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Absiract. We prove that a separable metrizable connected and locally connected space is
homeomorphic with one of the spaces {0}, [0,1], [0,1), (0,1) or $* provided that cach of its open
connected subsets has at most two boundary points. More generally, we introduce the notion of
a “lincar basis”, a concept which provides an axiomatic description of the intuitive observation that
an ordered space has a basis consisting of sets with “two ends”, the open intervals. We prove that
every connected space admitting a linear basis may in turn be described by means of order terms.
As a consequence we obtain topological characterizations of connected orderable spaces as well as
a topological characterization of the sphere S,

Introduction. A topological space E is called orderable if its topology is induced
by a linear order < on E. £1is called suborderable if it is a subspace of an orderable
space. Various authors have deduced topological characterizations of orderable and
suborderable spaces. See for instance Moore ([E, p. 460]), Eilenberg ([Ei]), Michael
(IMD). Kowalski ([Kol), Herrlich ([He,], [He,]), Lutzer ([Lu]), v. Dalen-Wattel
(IDW]). Puriseh ([Puf), v. Mill-Wattel ([MW]).

In [He}, Herrlich has proved, extending a result of Moore’s, that a connected
and locally connected Ty-spacc E is orfderable provided that every connected sub-
set Cof £ has at most two noncut points. (x is called a noncut point of C if C\{x} is
connecied). The starting point of our present investigation is the following question,
closely related wilh Herrlich’s result. Let Z be a connected and locally connected
Ty=space and suppose that every connected subset (resp. every open connected sub-
set) C of £ hus at most two boundary points, Must £ be orderable? The answer is
in the negative, of course, sinee this property is shared by the unit sphere S*, We
will prove, however, that this is in fact the only possible exception, i.e. every con-
neeted and locally comected 7y -space £ whose open conmected subsets have at
most two boundary points iy cither orderable or it is a generalized sphere. (We agree
that Bis called o generalized sphere if it arises from an ordered continuum by identi-
fying the first and the last point.)

Intuitively, an ordered space has a basis consisting of “sets with two ends”,
the open intervals. As long as the space under consideration is connected and locally
conneoted, the phenomenon of “having two ends” may be described by the. fact that
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every connected open set has at most two boundary points. In the case where E 18
not necessarily locally connected, one may try to describe this phenomenon in a more
abstract way. This leads to the following.

DesiNITION 1. Let E be a topological space and let 8 be a basis for E. B is
called linear provided that it satisfies the following conditions:

(L1) Whenever B, B'e®B, BnB' # @, then BUB' e B;
(L2) If B, B;,B,e®B are given with BnB,;# @, BB, i=1,2, and
B,nB, = @, then every Be B with Bn B # @, B¢ B intersects B, or B, (or both).

The purpose of this paper is now to examine the structure of the spaces admitting
a linear basis. It turns out that under the assumption of connectedness, these spaces
are really “linear” in the sense that their topology may be described by means of
order terms. In the nonconnected case, strange things may happen, i.e. the notion
of a linear basis seems to be no longer appropriate in this case to describe “linearity”.
Before stating our main result, let us consider some examples.

(1) Let E be a suborderable space. Then there exists a linear order < on E such
that E has a basis consisting of (not necessarily open) intervals (see [Lu]). Let B
denote the basis consisting of all finite unions I; U ... U, of such intervals having
LNy, # ©. Clearly every Be B is an interval and so B is a linear basis.

(2) Let E be a connected and locally connected T -space and let B denote the
basis consisting of all open connected subsets of E. Then B is linear if and only if
every Be B has at most two boundary points. To see this, it is sufficient to observe
that for B, B{e€ B, BnB, # &, B;¢B, B, must contain a boundary point of B.

(3) Clearly the open “intervals” on the sphere S* constitute a linear basis for S$*.

(4) Let E be metrizable and strongly zero-dimensional (dim(E) = 0). There
exists a sequence (B,)=, of disjoint open coverings of E such that 8B, , refines
B,and B = |) {B,: ne N} is a basis for E. Clearly B is linear since for B, B' e B,
BN B #* @ we must have B< B’ or B’ < B.

1. The main result, In this section wu obtain a characterization of the connected
T,-spaces admilting a linear basis.

TuroREM 1. Let E be a connected T,-space with a linear basis B. Then E is either
orderable or a generalized sphere.

The proof of this result will be divided into a sequence of lemmata.
LemMa 1. E is regular.

