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Maximally' conjugate sigma-algebras represented as hypergraphs

by

R. M. Shertt (Middletown, Conn.)

Abstract, We obtain (Proposition 1.18) a characterization of all maximal conjugates to a sub-
o-algebra generated by a countable partition. It is shown (Proposition 2.2) that every countably gen-
erated sub-o-algebra % of an analytic space has a maximal conjugate. Some of these maximal con-
jugates are not countably generated. In Proposition 3.6, we characterize such countably generated
maximal conjugates in terms of the structure of an associated combinatorial object (a hypergraph).
In Proposition 4.2, we prove that such conjugates exist precisely when there is a measurable selector
for the collection of € -atoms. Finally, Section 5 disposes. of a natural conjecture by exhibiting a maxi-
mal conjugate which is not a complement, Some questions for future investigation conclude the

paper.

_ §0. Introduction. We continue to study a measurable space (X,2) through
the lattice of all sub-g-algebras of #. If ¥ and @ are sub-g-algebras of &, their
infimum in this lattice is ¥n %, and their supremum is the g-algebra (%, Z)
generated by ¥L 2. An analysis of this lattice is to be found in [2]. For example,
there it is shown that this lattice structure completely determines #. Tlns paper
contiimies the work of [2] and [9].

Let (X, %) be'a measurable space and let % and @ be sub- a-algeblas of 4.
Say that @'is a conjugate for € if NG = {@, X}. Say that @ is a weak complement
for 4 if ¢(¢, D) = &. Then D is a-complement for @ if it is both a conjugate and
a wc:\]c complement. Say that & is a maximal conjugate for ¢ if it is a conjugate and
is such that whenever @' 29 is a conjugate for %, then @ = 2. The notions of
minimal weak complement, minimal complement and maximal complement are
similarly defined.

A measurable space (X, &) is separable if 2 is countdbly generated (c.g.) and
contains all singleton subsets of X. An atom of a sub-o-algebra € of 4 is a nonempty
set Ce® such that whenever C' < C is a @-sef, then either C'= C or C' = @.
Say.ihat & is atomic if. X' is’ a union of ¥ -atoms. Every.c.g. 4 is atomic. =

+ Inorder toaid the eye with the reading of fairly long Boolean expressions, the
old Polish notation. has_been.adopied: 4B =ANB, A+B = AuB, and. 4B+C


Artur


28 R. M. Shortt

= (A~ B)u C. It avoids a nasty proliferation of parentheses. If & is a sub-v-algebra
of #(X) and A c X, then 9(4) = {DA. De P}. Note also that if B X, then
the o-algebra o(2, B) generated by P U {B} comprises all sets of the form
D, B+ D, B°, where the D; are @-sets. A 0-1 measure y on (X, ) is a nonzero
measure assuming only the values 0 and 1. Given such a measure g, the collection
{Be#: uB = 0} is a maximal o-ideal in #. Every maximal o-ideal arises in this
way. ;
Let € be an atomic sub-o-algebra of #(X). A set S< X is a measurable full
selector for € if Se#(X) and S intersects each %-atom in exactly one point.
Let f be a real-valued function on X and set

% = {f"'(B): BSR, B Borel}.

Then € is the o-algebra generated by f. The method of Marczewski functions [4: p. 7]
ensures that every ¢.g. € < #(X) is generated by some f: X — R. The %-atoms are
then sets of the form 7~ !(p) for pe R.

A separable space (X, B) is standard if there is some Polish topology on X whose
Borel structure is 4. A space (X, ) is analytic if it is the measurable image of some
standard space. A separable space (X, %) has the strong Blackwell property if when-~
ever € and P are c.g. sub-o-algebras of # with the same atoms, then necessarily
% = 2. Every analytic space has the strong Blackwell property [2: p. 21]. A sub-
g-algebra & of #(X) is said to separate sets A;, A, < X if there is some De @
with 4; € D and 4, < D" Lusin’s first separation principle [4. p. 32] says that
A(X) separates any two analytic sets A,, 4, € X.

Typically, we hold an atomic sub-s-algebra € of Z(X) as fixed and search for
maximal conjugates for #. Let 9 be a sub-g-algebra of Z(X) and let B< X. Two
%-atoms C and C’ are separated by & on B if there is 2 D € @ such that CB< D
and C'B< D¢ The atoms C and C’ are separated by 9 if they are separated by @
on X. Clearly, if 9 separates C and C’ on B, then it also separate them on any
A< B. A Z-cluster is a collection of #-atoms, no two of which are separated by 2.
Zorn’s lemma implies that every Z-cluster is contained in a maximal @ -cluster.

A pair (V, &), where V is a nonempty set, and & is a collection of nonempty
subsets of ¥ whose union is ¥, we term a hypergraph. We refer the reader to the text
of Berge [1] for further details. In his terminology, our (¥, &) is a “simple hyper-
graph”. The elements of ¥ and & are termed vertices and edges, respectively. In
(V, 6), a chain is a sequence vy E, 0, E; ... v, E,v,,, such that

(1) vy ... v, are distinct vertices;
(2) E; ... E, are distinct edges;
@ v, v €E for k=1, ..,n
Ifn> 1and v,,4 = vy, then this chain is a cycle. Occasionally, the notation of the E,

is suppressed. For vertices v, o' we write v ~ v’ if there is a chain starting at v and
ending at v’. Then ~ is an equivalence relation whose equivalence classes are the
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connected components of (V, &): see p. 391 in [1]. A tree is a connected hypergraph
without cycles.

LemMa 0.1. Suppose that a hypergraph (V, &) has no cycles. Then no two edges
intersect in more than one vertex.

Proof. If £ and F are distinct edges such that En F contains distinct vertices v
and o', then vEv'Fv is a cycle, yielding a contradiction. M

The following fact must certainly be known, but the author has no references
for it. )

LemMa 0.2. Suppose the hypergraph (V, &) is a tree. Given an edge E in &, put
&0 = &N{E}. Then (V, &,) has one connected component for each vertex of E.

Proof. Given a vertex v of E, define X(v) to be the collection of v’ € ¥ for which
there is a chain from » to v’ not including any vertex of E other than ». Clearly,
ve K(@).

Cuamt 1. V= U {K(@): veE}. Given v'eV, choose any veE and let
v = Uy ¥, ... Uylyy1 = U be a chain. Let & be the least index such that v, € E. Then
v’ € K(vy4) as desired.

CrAM 2. The sets K(v) are disjoint. Suppose rather v’ € K(v) n K(v") for distinct
vertices ¢', v in E. Let v = w, Eyu E, ... u,E,v and v’ = w, F,w,F, ... w . F,0'
be chains. Then from the sequence v’ = u; E;u, B, ..., E.0EV'Fw F,_{ ... Fyw, = v’
it is possible to construct a cycle in (¥, &). This contradiction proves the claim.

It is easy to check that each K(v) is connected. It remains to show only that there
are no chains between disjoint K(v) and K(v'). Suppose that v = v, E v, ...
v Uy By = v’ is a chain in (V, &,). Then v = v, E; ... v, E, 0,4, Ev is a cycle
in (¥, &), a contradiction. B

Given an atomic sub-c-algebra € of #(X) we associate to every sub-g-algebra @
of #(X) a hypergraph h(9Z) = (V, &). The vertices of this hypergraph are the
%-atoms. Its edges are the maximal Z-clusters. It is our purpose to study the
maximality of conjugates for % through their hypergraphs. In previous work
(Theorem 5 in [9]), we characterised maximal conjugates for ¢ which separate no
two @-atoms: this is the case where & = {F'}. As an example of our approach, we
offer the following:

({1} l
I [ ]
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In this figure are represented three subsets of the plane. In each case, the
c-algebras ¢ and @ are generated by projection onto the lower and left margins,
respectively. In Examples 1 and 2, @ is a maximal conjugate for €. In Example 3,
'is a conjugate, but not maximal. The following is a geometric rendering of the
hypergraphs 7(2) corresponding to cach example.

