M have positive span?

ProBLEM 105. Suppose M is an atriodic 1-dimensional continwum and G is
an upper semi-continuous collection of continua filling up M such that M/G and
every element of G are chainable. Ts M chainable?

These problems also appearcd as problems 163 and 15, respectively, in [9].
Several partial positive results concerning these problems have appeared ([2] and
[8] for instance)., . ‘

In this paper we construct an example which answers both questxf)ns in the
negative. The example s constructed as an inverse limit of simple triods with a single
bonding map and has positive span. Tt is similar in this respect to the examples
constructed in [4, 5], The inspiration for this example was an example ot.‘ an attractor
of a discrete dynamical system presented by Marcy Barge at the 1986 Sprl]lg Topology
Conference at the University of Southwestern Louisiana [1]. However, this example
is not the example he discussed.

* The first author was partially supported by a grant from the University of Richmond Faculty
Research Committee,


Artur