Proof. Let x € E be fixed. Let & be the filter of neighbourhoods of x. We have
to prove that § = {U: Ue &} converges to x. Assume the contrary and choose
a neighbourhood B e B of x having Ud B for all Ue . Lot §, be the set of Ue §
having U= B. For U e §, let xy be chosen such that x, € U, x ¢ B. Clearly, every xy
is 2 boundary point of B. But note that B has at most two boundary points as a con-
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sequence of the fact that B is linear. This proves that the net (x;: Ue §,) is even-
tually constant, This, however, contradicts the fact that E is a Hausdorff space.

‘ For the remainder of the proof we will need some preparations. We start
with two definitions. Let % be an open cover of E, B B. A sequence (V, ... Vj of
elements of B is called a chain in B if VinV; # @ is satisfied if and only ilf’]i—,j[ "< 1
n is called the length of the chain. If x e Vi, ye V,, then (V,, hain
Jrom x to y. A sequence (V, ..., ¥,) of elements of B is called a cyclein Bifnz4
and (¥, ..., V,_1), (Vy,..., ¥,) are chains in B and, moreover, V,nV, % &
Clearly, if (Vy,..., ¥}) is a cycle, then so is Vise s Via Vi, Vi) :;'or c’\'/ery i.
If a cycle exists in B, then B is called a cyelic cover, otherwise B ,is called acycl'ic‘

The following two possibilities may arise for the linear basis B on E: '

(o) Ther‘e exists a cover B, of E, B, = B, such that every cover 9 of E refining 8
and having W< B i acyclic. °

B .For every cover B of E, B B, there exists a cover B of E refining B and
having W= B such that W is cyclic.

ey V) is called a chain

‘ We prove that in case (c) the space E is orderable while in case (B) it is a genera~

llze.d sphere. We start with the treatment of case (o). Let B, be the base of all Be B
w‘hxch are contained in some element of 8. So B, contains no cycles in view of (c).
Since the case |E| = 1 is trivial, we may assume that there exist two points a, b e E
a # b. Now let U,, U, be open neighbourhoods of a, b resp. such that U,n U, = Q
(Lemma 1). Let B, be the cover of all Be B, with the property that a; B implies
BcU,, be B implies B< U, such that Be B, does not intersect both U, and Uj,.
Consequently, any chain in B, connecting @ and b must have length >4, and of
course the same is true in any cover B refining B,.

LeMMA 2. Let B be any cover of E having B < B and refining B,. Lec xe E
and let wg(a,b) = (Vy, ..., V,) be a shortest chain in B connecting a and b,
uw(a, x) = (Wy, ..., W,) a shortest chain in B connecting a and x and let uy(b, x)
= (Uy, .., U)) be a shortest chain in B connecting b and x. Suppose we have m, k > 3.
Then precisely one of the Jollowing statements is true:

m

2) be.UlW,f, 3) xe Un V.

i=1

k
(D ae U U,
(LD
Proof. We first prove that one of the following statements

k m n
(1) aE.L)iﬂ(Ul, B, @) beiU.‘:t(l/V,,.‘B)7 (3') xe {Jst(V,, B)
i LS i=1

Is satisfied. Assume in the contrary that none of the statements (1)-(3") is true. Then

m m

we have ¥, n 1L )1 W, = @, Let i denote the first index having ¥;n U W, =@. We
= j=1

m
claim that ¥, le W, = @ holds for all indices s having i < s <, for otherwise we


Artur


116 - D. Noell
might construct a cycle in B using ¥;—y, V}, ..., ¥V and appropriate elements of
%xg(e, x) connecting ¥;., and V.
Let j be the largest index having V;.;nW; # &. Then
A= (Vs oo Viy Vi gy Wiy ooy W)

is a chain in B from b to x. Since B has no cycles, we deduce that there exists a first
k
index s having U,nV;_; # @. We claim that V,_,n |J U, # &. Assume the con-
r=1

trary. Let ¢ denote the largest index satisfying U,n V., # @. Obviously, ¢t <k.
Now define the set B = U,u ... U, U V;_; € B. We obtain threc mutually disjoint
sets Us—ys Uy, Vioa of B which all intersect B but are not contained in B, con-
tradicting the linearity of 8. Therefore ¥;_, must intersect some U,. Repeating
this argument with V,_, replaced by V., finally proves that ¥, must intersect
some U,. This contradicts our assumption and proves that one of the statements
(17-(3") is true.