(i)

{ii)

y b

iii)

N
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The hypergraphs in Examples 1 and 2 are trees. There is a cycle in Example 3. The
next section (Proposition 1.17) shows why. . )

We conclude this introduction by showing that maximal - conjugates do mnot
always exist.

ExampLE 0.3. Let & = 4(0, 1) be the usnal linear Borel structure. Then the
sub-structure ¥ generated by Borel sets of Lebesgue measure zero has no maxima
conjugate in #. :

To sce this, suppose that @ is such a maximal conjugate. Then we

CLAIM. @ is an atomless structure. For suppose that D is a @-atom. Then
has Lebesgue measure 0 <mD <1 and may therefore be written as the disjoint
union D = B;+B, of two Borel sets of positive measure. Consider the o-algebra
Dy = 6(Z, By), astrict enlargement of 9. It must be that for some sets D, D, in 9,
we have Dy By D, Bj of Lebesgue measure zero but not empty. If D, B, is not
empty, then D; B, = By is of positive measure; if D, Bf is nonempty, then either
B, < D, B} is of positive measure or D, Bf € @ is of positive measure. These con-
clusions are contradictory, and the claim is established.

Since & is atomless, we may write X as the disjoint union of uncountably many
P -sets (see p. 29 in [2]), each of which is of positive measure. This impossibility
shows that no such 2 exists.

§ 1. Conjugation for discrete structures. Throughout this section, (X, %) will
denote a measurable space and V a partition of X into countably many 4-sets.
Let ¢ = o(V) and suppose that & is some sub-c-algebra of #. As described in
the introduction, each substructure 9 gives rise to a hypergraph h(2) = (V, &),
where & is the collection of all maximal Z-clusters of %-atoms.

LemMA 1.1. The sub-a-algebra @ is a conjugate for € if and only if L(ZD) = (V, &)
is connected.

Proof. Suppose that 2 is not a conjugate for % and select some nontrivial D
from % D. Then there are ¥-atoms C < D and C’' < D°. If (V, §) is connected,
then there is a chain C = CyEyCyEy ... E,—; C, = C’ connecting C to C’. Now
each #-atoms is contained in -D or D° Let i be the least index such that C;< D°
The fact that C,., < D yields a contradiction. It must be that (¥, &) is not con-
nected. ‘

Now suppose that (¥, &) is not connected. Let ¥, = ¥ be one of the connected
components. For each Ce V, and C' € V\V, we choose a Z-set D[C, C'] such that
Cc DIC, C'] and. C' = D[C, C'". Then put

D=y N DIC, C'].
c

The set D is a nontrivial set in #n2. W
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Note that only the second half of this proof used the countability of V. However,
its use there is essential, as we shall see in the next section (Example 2.1). The next
two technical lemmas (especially 1.2) constitute the pons asinorum of our approach.

LeMMma 1.2. Suppose that 9 is a sub-c-algebra of B(X) and that € = o(V).
Suppose also that De ¥ and that Co€F. Define 2, = 6(Z, DnCy).

(1) If C and C' are G-atoms separated by Dy, then C and C’ are separated by 9
on D°.

(2) If C and C' are €-atoms separated by 9, but not by 9, then precisely one
of C, C’' is a subset of C,.

Proof. (1) For some P-sets D; and D, we have C< D,(DCp)+ D,(DCy)°
= D, DCy+ D, C5+D,C° and C' < D} DCy+ D3 C5+ D D°. Then CD°< D, and
C'D° < DS,

(2) Suppose that for Dy, D, in @ we have C< D; DCo+ D, C¢+D, D and
C'c D DCo+ D Cs+ D5 D% If C, C'<Cg, then C= D, and C' < D3, a con-
tradiction. If C, €'=C, then CgD,D+D,D° and C'<D{D+D;D°
= (Dy D+ D, D°), another contradiction. The only alternative is Statement 2. B

LemMa 1.3. Suppose that @ is a maximal conjugate for € = a(V), that C is
a @-atom, and that B C is a set in B\D. Put Dy = (2D, B).

() If C, and C, are G-atoms not separated by 9, but separated by 9D, then
one of Cy, C, equals C.

() There is a €-atom C’ such that 9 does not separate C and C’, but D, does.
Also, C and C' are separated by 9 on B°.

Proof. (1) Let C; < D, B+ D,B° and C, < D{B+ D3 B® provide a separation
by D,. If neither C; equals C, then because B< C, we have C; € D,B°= D, and
C, = D5 B° < Dj. This is a contradiction.

(2) By Lemma 1.1, 9, must separate two #-atoms not separated by 2. From
the first part of this lemma, we see that one of these ¥-atoms is C and that they are
separated by & on B°. B

Let 1,y u5 ... be a decreasing sequence of positive reals such that, for each n,
Uy> Uy +Uyy g+ (.8 1, = 37"). Define u to be a one-one map assigning to each
pair of %-atoms {C, C'} not separated by & a mumber u{C, C'} in the sequence.
If there be infinitely many such pairs, then take u to be a one-one correspondence;
if only n such pairs, then use u;u, ... #,. For De @, we define the set function

¥(D) = Y u{C,C'},
where the sum is taken over all pairs {C, C'} such that C and C’ are not separated
by 2 on D. Clearly, y is monotone (isotone). We shall prove that when 2 is a maximal
conjugate, ¥ is a measure on Z. This will enable us to produce a useful decompo-
sition of X into rather “simple” 2 -sets.

LemMma 1.4. If D, 4 D in 9, then y(D,) + Y(D).
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Proof. If Cand C’ are % -atoms not scparated on D, then we claim that there
is some n with C, C' not separated on D,. Otherwise, we choose 9@-sets D (n) such
that Cn D, < D(n) and C'n D, = D(n)°. Put D, = limsup D(#). Then CnD < D,
and C'nD < D = liminf D(n)°. The lemma follows from the claim. W

. A D-set D is completely reduced if every pair of %-atoms is separated by 9
on D; equivalently, ¥(D) = 0. A @-set D' = D reduces D if neither D’ nor D\D'
is completely reduced. 4 P -set which cannot be reduced but is not completely re-
duced is irreducible.

LeEMMA 1.5, Suppose that C and C' are distinct € -atoms and that D € 9, where 9
is a maximal conjugate for €. Then C and C’ are separated by @ on either D or D°.

Proof. Suppose rather that C and C’ are not separated on either D or D"
Let V, be the collection of those ¥-atoms C”’ for which there is a sequence
C'=C(C,CC,...C, = C" of ¥-atoms such that

(1) C; and C;,., are not separated on D for i =0,1,..,n—1;
(2) C does not occur in the sequence.

We also include C' in V,. Consider the ¢-algebra 9, = ¢(Z, Dn C,), where C,
is the union of the atoms in V. Since 9, separates C and C’ on D, it strictly en~
larges 2. We claim that /2(2.) is connected. This will contradict Lemma 1.1 and
complete this proof.

We show that every #-atom is connected to C’ in k(Z,). Note that this is
certainly true for the #-atoms in ¥, : this follows from Lemma 1.2 —no new separ-
ations between these atoms have been introduced in 2, Now suppose -that
C' = C,C, ... C,is a sequence of ¥-atoms such that C; and C;,, are not separated
by @fori=1,.., n—1. Let i be the least index such that C’ and C;, lie in different
connected components of 2(Z,). Thus C; and C;., are separated by 9, but not
by 2. By Lemma 1.2, exactly one of these is contained in Co.

