We work in $L[a]$. Suppose $Y = \bigcup B_m$ where each B_m is $\mathcal{P}^{2}_{<\omega}$. For $n \in \omega$ let

$$D_n = \{ p \in \mathbb{P}_\alpha : \exists m < n \exists \alpha \in \mathcal{P}_n \dot{\neg} p \in B_m \}.$$

Claim 2. D_n is dense.

Let $p \in \mathbb{P}_\alpha$. Fix $\delta > \omega < \kappa^{\omega}_1$. Since $\mathbb{P}_\alpha \subseteq \mathbb{P}_\delta$ and $p \in \mathbb{P}_\alpha$, suppose $\langle T^\delta, H^\delta \rangle \in \mathbb{P}_\delta$ is generic over $L[a]$ and $p \in \langle T^\delta, H^\delta \rangle$. Clearly $\omega_1^\mathbb{P}_\delta > \delta$, thus $T^\delta \notin Y$. Thus $\exists \alpha \in \mathcal{P}_n \dot{\neg} \exists \delta \in \omega \ni \neg \exists \alpha \in \mathcal{P}_n \dot{\neg} p \in B_m$. Thus there is $m < n$ and $r \in \mathbb{P}_\delta$ such that $r \supseteq p$. Let $r \in \mathbb{P}_\alpha$ be the retagging of r. By Lemma 2.2, $\mathbb{P}_\alpha \dot{\neg} p \in B_m$, since $\neg B_m$ is $\omega_1^\mathbb{P}_\alpha$. Clearly $r \equiv \not \mathbb{P}_\alpha$ so D_n is dense.

Let $\langle T^\delta, H^\delta \rangle$ be \mathbb{P}_α-generic over $L[a]$. Since then D_n are dense $\forall n \in \omega \exists m < n \exists \alpha \in \mathcal{P}_n \dot{\neg} p \in B_m$. Thus $\bigcap B_m = \neg Y$. So $\omega_1^\mathbb{P}_\delta > \delta$, contradicting Lemma 2.2.

References

DEPARTMENT OF MATHEMATICS

122 SCIENCE AND ENGINEERING OFFICES

Box 454, Chicago, Illinois 60600

Received 28 July 1986

Representability of $V[\mathcal{A}]$ as intersection of A-bounded variation classes

by

Pedro Iñaca (Medellin)

Abstract. It is proved that the generalized bounded variation class $V[\mathcal{A}]$ of Canturija is the intersection of all classes of A-bounded variation with $A = \langle \alpha \rangle$ satisfying $28(\langle \alpha \rangle^{1/2} - \langle \alpha \rangle^{1/3}) < \omega$, but it is not the intersection of any countable subcollection of them. As a consequence of this result, a version of Helly's theorem for the classes $V[\mathcal{A}]$ is proved.

1. Two important generalizations of the concept of bounded variation have been given by D. Waterman [4] and Z. A. Canturija [2] by introducing, respectively, the functions of A-bounded variation (ABV) and the classes $V[\mathcal{A}]$. These spaces have been studied mainly because of their applicability to the theory of Fourier series. An interesting connection between the class of functions of bounded variation (BV) and the classes ABV has been pointed out by Perlman [3], who has proved that the space BV is the intersection of all ABV classes but not of any countable collection of them. We shall prove an extension of Perlman's result to study the representability of the classes $V[\mathcal{A}]$ as intersections of ABV classes. This theorem will allow us to prove a version for the classes $V[\mathcal{A}]$ of the well-known Helly's theorem. Let f be a function defined on an interval $[a, b]$. If $\mathcal{I} = \{I_i\}$ is a nondecreasing sequence of positive real numbers such that $\sum \mu(I_i) = \infty$, we say that f is of A-bounded variation (ABV) on $[a, b]$ if $\sum |f(I_i)|/\mu(I_i) < \infty$ for every \mathcal{I}. This is known to imply that the supremum $\sup_{\mathcal{I}}(\sum |f(I_i)|/\mu(I_i))$ of the collection of the above sums is finite [4]. Also, if $f \in ABV$, then f is regulated, i.e., has only simple discontinuities. Let

$$\nu(n, f, [a, b]) = \nu(n, f) = \sup_{\mathcal{I}} \left(\sum_{i=1}^{n} |f(I_i)| \right),$$