Suppose now statement (3') above is satisfied. We prove that in fact (3) must
be true. Let i be the smallest index having x e st(V;, 8) and choose Ue B, having
xe U, UnV; # @. Since (Vy, ..., ¥;, U) is a chain in B from « to x it must have
length > 3. This implies i> 1. Let j denote the largest index having Un V; # O,
then j <n since (U, ¥}, ..., ¥,} is a chain in B from x to b and hence has length >3
by assumption. Now let B = V;U ... u¥;€ B, then ¥;_,, Vi4y and U are mutually
disjoint sets in B which intersect B but are not contained in B, a contradiction. This
proves (3). B

Let B be a cover of Erefining B, and having B = B. We shall say that two points
x, y € Eare separated by B if a shortest chain in B connecting x and y has length >3.
Clearly since E is Hausdorf, it is possible to find 2 cover B of this type separat-
ing x, y, whenever x # y.

Let B be a cover of E refining B, and having B« B. To every x in E which is
separated from a and b by B we assign an integer ¢ (B, x). Let %u(a, b), xg(a, x),
(b, x) be shortest chains in B connecting & with b, @ with x, b with x respectively.
By Lemma 2, precisely one of the following constellations occurs:

(1) x is contained in an element of xg(a, b),

(2) b is contained in an element of ugy(a, x),

(3) a is contained in an element of xy(b, x). N
If (1) or (2) hold, we define (%, X) = |ug(a, ¥)|, in case (3) we define (B, x)
= —|xg(a, x)|. Here |A| denotes the length of the chain 1. We may in addition define
@(B,a) =0 and ¢(B,b) = |xy(a, b)|. Clearly our intention is to define a lincar
order on E by means of the rank functions (B, ). This requires some sort of com-
patibility of the functions ¢ (88, ). This will be established by the next two lemmata.

LemMa 3. Let x, y, z be different points in E and let B be a cover of E having
B B,. Suppose x, y, z are separated from each other by B, Let W be « cover of E
refining B and having W< B. Let x = Fis s Vs A= (Wy, .., W,) be shortest
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chains in B resp. W joining x and z and suppose Y is contained in some element V,
of . Then y is as well contained in some element W; of 1.

Proof. First observe that the set V; must intersect some of the W, 1<j<m.
Indeed, otherwise we might construct a cycle within B, since both the chains s
and A join x and z.

Now let j(1) be the smallest index j having V;nW; # @ and let J(2) denote the
largest index with this property. Observe that J(1) > 1. Indeed, otherwise V; would
intersect Wy. Choosing Ve 9 such that Wy e V now provides a chain V, V) of
length 2 in B from x to y, a contradiction. Using the same argument one finds that
Jj(2) <n.

Let B := Wiy U ... UWqeB. Consider the sots Wiay-1: Wiays1, Vio By
the definition of j(1), j(2), these are mutually disjoint. Moreover, Wity—1 Wigy+1
are not contained in but intersect B. Since ¥: by construction, also intersects B, we
conclude using (L2) that ¥, must be contained in B. This proves the result since
yev, & :

With the aid of Lemma 3 we are now able to establish the compatibility of the
rank functions (B, x).

LemMa 4. Let B be a cover of E refining B, having B <= B and let W be ¢ cover
of E refining B having W B. Let x, ye F be given such that a, b, x, y are separated

Srom each other by B and suppose (B, x) < (B, y) is satisfied. Then o (B, x)

< o8B, y) holds as well.

Proof. There are six different constellations from which the inequality ¢ (%, x)
< @(B, ) may arise. Let us exemplary assume that b is contained in an element of
#g(a, x) and in an element of %w(a, y) and that the length of #u(a, ¥) exceeds the
length of %y(a, x). But both these chains connect & and b, hence every ¥ in ug(a, x)
intersects some ¥ in wuy(a, y). The argument used in the proof of Lemma 2 now
implies that x is actually contained in some element of #g(a, ¥). Using Lemma 3,
we sec that the situation is precisely the same for the corresponding chains in 2B,
L.e. x, y are both contained in certain elements of #y(a, b) and x is contained in an
element of sy(a, p). Since x, y, a, b are as well separated by 2B, this gives (1B, x)
<@B, y) in our speeial situation, Since the remaining cases may be treated ana-
logously, this proves the lemma, M

Let us now define o linear order < on E. Let x < ¥ be satisfied if and only if
there exists a cover B of & refining B, and having B < B such that x, p are separated
by B and (B, x) < (B, V) is satisfied. < is actually a linear ordering on E. Indeed,
suppose we had ¢ (B, x) < ¢ (B, y) and p (A8, %) > (W, ¥) for certain covers B, 18,
Choosing a common refinement U of B and B, by Lemma 4, implies @(2¥, x)
<o, y) < oM, x), which is absurd.