Tt cannot be that €, < C§ and C;,, S Co: this in view of the earlier remark that
the € -atoms in C, are connected to C’ in #(Z). So C; = Co and Cip1 & C§. Again
using Lemma 1.2, C; and C;,, are separated by 9 on D¢, but not on D. Since
C;.q < C§, it must be that €y, = C. Now Cand C’ are assumed not to be separated
by @ on D°. Lemma 1.2 implies that C and C’ are not separated by @. This violates
the choice of i and shows that 4(@,) is connected. This contradiction (Lemma 1.1)
concludes the proof, M '

LimMa 1.6. If @ is a maximal conjugate for € = o(V), then s is a finite measure
on 9.

Proof. Keeping Lemma 1.4 in mind, we need onmly prove that ¢ is
finitely additive. Suppose that Dy and D, are disjoint 2-sets. Then any u{C, C'}
can only occur in one of the sums defining ¥ (D,) and ¥ (Dy): this is the import of
Lemma 1.5. Tt follows that W (D;+D;) = (D) +¥ (D). W

3 — Fundamenta Mathematicae 130.1
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LeMMA 1.7. Suppose that @ is a maximal conjugate for € = o(V) and that
D'cD are D-sets such that D' reduces D. Then 0< (D) <y(D) and
0 <y (D\D") <y /(D).

Proof. Basily deduced from Lemma 1.6 and the definitions. B

" Lemma 1.6 enables us to decompose X into irreducible & -sets. These sets are
W-atoms and aid in the combinatorial analysis of /(2).

Lemma 1.8. Let 9 be a maximal conjugate for € = (V). Then there is a decom-
position of X = Dy + D, +... into pairwise disjoint irreducible @ -sets. If V' is finite,
then so will be any such decomposition.

Also, this decomposition can be chosen so that for each €-atom C, if CD, +# O,
then there is some other €-atom C' such that C and C’ are not separated on D,.

Proof. Our choice of the numbers , means that the range of the set function
is totally disconnected. A standard decomposition theorem (see for instance 5.2.13
in [3]) allows one to write X = Dy+ Dy +D,+...
9-sets, each D, is a y-atom for n > 1, and the restriction of y to D, is nonatomic.
However, the Liapounov Convexity Theorem (e.g. 11.4.5 in [3]) implies that
¥ (D,) = 0. Note also that if V' is finite, then there are only finitely many y-atoms.
The lemma follows from these remarks. B

This next result on “transitivity” shows that the structure of 2 on each 1 -atom
is rather simple.

Lemma 1.9. Let D be an irreducible @ -set. If C, C’, C'' are € -atoms with the
pairs {C, C'} and {C’, C'"} not separated on D, then C and C'’ are not separated on D.

Proof. Suppose contrariwise and choose a 9-set D, such that CD < D, and
C"D < D§. Then DD, reduces D: C’' and C" are separated on D.D,, but not on
DX\Dy; also, C and C’ are separated on D\D,, but not on DD,. This contradiction
proves the lemma M

Before proceeding with the analysis of £(2), we complete the description of the
measure .

Lemma 1.10. Let X = D, +Dy+...
as in Lemma 1.8. For each n,

be a decomposition into irreducible @ -sets

Fy={DeD: DD, is completely reduced}
is @ maximal o-~ideal in 9.
. Proof. Lemma 1.4 shows that .#, is closed under countable unions. Now suppose

that for some D €9, neither D nor D°is an element of .#,. Then neither DD, nor
D°D, is completely réduced. This ¢ontradicts the irreducibility of .D,. M

, where the D, are pairwise disjoint -
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It is not hard to show that if g, is the 0-1 measure on 2 corresponding to %,
then W = «; jty + 0y p1, +..., Where the a, are positive.

Lemma 1.11. Let @ be a maximal conjugate for 6 = o (V). Let X = D,+ Dy+...
be a decomposition of X into irreducible 9 -sets as in Lemma 1.8. If E is an edge in h(9),
then there is a unique D, such that C, C' € E if and only if C, C’' are not sepdrated
on D,. Also, every zrreduczble D, is obtained in this way.

Note. This lemma establishes a one-one correspondence between maximal
Z-clusters and the irreducible Z-sets in the decomposition.

Proof. We first show that for each ¥-atom C and irreducible D, the collec-
tion E comprising all ¢ -atoms not separated from C on D is a maximal & -cluster.

“First, note that no two such ¥-atoms are separated from each other on .D: This

by Lemma 1.9. So Eis a @-cluster contained in some maximal & -cluster E,. Let C’
be an element of E distinct from C and let C"* be a ¥-atom in E,\E. Let D' be the
unique irreducible on which C’ and C’’ are not separated: we know that D # D',

. Also, C and C'"’ are not separated on some irreducible D”. Since C” ¢ E, we know

that D" ¢ D. Additionally, D" # D’ because of Lemmas 1.9 and 1.5. Consider

= ¢(9, C" D"). Since I, enlarges D, h(Z,) is not connected. We show that
it is connected and derive a contradiction. Let C,C, ... C, = C” be a chain in 2(2)
which is no longer a chain in #(Z,). By Lemma 1.2, C;C, ... C,_, is still a chain
in h(D,), and C,., and C" are separated by 2,, but not by Q By Lemma 1.2, it
must be that C,., C'’ are not separated by & on D”’. Since C'’ and C are not sepa-
rated by & on D", transitivity (1.9) implies that C,_; and C are not separated on D"’
by 2 or @,. Then C, C, ... C,_; CC'C" provides a connection between C; and C'’
in h(2,). It follows that A(2,) is connected, as desired.

We can now prove that if Cis a ¥-atom and E is the maximal 2 -cluster cor-
responding to C and an irreducible 2-set D as in the previous paragraph and if Fis
another maximal Z-cluster containing C, then En F has no elements other than C.
Suppose instead that C’ is another element of EnF. Let C"' € ENF and C'"" e F\E.
Counsider 9, = o(Z, CD), a strict enlargement of @. By showing that h(D,) is
connected, we will obtain a contradiction that will establish our claim. We show that
all ¥-atoms are connected to C’ in k(Z,). Let C;C; ... C, = C’ be a chain of
¢ -atoms in h(2) but not in £(Z,). This means that at least one of these equals C,
Let i be the least index such that C; = C. If C;_; and C, are separated by 2, then
Ci-, and C; are not separated on D. But then C;_; and C’ are not separated by &
on D and hence not from each other: so C; C, ... C;_; C" is a chain in /(2,). Now
suppose that C,., and C; = C are not separated by 2,. Then we claim that’
C,C, ... C;—; CC"" C’ provides a connection between Cy and C' in h(2,): C and C*”
are not separated by 2 on D° (C"" ¢ E). Our claim is proved.. °

. Now given E, choose C, C’ € E and let"D[E] be the unique decomposition - el-
emeht such that Cand C’ are not separated by 2 on D. The mapping E — D[E]
is well defined. To prove this, note that the.set of % -atoms not separated by &

g%
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on D[F]is a maximal 2 -cluster Fwith C, C' ¢ EnF. We know that E = F. Soif C"*
and C'"’ are elements of E which are separated on an irreducible D’, we know that
D' = D[E].

The mapping E -~ D[E] is also one-one: this follows from the irreducibility

of D[E]. To prove that it is surjective, let D be any irreducible decomposition ele-
ment and let C, C’ be ¥-atoms not separated on D. Then C, C’ € Efor some maximal,

P -cluster E. Clearly, D[E] = D. A

Lemma 1.12. If 9 is a maximal conjugate for € = o(V), then no two maximal
D-cluster intersect in more than one ¥-atom.