* This paper is a part of the doctoral dissertation written by the author at Syracuse University under the direction of D. Waterman (presented May 11, 1986, Syracuse, N. Y.).
the supremum being taken over all finite collections \(\{ I_{n} \}_{n=1}^{\infty} \). For a nondecreasing, concave function \(h \) on the positive integers, satisfying \(h(0) = 0 \), let

\[
V[h, [a, b]] = V[h] = \{ f \in V : f \text{ is } h(0) < \infty \).
\]

For \(h \) bounded, \(V[h] \) is BV, and thus \(h(n) \to \infty \) for all other classes \(V[h] \). It may be shown that \(V[h] \) consists only of regulated functions if and only if \(h(n) = o(n) \), and therefore we will make this assumption on \(h \), since our interest is to represent \(V[h] \) as intersection of ABV classes, which contain only regulated functions. We will also assume that \(h(n) \to \infty \) as \(n \to \infty \).

2. The following theorems establish some properties of the classes \(V[h] \).

Theorem 1. If \(f \in V[h, [a, b]] \) and \(f \in V[h, [b, c]] \), then \(f \in V[h, [a, c]] \).

The proof of Theorem 1 is trivial.

Theorem 2. If \(f \notin V[h, [a, b]] \), then there exists \(x \in [a, b] \) such that \(f \notin V[h, [a, b]] \) for any closed interval \(J = [a, b] \) containing a neighborhood of \(x \).

Proof. We split \([a, b] \) into two closed intervals of equal length \(I_1 \) and \(I_2 \), and observe that, by Theorem 1, for one of \(I_1 \) or \(I_2 \), say \(I_1 \), \(f \notin V[h, I_1] \). Dividing \(I_1 \), we did \([a, b], \) by an inductive procedure, we obtain a nested sequence \(J_{1} \supseteq J_{2} \supseteq \ldots \) of closed intervals of length approaching zero, and such that \(f \notin V[h, J_i] \) for \(i = 1, 2, \ldots \). The intersection of the \(J_i \)'s is a single point \(x \) which satisfies the requirements of the conclusion of the theorem.

Theorem 2 implies the existence of a point \(x \in [a, b] \) such that either \(f \notin V[h, [x, x + \delta]] \) for all \(\delta > 0 \), or \(f \notin V[h, [x - \delta, x]] \) for all \(\delta > 0 \).

It is observed from the definitions that \(f \in V[h] \) if and only if there is a constant \(C \) such that

\[
\left(\sum_{i=1}^{n} |f(U_i)| \right) h(n) \leq C
\]

for all collections \(\{ I_{n} \}_{n=1}^{\infty} \) and all \(n \). The next theorem shows, however, that only requiring the above expression (as a sequence of \(n \)) to be bounded for each particular collection \(\{ I_{n} \} \) is sufficient to assure its uniform boundedness.

Theorem 3. (i) \(f \in V[h, [a, b]] \) if and only if

\[
\sum_{i=1}^{n} |f(U_i)| = O(h(n))
\]

for each collection \(\{ I_{n} \}_{n=1}^{\infty} \).

(ii) If \(f \) is regulated, then \(f \in V[h, [a, b]] \) if and only if (i) is true for each collection \(\{ I_{n} \}_{n=1}^{\infty} \) satisfying \(|f(U_i)| \leq 1 \) as \(n \to \infty \).

Proof. We prove (ii) ((i) being similar). The "only if" part follows immediately from the definitions. For the "if" part of the theorem, suppose that \(f \notin V[h, [a, b]] \).