It remains to prove that the order topology arising from < -coincides with the
original topology on E. . -
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LEMMA 5. The original topology on E is finer than the order topology.

Proof. Let x, y, ze E be given such that x <y <z Since E is regular, there
exists a cover B of E such that ¢ (B, x) < ¢(B, y) and every chain in B from x to y
has length >4. Now having regard of the six possible constellations from which
o(B, x) < o(B, y) may arise, we can find a chain (Vy, ..., ¥,) in B from x to y
which “increases in positive direction”. Since n >4, we see that ¥, is contained in
(x, —). Indeed, for every v € ¥, a shortest chain in % from. x to v must have length
> 3. This yields ¢ (B, x) < (B, v). Consequently, ye V, < (x, —). Using a similar
argument, we find an open set W satisfying y € W< (+, 2). This proves the lemma, M

LemMA 6. The order topology is finer than the original topology.

Proof. Let Be B, be contained in some element of B; and let xe B, Let
ze B\{x}, z< x, say. We prove that [z, x] is contained in B. Assume the contrary.
Then there exists y ¢ B, z<y<x. Choose Ve B, having ye V and VnB = @.
Now there exists a chain (By, ..., B,) in B, such that ze By, xe B,, B, V for
some Z But this gives rise to a cycle in B, since BynB # &, B,nB # & and
B,nB =, a contradiction.

Using the same argument, we prove that for z’' € B\{x}, x <z’, the interval
[x, z'] is contained in B. Suppose now that x is either the first or the last point of E.
Then, in view of the fact that F is regular with respect to the original topology, the
situation is sufficient. Suppose on the other hand that x is an internal point of E.
We have to prove that there exist z, z’ € B such that z < x <z’ holds. Suppose that
for all ze B\{x} we had z <x. This means that x is not an accumulation point of
(x, —) with respect to the original topology. But note that (;:.:5 = [x, ») with
respect to the order topology, hence in view of Lemma 5, (x, —) is closed in the
original topology. On the other hand, («-, x] is closed in E with respect to the order
topology and hence with respect to the original topology, too. This provides a con-
tradiction with the fact that E is connected. B

Lemma 6 ends the proof of case (). We will now proceed towards a proof of

case (f).
L
Lemma 7. Let (Vy, ..., V,) be a cycle in B. Then E= ) V,.

=1
Proof. In view of the axiom (L1) for B we may restrict ourselves to the case
n=4. Assume x¢ V;, i=1,..,4 for some xe E. Let B’ denote the set of all
Be B such that xe B implies BAV; =@, i = 1, ..., 4 and such that B does not
contain any of the ¥, i =1, ..., 4. Clearly %’ is a basis for . E bsing connected,
there exists a shortest chain (B, ..., B) in B’ joining x and some fixed ye V.
Let n be the first index having B, ¥, # @ for some 7. By the definition of B’ we
have n>1. Suppose B, intersects precisely ome of the ¥, say Vi. Then V,, V,
and B,_; are mutually disjoint elements of B which are not contained in but inter-
sect B,UV;e®B, a contradiction. So B, intersects at least two of the Vi
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Suppose B, intersects ¥ and V. Then ¥y, ¥, and B,_, are mutually disjoint
elements of B which intersect B, but are not contained in B,, a contradiction.
Hence B, must intersect ¥, V,. But note that in this case V,, ¥, and B,_, are mu-
tually disjoint sets not contained in but intersecting B,u V;, a contradiction once
more.

Suppose B, intersects three of the V;, ¥y, V,, V, say. Then ¥, V; and B,_,
are mutually disjoint sets not contained in but intersecting B,, a contradiction. This
proves the lemma. M

As a consequence of Lemma 7 we derive that in case (), E must be a compact
space. Indecd, given any open cover U of E, there exists an open cover B of E, re-
fining U, having B B such that B has a cycle, B being a linear basis, we deduce
that every ¥ e 8 has at most two boundary points. Hence by Lemma 7, B has a finite
subcover, and consequently so has U.

LemMA 8. For fixed x, € E the subspace E\{x,} is connected.