Proof. Let Eand Fbe maximal 9-clusters. If C, C' € EnF, let D be the unique “

element of the irreducible decomposition of X on which € and C’ are not separated.
Using Lemma 1.11, we see that D[E] = D = D[F], which implies that £ = F. W

Lemma 1.13. Let @ be a maximal conjugate for € = o(V). Then h(D) is an
acyclic hypergraph.

"Proof. Suppose that C, E; C, E, ... C,E,C,., = C, is a cycle of length n> 2.
Using Lemma 1.8, we find an irreducible 9-set D such that C, and C,p1=Cjare
not separated on D. Put @, = (2, C, D). We prove that 4(%,) is connected. Since 2,
strictly enlarges 9, this is a contradiction which will establish the lemma.

In particular, we show that every %-atom is connected to C; in h(9,). Given
a ¢-atom K, let K=K K, ... K,, = C, be a chain in k(%) connecting X to Cy.
If C, does not appear in the chain, then this is also a chain h(2,) (Lemma 1.2).
Otherwise, let 7> 1 be the smallest index such that K, = C,. If K.y and K, = C,
are separated by 9, they are not separated by & on D. Now C, and Cy are also not
separated by & on D. By Lemma 1.9, X;_, and C, are not separated by & on D.
So K = KK, ...K;_,C, is a chain in £(D,). Now suppose that X;_; and K, = C,
are not separated by 9,. Then we claim that K = K, K, ... K;_, C, Cp-1Cpesn ... Cy
is a'chain in 4£(9,). The only thing to check is whether C, and C,_, are separated
by 9D;. If so, then C, and C,.., are not separated by 2 on D. So (as in the proof of
Lemma 1.11), D = D[E,_,]. But this forces E, =E,_,, a contradiction. M

In the next few lemmas, we show that maximal conjugates for ¢(¥) are actually
(maximal) complements as well.

Y LevMa 1.14. Suppose that D is a completely reduced set in the maximal con-
Jugate 9. Then 2(D) = (D).

" Proof, Suppose that B< D is a set in #(D)\9. Then there is some %-atom C
such that BC ¢ 9. Since 9, = 0(2, BC) strictly enlarges 9, there is a @-atom C'
such that 9, separates C and C’, but @ does not (Lemma 1.3). Also, C and C’ are
sépatated on B° and therefore also on D°. But Dis completely reduced, so that C, C"
are: separated on D. A contradiction ensues. M
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Recall from Lemma 1.10 that each irreducible @-set D gives rise to 2 O-1
measure p on Z such that uDy = 0 if and only if Dy D is completely reduced.

LemMa 1.15. Let 9 be a maximal conjugate for % = (V). Suppose that D is

‘an irreducible 9-set with corresponding 0-1 measure p. For each €-atom C and
B-set B DC, we have p*(CD\B) = 1 implies Be 9.

Proof. Suppose rather that both p*(CD\B) = 1 and B ¢ . We consider the
enlargement 9y = ¢(Z, B) and find 2 ¥-atom C’ such that C and C’ are separated
by 9y, but not by 2. Also, C and C’ are separated by @ on B. So find a @-set D,
with CB°<s Dy and C’B°< Dj (so that C’ < D§). We have CD\B< D, D, so that

“u(DyD) = 1. Now C and C’ are separated on D°< B, but not on D. Since

p(DoD) = 1 also C and C’ are not separated on D, But C' = C'B°<c D5,

- a contradiction. &

LeMMA 1.16. Let D be an irreducible set in the maximal conjugate 9. For each
@ -atom C, we have that ¥(CD) = #(CD). In fact, for each B< CD a %-set, we
have either B or CD\B actually a & -set.

Proof. From Lemma 1.15, for such a B with neither B nor CD\B a @-set,
we must have u* B = p*(CD\B) = 0, where p is the 0-1 measure corresponding to D.
So there is a 2-set D, with CD < D, and DD, completely reduced. By Lemma 1.14,
D(DD,) = B(DD,). Since B= CD< DD,, we have Be 2, a contradiction. M

LemMA 1.17. If @ is a maximal conjugate for € = o(V), then @ is a comple-
ment for €.

Proof. Let X = D+ D,+... be the irreducible decomposition of Lemma 1.8.
Then for each #-atom C, Lemma 1.16 says that 2(CD;) = #(CD)). It follows that
6c(4,92)=%. 1

The following is the major result of this section.

PROPOSITION 1.18. Let € be the substructure of %B(X) generated by the countable
partition V. Then the following conditions are equivalent:

(1) 2 is a maximal conjugate for €; -

(2) 9 is a maximal complement for ¥;

(3) the hypergraph h(D) = (V, &) is a tree, and there are for each E in & and C
in E certain 0-1 measures u(C, E) on & such that u(C, E)(C) = 1, and

D = {Be®: u(C, E)(B) = u(C’, E)(B) for all C, C'e E€ &}.

Demonstration 1=-2: This follows from Lemma 1.17.

2 = 1: Immediate.

1=>3: Lemmas 1.1 and 1.13 show that #(2) is a tree. Let X = D;+ D,,+ ...
be the irreducible decomposition of Lemma 1.8. We claim that for each n, 2(D,)
is a maximal conjugate for €(D,) in #(D,) separating no two %¥(D,)-atoms.

To see this, note that if CD, and C’D, are #(D,)-atoms, and D & D, is a @ -set
with CD, € D and C'D, < D,\D, then we may find #-atoms C"" and C"* such that
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CD, and C"' D, are not separated on D and such that C'D, and C'"’D, are not sep-
arated on D\D. Tt follows that D reduces D,, a contradiction. This implies that
%(D,) and 2(D,) are conjugate.

Suppose that Z(D,) is not a maximal conjugate for % (D,). Then there is some B
in B(D)ND(D,) such that F = ¢(2(D,), B) is also conjugate to #(D,). Now
Be A9 and P is.maximal, so there are P -sets D and D’ such that DB+ D'B° = Cy
is a nontrivial %-set. Since # is a conjugate, DD,B+D'D,B° = Cy D, is trivial
in €(D,); say CoD, = D,, so that D,< C,. The equation D,+D’' = C, yields
a contradiction.

So 2(D,) is a maximal conjugate not separating any two atoms of ¥(D,). Such__
g-algebras have been characterized (Theorem 5 in [9]). Using this, we find for each -

Ee & and Ce Ea0-1 measure u(C, E) on #(D[E]) such that u(C, E)(CD[E]) = 1
and such that

2(DIE]) = {Be‘g&’(D[E.]): u(C, EY(B) = u(C', E)(B) for all C, C" in E}.

Now each p(C, E) has a unique extension to a 0-1 measure on #(X). We preserve
the notation for these extemsions. Then

9 = {Be#(X): u(C,E)(B) = u(C",E)(B) all Ee& and C, C'e E}.

3 =1: Suppose that the u(C, E) and h(2) have the properties described.
Since k(2) = (V, &) is connected, Lemma 1.1 says that & is a conjugate for %.
Suppose that & is not maximal. Then there is some B in #\Z such that
9y = 0(2, B) is also conjugate to . Then for some E e & and C-atoms C, C’ in E,
we have p(C, E)(B) # u(C’, E)(B). Write E = {Cy, C,,...} and put
P = {i: p(C;, E)(B) = 1}
and N = {i: u(C;, E)(B) = 0}. For each C in E, choose a set A[C]e % such that

A[C]<= C;B whenever ieP

and
A[C]l=C;B° whenever ie N
.and such.that ‘ ‘ ‘
u(C, E)(4[C) = 1
and

w(C, F)(4[C]) =0

for all F s E. Such a choice is possible because u(C, E) # u(C, F) whenever
F # E (otherwise @ could not separate any #-atom in F from any @-atom in. E).