Applying Theorem 2, we may assume that \(f \notin V[h, [x, x+\delta]] \) for some \(x \) and all \(\delta > 0 \). Let \(M = \sup |f(U_i)| \). Let \(\delta_1 > 0 \). We choose \(n_1 \) such that \(h(n_1+1) > 2M \) and \(\delta_1 + 1 > 2h(n_1+1) \). There are subintervals of \([x, x+\delta_1] \), \(I_1, \ldots, I_{n_1} \), \(I_{n_1+1} \) (ordered from right to left, i.e., \(I_{n_1+1} \) lies to the left of \(I_1 \)) such that

\[
\sum_{i=1}^{n_1+1} |f(U_{i})| > 2h(n_1+1).
\]

We can assume that \(I_{n_1+1} \) has nonempty interior. Thus \(x \notin I_{n_1} \). Now

\[
\sum_{i=1}^{n_1+1} |f(U_{i})| = \sum_{i=1}^{n_1+1} |f(U_{i})| - |f(U_{n_1+1})| > \sum_{i=1}^{n_1+1} -2M \\
> 2h(n_1+1) - h(n_1+1) = h(n_1+1) > h(n_1).
\]

Having chosen \(n_1, \ldots, n_{n_1-1} \), and \(I_1, \ldots, I_{n_1-1} \subseteq [x, b] \), ordered from right to left and \(x \notin I_{n_1-1} \), let \(I_{n_1} = [a_{n_1-1}, b_{n_1-1}] \) and \(\delta_2 = \min((a_{n_1-1} - x), 1/k) \), and choose \(n_k \) such that

\[
h(n_k+1) > 2M(n_k-1+1),
\]

and

\[
v(n_k+1, [x, x+\delta_2]) > (1+k)h(n_k+1).
\]

Therefore, there are intervals \(I_1, \ldots, I_{n_1} \subseteq [x, x+\delta_2] \), having nonempty interior and ordered from right to left, such that

\[
\sum_{i=1}^{n_1} |f(U_{i})| > (1+k)h(n_k+1).
\]

Let \(J_1 = I_1 \) for \(n_{k-1} < i < n_k \), then \(x \notin I_1 \) and

\[
\sum_{i=1}^{n_1} |f(U_{i})| > \sum_{i=1}^{n_{k-1}+1} |f(U_{i})| - \sum_{i=n_{k-1}+1}^{n_k} |f(U_{i})| \\
> (1+k)h(n_k+1) - 2M - 2Mn_{k-1} > (1+k)h(n_k+1) - h(n_k+1) = kh(n_k).
\]

Since \(\delta_k \to 0 \) as \(k \to \infty \), we have that \(f(U_i) \to 0 \) as \(i \to \infty \) and therefore \(\{ I_i \} \) can be rearranged into \(\{ I_i^* \} \) such that \(|f(U_i^*)| \leq 1 \) as \(n_k \to \infty \) and

\[
\sum_{i=1}^{n_k} |f(U_{i}^*)| \geq \sum_{i=1}^{n_k} |f(U_{i})| = O(h(n_k)).
\]

Throughout the rest of the paper, sequences \(\lambda = (\lambda_i) \) are assumed to satisfy the condition \(\lambda_i \to \infty \). For a sequence \(\{ a_i \} \) we will write \(a_{n_i} = a_i - a_{i-1} \). The following relation between classes \(V[h] \) and \(ABV \) is due to Avdispahić [1].

Theorem 4. If \(\sum h(\lambda) \delta(1/\lambda_i) < \infty \), then \(V[h] \subseteq ABV \).
Proof. We first observe that
\[h(n)/\lambda_n = h(n) \sum_{k=1}^{n} A(1/\lambda_k) \leq \sum_{k=1}^{n} k h(k) A(1/\lambda_k), \]
and therefore $h(n)/\lambda_n \to 0$ as $n \to \infty$. Now, for $f \in \mathcal{V}[h]$ and a collection $\{l_i\}$ we have
\[\sum_{i=1}^{n} f(l_i)/\lambda_{l_i} \leq \sum_{i=1}^{n} \sum_{k=1}^{l_i} [f(k) A(1/\lambda_k) + \sum_{k=1}^{l_i} f(k)/\lambda_k] \]
\[\leq CV(f)(\sum_{k=1}^{n} k h(k) A(1/\lambda_k) + h(n)/\lambda_n) \leq CV(f) \]
for some constant C and all n. ■

3. We now state the generalization of Perlman's result.

Theorem 5. $\mathcal{V}[h]$ is the intersection of all ABV classes satisfying
\[\sum_{k=1}^{n} h(k) A(1/\lambda_k) < \infty. \]

To prove this theorem we need the following results:

Lemma 1. Suppose $h, g \geq 0$ are nondecreasing concave functions of the positive integers. Then the function p defined by $p(n) = (h(n)g(n))^{1/2}$ is also nondecreasing and concave.