Proof. Let x, ye EN\{x,}, x # y and let B<=B be a cover of E\{x,} such
that ¥ < EX{x,} for every Ve B. We have to establish the existence of a chain in 8
connecting x and y. Let 23 denote the set of all B e B for which either x, ¢ B and B
is contained in some Ve B, or x,€ B and x, y ¢ B. Clearly M is a base for E and
therefore has a cycle (By, ..., By) by (). By Lemma 7 we have x, € B,, say. By the
definition of W this implies x,yeB,u...UB,, x, ¢ B;, i =2, ..., k. Choosing
B,,B,eM, xe By, ye By, B.nB,; # @ for some i, B,nB; # @ for some j, 2<7,
Jj<k, both B,, B, contained in certain elements of B, provides a chain in I conmect-
ing x, y within EN\{x,}. This chain may be used to obtain the desired chain in B
from x to y. W

Our intention is to prove that Ex{x,} is orderable. So let B, denocte the linear
basis for Ex{x,} consisting of all Be B having x, ¢ B. We claim that (o) is true
for B,

Lemma 9. B, has no cycles.

Proof. Indeed, cvery cycle (By, ..., By) in By is as well a cycle in B, hence by
Lemma 7 we have x, € B, for some 7, which is absurd. M

From part (o) of the proof of theorem ! we deduoe that E\{x,} is orderable.
Since it is not compact, we cither have EN{x,} & [a, b) or EN{xo} = (@, b). But
note that £ is the one-point compactification of EX{x,} while [«, b] is the one-point
compactification of [a, b), so E\{x,} & [a, b) would imply E = [, D], a contra-
diction with Lemma 8 since for a < ¢ <, [a, b]\{c} is not connected. So we deduce
E\{x,} 2 (a, b). But now it is clear that E is the quotient of [a, b] arising from
identifying @ with b, since this space is the one-point compactification. of (2, b).
This completes the proof of Theorem 1.
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2. Consequences. In this section we state and prove several consequences of the
main result and finally consider several examples.

COROLLARY 1. A connected T,-space is orderable if and only if it has an acyclic
linear basis. B

COROLLARY 2. Let E be aseparable metrizable connected space with a linear basis.
Then E is homeomorphic with any one of the spaces {0}, 10, 1], [0,1), (0, 1) or
St H

COROLLARY 3. Let E be a connected and locally connected Ty-space such that
every open connected subset of E has at most two boundary points. Then E is either
orderable or a generalized sphere.

Proof. Let B denote the basis consisting of all open connected subsets of E.
Clearly %B is linear. It remains to prove that F is a Hausdorff space.

let x,x € E, x # x'. Using Ty choose ¥,V eB, xeV, x’e V' such that
x' ¢V, x¢ V. Assume that forall U, U'e B, xe U, x' e U' we had xe U’, x' e U.
Then [8(Vn V)| <4,

We claim that there is precisely one component G of ¥V’ having xe G.
Indeed, suppose we had two components Gy, G, of this type. Choose Ue B, xe U,
G;# U, i=1,2. Then Gy, G, contain a boundary point of U. In view of the fact
that x’' e 8U, this gives G;n G, # .

Let G be the component of VAV’ having xe€ G. Choose Ue B, xe UcV,
G U. Let H be a component of Un ¥’ having xe H. Clearly we have H< G.
But note that H is closed and open in G, hence H = G, a contradiction. This proves
the result. M

Tueorem 2 (Herrlich [He, ). Let E be a connected and locally connected T, - space
such that every connected subset of E has at most two noncut points. Then E is orderable.

Proof. We claim that every connected open subset C of E has at most two
boundary points. Indeed, since C is connected, it has at most two noncut points.
Assume that C has three boundary points. So one of the boundary points, say x,
must be a cut-point of C, i.e. C\{x} is not connected. But this is absurd in view
of the fact that every B having C < B<C must be connected. This proves that E
has a linear basis. )

In view of Corollary 3, E must be orderable or a generalized sphere. Clearly the
latter is impossible by our assumption. Hence F is in fact orderable. B

Remarks. (1) Although T, may be replaced by 7', in Corollary 3 and Theorem 2,
this is not possible in Theorem 1. Indeed, let E be an infinite set with the cofinite
topology. Cleaily £ has a linear basis but the statement of Theorem 1 is not true
for E.

2) A linear basis on a space E may contain cycles even when the space E is
orderable. Take for instance £ = S*™\{1} and let B denote the linear basis consisting
of all sets I E, where I varies over the open intervals of S,
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The fol]qwing result of Kowalsky [Ko] may be derived from the result of
Herrlich (see [He,]). We may as well obtain it as a consequence of our main theorem.