Now we know from Lemma 0.2 that removal of E will break V into connected
components, one for each C e E. Let K; be the connected component containing C;.
Then define

“=U{Cek;:iePand C+# C}ul {CNA[C]: i€ P}
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and
=U{CeK;:ieN and C s C}u ) {CNA[C]]: ieN}.

It is not hard to verify that these are @-sets and that D* + B\ D~ is the union of all

“the ¥-atoms in the components X; for i € P. We have produced a nontrivial element

of ¢(2,B)n%. W

If (X) is a separable structure, so that 0-1 measures are concentrated at points,
then the structure of any maximal conjugate for o(¥) may be localised to a countable
subset of X.

CoroLLARY 1.19. If #(X) is separable, and @ is a maximal conjugate for
% = o(V), then there is a countable X, S X such that 9(X,) is a maximal conjugate

© for 4(X,) in B(X,) and such that D(Xg) = B(X§)-

COROLLARY 1.20. If #(X) is countably generated, then any maximal conjugate
for € = a(V) is also c.g.

'§ 2. Conjugation for continuous structures. In this section, we consider maximal
conjugation for sub-g-algebras % which are not generated by a countablé partition.
If % is atomic, however, we may still couch our discussion in terms of a hypergraph
h(2) whose vertices are 4 -atoms. Unfortunately, there are serious problems caused
by the failure of Lemma 1.1 in this context.

ExaMmpLE 2.1. Let X be the square [0, 1]x [0, 1] under the usual Borel struc-
ture 4. Let % be the sub-g-algebra generated by projection onto the first co-ordinate.
Let [0,1] = Ly+L; be a partition of the interval into non-Borel sets. Put
Gy = {(x,0): xeLy} and G;={(x,1): xeL;}. Define the o-algebra
9 = {BeB: for each i, either G;= B or G;< B°}. Then & is a conjugate for: ¥,
but this hypergraph £(2) has two comnected components corresponding to L,
and L,. .

As we have seen (Example 0.3), maximal conjugates do not always exist, even
for atomic structures. We do, however, have one positive result for the continuous
case.

ProPOSITION 2.2. Let (X, %) be analytic. Every countably gemerated sub-
o-algebra € of & has a maximal conjugate in %.

Demonstration. Case 1. There is an uncountable ¥-atom Cy: Let ¢ be

a choice function for the @-atoms: for each #-atom C, we have p(C)e C. Letyr be

a one-one Corr espondence between a set P < Cy and the collection of -all € -atoms

011161 than C,. (If C, is the only ¢-atom, the entire problem is trivial: Cy =X and

= 4(X) is a maximal conjugate for #.) Define f P = X by f(p) = (p(lp(p))
Put

= {Bed: {p.f(N} B or {p, f(p)}CBc all peP}..

Any 2-sct contalnmg C, must.intersect all ¢ -atoms., Thus 9 is a Conjugate for ‘é.
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Now suppose that B e #\2. Taking a complement if necessary, we find some
p€P such that f(p)e B and p¢ B. Now Dy = {p,f(p)} and D, = y(p\\{ f(p)}
are 9-sets. We see that BD; + D, = y(p) is a ©-set. This shows that & is maximal,

Case 2. There is a #-measurable full selector for the @-atoms: there is some
G e # which intersects each %-atom at precisely one point. Then put
P ={Be#: GS B or G B}.

Any 2-set containing a single point of G intersects every #-atom. So 9 is a con-
jugate for €.

Suppose that Be #\9. Let p: X — R be a measurable function generating %,
ie, ¢ = p"Y(#(R)). Then p(GB) and p(GB°) are disjoint, nonempty analytic sub-

sets of R. By a separation theorem of Lusin [5; p. 218] there is some linear Borel
set 4 with p(GB) € 4 and p(GB®) = R\A. Then D, = p~'(ANG and G arc both
P -sets. We see that Dy +GB = p~*(4) is a nontrivial -set. This proves that 2 is
maximal.

Case 3. Every ¢-atom is countable, and there is no full selector as in Case 2.
Let p: X — R generate % as above. A selection theorem (found e. g on p. 11 of [2])
says that in this case X may be partitioned into #-sets X = A+ A,+... in such
a way that p is one-one on each 4,, but not one-one on 4,+4,, whenever n # m.
Since there is no full selector for the %-atoms, it must be that for some 7 # m we
have that p(4,) "p(4,) is uncountable. Let B, < p(4,)np(4,) be an uncountable
linear Borel set. Noting that p restricted to either 4, or 4,, is a Borel-isomorphism,
we see that By = p~Y(By)n 4, and B, = p~(B,) N 4,, arc standard (absolute Borel)
sets.

Using once more the fact that there is no full selector for the #-atoms, we see
that B, = p(B,) is a proper subset of p(X). Now P(X)\B, is analytic, and so there
is a Borel isomorphism y: K— p(X J\B, taking an analytic set K< B, onto
P(X)\B,. Let ¢ be a choice function for the #-atoms: for each %-atom C, we have
¢(C)e C. Define f: K- X by f(a) = o(p™'¢(a)). Put

9 ={Be®: B, B or B, < B, and {a,f(@} =B or
{a,f(@} < B° for cach ae K} .

Any 9-set which intersects B, must contain it. Every %-set containing B, must
contain B,. Any 9-set containing B, must meet every #-atom disjoint from B,.
These statements together imply that ¥ N9 is trivial. So 9 is a conjugate for @.

Now suppose that B & #\D. Suppose first that for some a e K, we have f (@) B
and a¢ B. Now D; = {a,f(a)} and D, = P W@ (@} are D-sets. We have
Dy B+D, = p~*(y(a)) a nontrivial %-set. Next, suppose that both B, B and B, B
are nonvoid. Now p(B, B) is a standard linear subset, so that ™Y (p(B, B))is a @-set.
Put Ky = p~!(p(B, B))n K and note that W(K,) is relatively Borel in p(X)\B,
and therefore also in p(X). (It is possible that K, = @) So p~ (W (Ky)) is a F-set.
Also, D = [p‘l(p(BlB))\Bl]+p'l(V/(K0)) and By are P-sets. We see that
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C=D+B,B=p""(p(B,B)+p '(y(Ko)) is a %-set. Since B,B<C and
B, B°<c C%, C is nontrivial. Therefore 9 is maximal. B

QuEsTION 2.3. Is the preceding proposition also true for co-analytic spaces?

EXAMPLE 2.4. Assuming the continuum hypothesis, there is a separable space X
and a c.g. sub-g-algebra ¢ of #(X) such that % has no maximal conjugate
in #(X). .

Construction. A standard transfinite induction (with CH) establishes the
existence of a subset X of the square S = [0, 1]x [0, 1] with the properties ™

(1) X is uncountable; i

(2) every horizontal and vertical section of X is either singleton or void;

(3) XN N is countable whenever N is a Borel subset of S with two-dimensional
Lebesgue measure A*(N) = 0.

Let #(X) be the Borel structure that X inherits as a subspace of S and let
p: X = [0, 1] be projection to the first factor. Define € =% (X) to be the spectral
o-field for p: . o

% = {p~*(B): B=10, 1], B Borel}.

Note that & contains all countable subsets of X. Note also that Condition 3 implies
that any family of uncountable pair-wise disjoint sets in £(X) is countable.