Proof. p is obviously increasing. If $0 \leq t \leq 1$ and $r = mn+(1-t)m$ is an integer, then by Hölder's inequality we have that
\[p(r) = (h(r)g(r))^{1/2} \geq (h(n)+(1-t)h(m))^{1/2}((g(n)+(1-t)g(m))^{1/2} \]
\[\geq t(h(n)g(n))^{1/2} + (1-t)(h(m)g(m))^{1/2} = tp(n) + (1-t)p(m). \]

A consequence of this lemma is

Theorem 6. No $\mathcal{V}[h]$ contains the class of regulated functions.

Proof. Let $p(n) = (nh(n))^{1/2}$, p is nondecreasing and concave by Lemma 1, and also $p(n) = o(n)$. Then the sequence defined by $b_n = p(n) - p(n-1)$ is decreasing and converges to zero. Consider the function f defined on $[a, b]$ by $f(x) = 0$,
\[f(x) = \sum_{i=1}^{k} (-1)^{i+1} b_i \] for $a+(b-a)(k+1) \leq x < a+(b-a)k$, $k = 1, 2, ...$

and $f(a) = \sum_{i=1}^{k} (-1)^{i+1} b_i$. Then f has only simple discontinuities and $\mathcal{V}(n, f, [a, b]) = p(n)$. But $p(n) = o(n)$ and therefore $f \notin \mathcal{V}[h]$.

Theorem 7. Suppose f has only simple discontinuities. If $f \notin \mathcal{V}[h]$, then $f \notin \mathcal{ABV}$ for some $A = \{\lambda_i\}$ satisfying (2).
and \(h(n)/\lambda_n < \varepsilon \) for \(n > M \). Then, for \(n > M \) we have
\[
\text{(3) } \sum_{i=1}^{n} 1/\lambda_i = \frac{h(n)}{n} \sum_{i=1}^{n} 1/\lambda_i = \frac{h(n)}{n} \sum_{n} 1/\lambda_i = 1 + I_2.
\]

\(I < \varepsilon \), and applying summation by parts

\[
II = \frac{h(n)}{n} \sum_{i=n}^{n-1} (i+1-N) \lambda_i + \frac{h(n)(n+1-N)}{n} \lambda_n\]

\[
\leq \sum_{i=n}^{n-1} \frac{h(i)}{n} \lambda_i + \frac{h(n)}{n} \lambda_n
\]

\[
\leq \sum_{i=1}^{n} h(i) \Delta(1/\lambda_i) + \varepsilon,
\]

since \(h(n)/n \leq h(i)/i \) for \(i \leq n \). Therefore the left side of (3) is less than \(3\varepsilon \) if \(n > M \), and the conclusion follows.

Theorem 8. Let \(A = \sum_{i=1}^{n} \lambda_i \), \(l = 1, 2, \ldots \) be a collection of sequences such that

\[
\sum_{i=1}^{n} h(i) \lambda_i(1/\lambda_i - 1/\lambda_{i+1}) < \infty \lambda_i \lambda_{i+1} \infty \text{ as } n \to \infty \text{ and } \sum_{i=1}^{n} 1/\lambda_i = \infty \text{ for all } l.
\]

Then there exists a function \(f \) in \(L^1(1/\lambda_i - 1/\lambda_{i+1}) \) for all \(l \) and all \(i \). Also, \(\gamma_l/\lambda_i \infty \) as \(n \to \infty \), and

\[
\sum_{i=1}^{n} h(i) \lambda_i(1/\lambda_i - 1/\lambda_{i+1}) < \infty \cdot
\]

By Lemma 2 and the fact that \(h(n)/|a(n)| \) there exists integers \(n = n_0, n_1, \ldots \) such that \(a_k = kh(n)/n_k = n_k - n_{k-1} \) is a decreasing sequence of \(k \) which converges to zero, \(n_k > n_{k-1} \), and

\[
\frac{h(n_k)}{n_k} \sum_{i=1}^{n_k} 1/\lambda_i \leq \frac{1}{k2^{k+1}},
\]

for \(k = 1, 2, \ldots \). Let \(b_i = a_i \) for \(n_{k-1} < i \leq n_k \). Clearly, \(b_i \downarrow 0 \) as \(i \to \infty \). Also

\[
\sum_{i=1}^{n_k} b_i \geq \sum_{i=n_{k-1}+1}^{n_k} a_i = k h(n_k).
\]