CoroLLARY 4 (Kowalsky [Ko]). Let E be a connected topological space. E is
orderable if and only if it is a locally connected Ty-space such that given any three
proper connected subsets of E we can always find two among which do not
cover E.

Proof. We have to prove the sufficiency of the condition. We prove that every
open connected subset ¥ of £ has at most two boundary points. Assume that some
open connected Ve I has three boundary points x,, x,, x5. Let K; be the compo-
nent of EN\{x;} having V< K. We claim that for i # j, K, 0 K; = E, which provides
a contradiction, since every K; is a proper connected subset of E. Clearly K;UK; is
open in £ since K is open in E\{x;}, i = 1,2, 3. We claim that K;UK; is as well
closed in E. Indeed, K, being closed in E\{x,}, there exist closed sets C; in E such
that K; = C\{x;}. But note that x; € K}, x; € K, hence we have K;UK; = C;uC,.
Since E is connected, we deduce K,uK; = E.

By Corollary 3, E is cither orderable or a generalized sphere. But clearly the
latter is impossible in view of the assumption. This proves the result.

In [DW] van Dalen and Wattel have obtained a characterization of the sub-
orderable spaces in terms of a subbase. Their result is valid without any assumptions
on connectivity. In the connected case we may derive their result from our present
investigation.

CoroLLARY 5 ([DW Cor. 2.3]). 4 connected Ty~space E is orderable if and only
if it has a subbase € which admits a representation €= LUR and 8, R are linearly
ordered with respect to inclusion.

Proof. We have to prove the sufficiency of the condition. So let B denote the
basis for E consisting of all sets B = LAR, Le 8, Re R. We prove that B is linear
and has no cycles.

Let B, B,, By € B be fixed sets such that (By, By, Bs) is a chain and B, & By,
By & B,. Suppose we have B; = L,AR;, i=1,2,3. Let Ly = L,. We claim that this
implies Ly « Ly and R, = R, o Ry. Indeed, Ry o R, follows from the fact that Ry = R,
would imply B; < B,. Suppose we had Ly = Ly. This gives RznL; = By = Ryn
nL, = @& (in view of B, nB; = @), a contradiction since B; #* @. So we have
Ly < Ly, We claim that Ry < R,. Suppose we had R, = R3. Then RynLi< Ryn
ALy = & would imply B, "B, == &, which is absurd. Finally, assume we had
Ly < Ly, This gives Ly n Ry & Ly A\ Ry, hence By < B,, a contradiction. This proves
the claim.

The above observation may be used to prove that B is linear. Clearly (L1) is
satisficd. We check (L2). Let B, By, B,, By € B be fixed, B, = L;nR;, B=LNR. .
Suppose we have BB, # @, B,¢B, BynB, = BynB; = Byn By = &. Now the
chains (B,, B,.By), (By, B, By) and (B,, B, By) fulfil the requirements of the above
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situation. Suppose we have Ly « L. This implies L= L, Ri>Ro R, and Le Ly,
R, > R>R;. Applying this to the last triplet yields Ly = L= L,, R3> R R,, hence
Ry=R,=Ry=R, L, = L, = Ly = L. This is impossible.

Using the same argument, one may prove that B has no cycles. As a conse-
quence of Corollary 1, we derive that E is orderable. M

We conclude our paper with two examples indicating that the notion of a linear
basis is no longer appropriate to describe orderability resp. suborderability in the
nonconnected setting.

Exampres. (1) Let E= NxNu{w}. For n,meN let {(n,m)} be an open
set and for m,my,ieN let Uln, (m)) = U {j}xm;, »)u{o} be open in E.
’ Jjzn

These sets clearly constitute a linear basis for E without any cycles. However, E is
not even suborderable. Indeed, if E would be suborderable, there would exist a well-
~ordered net ((n,, m,): « <) in NxN converging to oo (see [Hes]). But then » had
to be countable, a contradiction since no sequence in NxN converges to oo,

(2) We construct a compact subset of R> which has a linear basis without cycles
and nevertheless is not suborderable. Let E = E; UE,, where E; = [—1, 1]1x {0},

n
B =B, UB, UB,, where B, consists of the sets Ix {0}, I an open interval in
[—1, 1] not containing 0, B, the family of all sets B(i, I), where ie N and I is an
open interval in [—1, 1] containing 0 and where

E, = {0}><{1 :neN}. A linear basis B for E is obtained by choosing

B(i,I) = (Ix{0hu ({0} X {% nx z}) )

1
and where finally B, consists of all singletons {(0,—)} , neN.
n
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