CLAm 1. Let D be an uncountable set in 4(X). Then #(D) is a proper sub-
o-algebra of Z(D). To see this, suppose instead that ¥ (D) = #(D). Then the re-
striction p, of p to D is a Borel-isomorphism. Let F: p(D) — D be the inverse of p,
and let g: S — [0, 1] be projection to-the second factor. Then f = g ¢ F is a measur-
able mapping of p(D) onto g(D) which extends to Borel function f: [0, 1] — [0, 1].
Nowif G = graph( f), we have A*(®) = 0. But Gn X contains the uncountable set D,
contradicting Condition 3 and establishing the claim.

CLAmM 2. The o-algebra € has no maximal conjugate in % (X). We suppose
contrariwise with 2., First, note that & cannot be atomless: if so, we may partition X
into uncountably many Z-sets [2; p. 29], contradicting our earlier observations.
So let D be a @-atom; necessarily D is uncountable. Claim 1 implies that #(D) is
a proper sub-c-algebra of #(D). Select Be Z(DNE(D) and form 2, = ¢(9, B),
a strict enlargement of @. The supposed maximality of @ implies that there are
9-sets D, and D, such that Dy B+ D, B° = Cis a nontrivial ¥-set. Taking a com-
plement if necessary, one may assume that D < Dy. Then C.= B+D,B".

Case 1. Dg D,, then C = B+D,B° = D,, a contradiction.

Case 2. If D< D5, then CD = B and B e ¢ (D), another contradiction.

Thus, Claim 2 has been established. '
§ 3. Maximal conjugates for analytic structures. These results may be summarized

as follows. Let (X, %) be an analytic space and let ¥ and @ be c.g. sul?-a‘"alg'ejorgs
of . Then & is a conjugate for ¥ if and onlyif 4(2) is connected, and P is a maximal


Artur


42 : R.M. Shorit

conjugate if and only if it is a complement for &, and A(2) is a tree. Some technical
results are needed:

LeMMA 3.1. Let € and 9 be c.g. sub-o-algebras of an analytic structure %(X).
‘Let f and g be real-valued functions on X generating € and 9, respectively.

(1) Two % -atoms C and C' are not separated by P if and only if there are points
xe C and x' € C' such that g(x) = g(x").

(2) There is a chain in the hypergraph h(2) connecting € -atoms C and C "if and
only if there are points xgXy ... X3,y (n=1) of X such that

(i) xp € C and x4,.,€C’;

(i) gCran) = gCGaer) and f(xpp1) = f(aia) for k=0,1,...,n~1.

(3) If the hypergraph h(2) has a cycle, then there are points X, ... X5, (n 2 1)
of X such that

(1) xo = X5, and xXyXq ... Xq,1 are distinct;

(1) g(ezp) = g(xaps1) and f(Xaps1) = (Xope2) for k= 0,1, ..., n—1.

The converse holds so long as o(¥, D) separates points of X.

Proof. (1) Suppose that such points x and x’ exist. Since g(x) = g(x"), x and x'
belong to the same & -aton. So x and x', and therefore C and C’ cannot be sepa-
rated by &. Conversely, suppose that no such points x, x' exist. In other words,
g(C) and g(C’) are disjoint analytic sets. Use Lusin’s separation principle to find
a linear Borel set B with g(C) < B and g(C") < B°. Then D = g %(B) is a 9-set
separating C and C'.

(2) Suppose that C = CoE;CyE; ...C,_,E,.,C, = C’ is a chain in A(®).

Since C, and Cp,; are not separated by @, there are (part 1) poiuts x,; € Cy and
Xagr1 € Crpy With g(xy) = g(Xp14); Where £ =0,1,...,n—1. Note that x,.;,
and x,;, , belong to the same % ~atom C, . y; 50 that £ (Xapi 1) = F (X244 o), as desited.
The converse is proved similarly.
_ (3) Suppose that C = CoE,CiE; ... C,- 1E,, 1G = C is a cydle in 1(9).
Let Xg -.. X5,-1 be asin part 2. Since C, C; ... C,_ are distinct, the sets {X,;, ¥5c5(}
are pair-wise disjoint for k£ =0, ...,n—1. If X = Xai4y for some k, then Cy.,
and Gy, 4 are not separated by 2, and there is some edge E in (%) containing Cj.. ;
and G, ;. So C'= CyEy ... Cyoy ... C, = C is again a cycle, of shorter length. By
such successive shortenings of the cycle, one may ensure that the Points Xg ... Xpyey
are distinct.

Conversely, suppose that (%, 2) qepamtes X and that the points xqx; ... Xy,
exist. Let CyCy ... C,—1C, = C be the ¥-atoms containing XoXgXq v Xgy, 'ESPCC-
tively: The condition g(x,;) = g(X2;4,) implies that C; and C;;, are not separated
by 9. So there are maximal & -clusters Ey Ey ... E, ., such that C, and Cyrq belong
to Ek This implies the existence of a cycle in h(@) l

Under the condmons of the lemma, the map F X->RxR dcﬁned by
F(x) = (f(x), g(x)) is a Borel isomorphism onto its range and provides a “planar

icm

Maximally conjugate sigma-algebras represented as hypergraphs 43

representation” of the pair (%, 9). It is useful to view statements about @ and 2 in
terms of the geometry of F(X). The above lemma enables one to do this accurately.

LemMA 3.2. Let € and 9@ be c.g. sub-c-algebras of an analytic structure #(X).
Suppose that the hypergraph (D) is a tree and that o(%, ) separates points of X.
Then there Is a one-one correspondence between -atoms of cardinality >2 and
maximal 9-clusters. This correspondence is obtained by pairing each nonsingleton
G-atom D with the collection of all €-atoms C with CAD # @.

Proof. Let fand g be real-valued functions on X generating % and 9, respec-
tively. Suppose that D = g~ *(p) is a nonsingleton @-atom and define E to be the
collection of all ¥-atoms C with Cn D s @. Clearly, E is a @-cluster. If E is not
maximal, there is some @-atom C, ¢ E not 9-separated from any %-atom in E.
Let C; and C, be distinct %-atoms in E. Using Lemma 3.1.1, find points
Xgs X1, X2, X34 X4, X5 Such that xp € Cp, x4 € Cy, g(xo) = g(xy), X, € Cy, X3€ Cs,
g(x) = g(x3), x4€ Cy, x5€ Cp, g(x4) = g(x5). Since. Co€ E, we have x; # x5,
X3 # X4, and Xo # x5, Again using Lemma 3.1.3, we see that 4(2) has a cycle, which
is a contradiction. So, in fact, E is maximdl (an edge ‘in:/h(2D)).

Now suppose that E is a maximal 2 -cluster. Since #(2)is connected, E contains
at least two ¥-atoms C # C'. By Lemma 3.1.1, there are points xe C and x' e C’
with g(x) = g(x) = p. Let F be the set of ¥-atoms intersecting the Z-atom
D = g~ (p). The first part of the proof shows that F is a maximal @-cluster. But
h(D) is a tree, and En F has at least two elements C and C’: Lemma 0.1 shows that
E = F, as desired. ™ ‘

L]?MM‘A 3.3. Let % and 9 be c.g. sub-c-algebras of an dndlytic structie é?(X ).
Let C be a €-atom and define K to be the union of all € -atoms in the connected com-
ponent of h(D) that contains C. Then K is analytic.

Pr ooI Let ya and g be real-valued functions on X genelatmg the o G- algeb1 as ¢
and @, respectively. From Lemma 3.1.2, we see that K is the union of

KoK, €K, S ..., where K = C, and
K. = 9”4 g(Kyp) neven,
PETSTNSKD)  noodd.