Hence \(\sum_{i=1}^{n_k} b_i = O(h(n)) \). But, since \(a_i < 2kh(n)/n_k \), and \(\gamma_l \geq \gamma_l/ \) for \(k \geq l \), it follows that

\[
\sum_{i=n_{k-1}+1}^{n_k} a_i \leq \sum_{i=n_{k-1}+1}^{n_k} 2kh(n)/n_k \sum_{i=n_{k-1}+1}^{n_k} 1/\lambda_i < \infty \cdot
\]

Thus \(\sum_{i=n_{k-1}+1}^{n_k} b_i \leq \infty \). Finally, by using the sequence \(\{b_i\} \) we define \(f \) as we did in the proof of Theorem 6, and the procedure above shows that \(f \) is contained in the intersection of all \(A BV \), \(l = 1, 2, \ldots \), but \(f \notin V[A] \).

Proof. For \(f \in ABV \) let

\[
\|f\|_A = [\|f(a)\| + V_A(f)]
\]

If \(f \in V[A] \), let

\[
\|f\|_A = [\|f(a)\| + V_A(f)]
\]

\(V_A \) and \(V_x \) as defined in §1. It is easy to see that \(ABV \) and \(V[A] \) are Banach spaces under the norms \(\|\|_A \) and \(\|\|_A \), respectively.

As an application of Theorem 5 we will prove an analogue of the well-known Helly's Theorem for the classes \(V[A] \).

Theorem 9. Let \(\{f_k\} \) be a sequence in \(V[A] \) such that \(\|f_k\|_A < M \) for some \(M \), \(k = 1, 2, \ldots \). Then there exists a subsequence \(\{f_{k_0}\} \) converging pointwise to some \(f \) in

\(V[A] \) with \(\|f\|_A < M \).

Proof. Theorem 5 guarantees the existence of a class \(ABV \) satisfying (2). For each collection \(\{f_i\} \) and each \(k \), by an argument similar to that given in the proof of Theorem 4, we have that

\[
\sum_{i=1}^{n_k} |f_i(a_k)|/|a_k| \leq CV_A(f_k)
\]

for some \(C > 0 \) independent of \(k \). Thus

\[
\|f\|_A = [\|f(a)\| + V_A(f)] \leq [\|f(a)\| + CV_A(f)] \leq (C+1)\|f\|_A \leq (C+1)M.
\]

By the analogue of Helly's Theorem for the classes \(ABV \) ([4], Theorem 5), there is a subsequence \(\{f_{k_0}\} \) converging pointwise to some \(f \). For a finite collection \(\{f_i\} \), consisting of \(n \) elements, we have

\[
\|f_{k_0}(a) + (\sum_{i=1}^{n_k} |f_i(a_k)|)/h(n) \|_A \leq \|f_{k_0}\|_A < M.
\]

By letting \(j \to \infty \), we observe that

\[
\left(\sum_{i=1}^{n_k} |f_i(a_k)|/h(n) \right) \leq M - \|f\|_A,
\]

and thus \(V_A(f) \leq M - \|f\|_A \), which is the same as \(\|f\|_A = M \).
References

DEPARTMENT OF MATHEMATICS
UNIVERSIDAD NACIONAL DE COLOMBIA
AA 566
Medellín, Colombia

Received 9 December 1986

Alphabetic index of Volumes 121—130
(1984—1988)

J. M. Aarts

U. Abraham

Z. Adamowicz
3. A generalization of the Schoenfield theorem on S_m sets, Vol. 123, 81–90.

V. N. Akis
1. Fixed point theorems and almost continuity, Vol. 121, 133–142.

R. J. Allen

K. Alster

8. On the class of all spaces of weight not greater than $ω_1$ whose Cartesian product with every Lindelöf space is Lindelöf, Vol. 129, 133–140.

B. Aniszczyk

S. A. Antonian

A. W. Apter

G. Bachman

1 — Fundamenta Mathematicae 130, 3