The sets K, are analytic. W
We are now ready for the first of our advertised results.
PROPOSITION 3.4. Let € and @ be c.g. sub-g-algebras of an analytic: structure

B(X). Then & is a conjugate for. € if and only if the correspondmg hypergraph h(D)
is connected.

Demonstration. Suppose that 2 is not a conjugate for € and let Be¥ng
be nontrivial. Let C < B and €' < B be @-atoms. There is no chain in (%) con-
necting C and C': if there is such a chain C =.CoCy ... Gy = C', let i be the largest
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index such that C; = B. Then 0<i<n—1, and C;,{ < B° But then C; and C;,,
are_separated by 9, a contradiction.

Now suppose that /#(2) is not connected. Let C and C’ be €-atoms in different
connected components of 2(2). Let K and K’ be, respectively, the union of all the
% -atoms in these components. By Lemma 3.3, K and K’ are analytic.

.Let fand g be real-valued functions on X generating the o-algebras ¢ and 9,
respectively. It is not hard to see that f(K) and f(K") are disjoint analytic sets, as
are g(K) and g(K'). So one may choose linear Borel sets 4, and B, such that
FK) S 4y, f(K) S 45, g(K)<S By, g(K') < Bj. We now define two decreasing
sequences 4o S4; < ... and By B, <... of linear Borel sets by a recursive rule:
Suppose that Ay A4 ... 4, and B, B, ... B, have been defined so that f(K) = 4, and
9(K) < B,. Then choose f(K) S 4,1 S 4, such that f (f~(4,)ng™}(BD) S 454 -
Also choose g(K) < B,+, =B, such that g(f ™ YAi,)ng *(B,)) < B:,,. These
choices are possible, since the pairs

F(F ' 4)ng™(BD) and f(K),
g(f " 4)ng™Y(B)) and g(&K)

are disjoint analytic sets. Now put 4 = () 4, and B = () B,. We claim that
7744 = g ~Y(B)is anontrivial set in ¥ D. Suppose rather that x € £~ 1(A)\g ~!(B).
Then for some n, xeg™'(Bf). But xef *(4,), so that

T@ef(fHA)ng™ (B)) s 4., 5

at the same time x€f 7 !(4,.,), a contradiction. A similar argument shows that
g~ (BINST1(4) is empty. The set £~ 1(4) = g~ *(B) is nontrivial, since it contains K
and misses K’. Thus, 9 is not a conjugate for #. B

The requirement that X be analytic was important in the second half of this
proof. Indeed, without such a condition, the result becomes false:

ExampLe 3.5. Let K, and X, be disjoint linear sets which cannot be separated
by Borel sets. (It is know that K, and K, can be chosen co-analytic [10].) Put
X = K, UK, and let ¥(X) be the relative linear Borel structurc on X. Also set
B(X) = o(F(X), k) and 2(X) = o(K,). Then Z(X) is a conjugate for %(X)
in 2(X), but 2(2 (X)) has two connected components, corresponding to K, and K,.

And now the second major result of this section, which solves the c.g. maximal
conjugate problem for analytic spaces.

PROPOSITION 3.6. Let 4 and 9 be c.g. sub-o-algebras of an analytic structure
B(X). Then the following are equivalent:

(D) 2 is a maximal conjugate for €;

(2) 2 is a maximal complement for €;

(3) the hypergraph h(2@) is a tree, and 0(%, D) separates points of X,
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Demonstration. 1 — 2: We show first that o(%, @) separates points of X
suppose that p and ¢ are points of X not separated by ¢(#, @) Then 2, = (9D, {r})
is an enlargement of 9. Therefore, there are %-sets D, and D, such that
(D1 n{pHU(DN{p}) = Cis a nontrivial ¥-set. Without loss of generality, assume
that p e C. Then {p} W (D,\{p}) = C and ge C. Also, ge D, so that pe D,. We
conclude D, = C, a contradiction.

Since ¢(€, 9) is c.g. and separates points of X, the strong Blackwell property
for analytic spaces implies that ¢(%, 9) = %, as desired.

2~ 3; Suppose that 9 is a maximal complement for %. Of course o(%, @) = &
separates X. By Proposition 3.4, #(%) is connected. Now suppose that there is a cycle
in h(2). By Lemma 3.1.3, therc are points Xox; ... X, in X such that g(x,,)
= g(Xap+1) and f(Xop4 ) = f(Xop5) for k =0, ..., n—1, where f and g are real-
valued functions on X generating ¢ and 2, respectively; also, x, = x,,, while
Xg «or Xayq arc distinct.

Put Dy = (D, {X4,}), a strict enlargment of @, since P does not- separate
Xgy = Xo and x,;. Then there are P-sets D, and D, such that

(D {22, V(DN {x2,)) = C

is a nontrivial #-set. Without loss of generality, we assume x,,€ C, so that
C = {x3,} U(D;\{x3,}). Since C contains x,,, it must also contain x,,_; so D,
contains x,,_, and therefore x,,-,. Since C contains x,,.,, it must also contain
X34-3 Continuing in this fashion, we find that C and therefore D, contains x;.
So D, and C both contain x, = x,,. This means that C = D,, a contradiction.

So h(D) is connected and contains no cycles: #(2) is a tree.

3 — 1: Suppose that (¥, ) separates X and that A(Z) is a tree. Since h(D)
is connected, 2 is a conjugate. If now 2 is not maximal, then there is some B in
B(X)\Z such that ¢(2, B) is also a conjugate for . Since X is analytic, and &
and (9, B) are c.g., it must be that 2 and ¢(2, B) do not have the same atoms. So
there is some Z-atom D that may be partitioned D = D, u D, into disjoint, non-
empty sets D; and D, in (2, B). Put 2, = ¢(2, D,), a conjugate of ¥ strictly
larger than 2. :

Let E, be the collection of all ¢ -atoms intersecting D;, I = 1,2.Set E = E; U E,.
Considering the edge sets of the hypergraphs associated with &2 and D,, we have

MONE} € h(@o) = (H(DINEY) U {E,, Ea} .

Tacitly, this nses Lemma 3.1. We now claim that #(9,) is not connccted, which will
be a contradiction. To see this, use Leinma 0.2 to see that A(2)\{E} has one com-
ponent for each % -atom intersecting D. Let Cy and C; be ¥ -atoms with C; n D # @
and C,nD # @ (C;, # C, since 6(%, D) separates X). Then there is no chain.
in h(2,) connecting C, to C,. B

§ 4. Measurable selections. In Proposition 2.2, it was shown that every c.g. sub-
g-algebra € of an analytic structure has a maximal conjugate. However, some of
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these maximal conjugates are not countably generated. In this section we prove
that a c.g. maximal conjugate exists just in case there is a measurable full selector
for 4.

First, a technical lemma:

LemMa 4.1. Let p be a measurable funciion defined on an analytic set A. Suppose
that G € 4 is analytic, that p is one-one on G, and that p(G) = p(A). Then ANG is
analytic.

Proof. Let p, be the restriction of p to G. Then p, is a Borel-isomorphism. of G
onto p(G) = p(4), and p, extends to a Borel-isomosphism defined on Gy 2 G with
Gy € B(4). We claim that G, = G: if x € G,, choose y & G with p(x) = p(¥). Then
x = y. So G and A\G belong to #(4), so that A\G is analytic. M

PROPOSITION 4.2. Let % be a c.g. sub-c-algebra of an analytic structure #(X).
Then € has a c.g. maximal conjugate if and only if there is a measurable full selector
Jfor %.

Demonstration. Suppose that G is such a selector. Let z be a point in G and
define g: X — X by the rule

z ifxeG

g(x)={x if x¢ G

Then g generates the c.g. o-algebra @ = {Be #(X): G =B or G < B°}, which is,
as in [9; 222], a maximal conjugate for %.

Conversely, suppose that 2 is a c.g. maximal conjugate for . Let fand g be
real-valued functions on X generating € and 2, respectively. We define Gy to be
some %-atom and put

G, = 9" (g(GING, n even,
LT S SGING, noodd.

For each 130, define real-valued functions h, and k, on X by

h o= f nodd, k = 39 n odd,
" lg mneven, " |f oneven.

CramM 1. For each n>0, h, is one-one on G,. We proéeed by induction on #n:
For n = 0, the claim follows from the fact that ¢ and 9 are complements (Propo-
sition 3.6). Now assume the claim true for integers <. Suppose contrariwise that

there are points py # qo in G, with £,(po) = h,(g,). Define sequences pyp; ... and

goqy - recursively so that pg ... px—14qo ... @i~ are distinct and satisfy

Pis qie Gn—i
hyei(P9) = My (Gia0)
bo-i(1) = P G140

i=0,1,..,k~-1.

icm
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At the i = k-1 stage, we stop to ask whether ky-i(Pir1) = kyei(giy ). If they
are equal, then the selection of points comes to an end with Po - Dio - G-
If they are not equal, selection continues (it must terminate at i = n, because ky = f
is constant on G,). We have tacitly used the induction hypothesis.

Lemma 3.1.3 allows one to construct from the sequences p, ... PmGmm—1 - 9o Po
a cycle in. A(2). This contradicts Proposition 3.6 and establishes the claim.

Claim 1 allows an application of Lemma 4.1, which shows (again vig an induction.
argument) that each G, is analytic. Connectivity of A(2) shows that

X =G,uG uUG,uU...
Let p be a point in Gy.

CLaM 2. S = {p}UG,UG;uUGsu... is a measurable full selector for &.
Now & is analytic, so that once S is shown to be a full selector, the usual theorem on
analytic graphs [4; p. 34] will establish that S is measurable.

We prove, using induction, that for k > 0, fis one-one on {p} UG, U ... UGqpyy.
Of course, Claim 1 has already shown that fis one-one on each Gy, . Likewise,
Claim 1 shows that f is one-one on {p}uUGy: GonG, = @, and G, is a ¥-atom
(a level curve of ). Suppose that fis one-one on {p} UG, U ...U G, but that there
are points ro € Gopyq and gy € Gap gy With 0 S m <k and £ (r,) = £ (go). (The case
J(q0) = f(p) is easily eliminated.) We find a point ¢, € G, with g(g) = g(qq)
and a point ry € Gy, with g(ry) = g(r,). Continue recursively defining goq;... and
rory ... so that

4:€ Goppy~is  TEGyypq1-y,
h(g) = hi(qiv1),  Ri(r) = Bi(rivy) .

The process stops at stage s when Alq,) = A(ry).

Lemma 3.1.3 allows one to construct from the sequence popy ... Ps@sQs—1 --» GoPo
a cycle in #(2). This contradicts Proposition 3.6, and establishes that f is one-one
on S.

‘We must now show that $ is a full selector. Given any ¥-atom C, choose xe C.
‘We know that x € G, for some n (connectedness of A(2) is used here). So if n is-odd,
there is nothing to prove. If # = 0, we have f(x) = f(p). If x€ Gy, find X' € Gyy-y
with f(x) = f(x'). We see that S hits every #-atom. M

Note. The same proof may be applied to show that GoUG,UG,U.. is
a measurable full selector for 2. So we see that every ¢, g. maximal conjugate for &
has a measurable full selector.

§ 5. Examples and conjectures. Let (X, #) be a measurable space and let € be
a sub-o-algebra of 4. It is known [7; Theorem 2] that every minimal weak comple-~
ment of % is actually a complement. Dually, it is natural to guess that every maximal
conjugate of % is also a complement. However, this guess is incorrect:
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_ ExampLE 5.1. Let S be an uncountable standard space. There are sub-
o-algebras % and 9 of #(S) such that
(1) € is countably generated;
(2) 2 is a maximal conjugate for Z;
(3) 2 is not a complement for %.
Construction. We realize S as the union of two line segments in the plane:
S=L UL,

L= {(x,00: 0<x<1}, L,=1{0,3:0<y<l}.

Let % be the structure generated by p: S — R, projection onto the x-axis. Partition
L, = R,UR, into two non-Borel sets, each of power c. Similarly, partition
L, = P, UP, into two uncountable Borel sets. Let f: L, = L; be a one-one cor-
respondence such that #(P;) = R, and f(P,) = R,. We define

9 = {Be#(S): {a,f(@)} =B or {a,f(a)}< B, for each aeL,}.

Then the only 2-set containing the #-atom L, is S: & is a conjugate for 4. Also,
suppose that for some B in #(S) and some a € L, we have a € B and f(a) € B. Then
put D = {a,f(a)} € P and note that DUB = { f(a)} € %. Thus, 2 is a maximal
conjugate for ¥.

We now show that 2 is not a complement by proving that P, ¢ 6(%, 2). Suppose
contrariwise that P,eo(%; 2). Then P,eo(¥,D)(L,) = D(L,), since L, is
a ¥-atom. So for some De @ we have P, = DnL,. Since D contains P;, D also
contains £ (P;) = R,. Since R, is not Borel, D must intersect R, and therefore also P,.
This is a contradiction.

9 is not a complement for %, ‘n'or is it contained in any such complement.

We have mentioned that every c.g. sub-c-algebra of an analytic structure has
a maximal (not necessarily c.g.) conjugate. The question arises of characterizing
separable spaces with this property. In Example 2.4 an example was constructed
(using the continuum hypothesis) of a space where this property fails. In particular,
we have almost no idea of what happens for co-analytic spaces. For example, does
Proposition 4.2 hold for these spaces?

ExaMPLE 5.2. Assume Martin’s Axiom (MA) and let X be a linear subset of
cardinality strictly between 8, and ¢ (not-CH). The relative Borel structure #(X)
is just the power set algebra #(X): in fact, every subset of X is a G, subset of X
[8; p. 497].

Every c.g. sub-o-algebra % of #(X) has ac.g. maximal conjugate: simply let S
contain exactly one point from each #-atom. Automatically, S e #(X). Define

P9(X)={BcX: S=B or Sc B},

a ¢.g, maximal conjugate for %,
... The.question arises whether such a set X can be co-analytic. It is in fact consistent
with ZFC set theory to assume that every set of cardinality &, is co-analytic and that
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the only separable Borel structure on a set X of cardinality &, is the power set
algebra #(X). For details, see [6; pp. 162-165].

QuesTION 5.3. Let (X, %) be a separable space and let % be a proper sub-
o-algebra of &. Suppose that #(X) is separable. Can % have a maximal conjugate
in 87

QuEsTION 5.4. Let #(R) be the usual linear Borel structure. Does the coun-
table/co-countable o-algebra have a maximal conjugate in B(R)? in the power set
algebra #(R)? (Certainly, such a maximal conjugate cannot be c. g)

We have shown that if (X, %) is separable, and € is generated by a partition,
then every maximal conjugate for % is c.g. Are there other natural conditions on €
which guarantee this property? For example:

QUESTION 5.5. Let X be the union of the lines y = 0 and y = 1 in the plane.
Let % be the sub-c-algebra of Z(X) generated by projection onto the x-axis. Is every
maximal conjugate for € c¢.g.?
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