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be ¥V (—a) or b¢ V(—d). It turns out that (G, q, Q) is a quaternionic stru:cture in
the sense of [8] and its scheme coincides with S. By [1], CM holds for S, so Sis a qua-
ternionic scheme.
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A combinatorial analysis of functions provably recursive in 1Z,
by

Z. Ratajezyk (Warszawa)

Abstract. We use certain functionals of finite type to define an indicator for IX,. We show that
this indicator is equivalent in IZ’,.{tof an indicator of combinatorial character. The syntactical-combi--
natorial part is definitely separated from the model — theoretic part. Finally we obtain a simple
proof of the estimation of the growth for recursive functions provably total in IX,.

§ 1. Introduction. This paper is devoted to an application of a family of selec-
ted primitive recursive functionals to the investigation of provably recursive functions
in IZ,, where n > 1. We first define the spaces F,® on which the above-mentioned
functionals are defined Let Fyw = w; then we define by induction:

Fyp 0 = (Fro)fe
for kew.
We assume that I;: @ — o is the function of the immediate successor and we
define the subsequent functionals by

LAY o (P = (P48 L ()G

for all xew, f*eF,0,....f 'eF_ 0.

The functionals belonging to the space Fyo will be said to be of #ype k. In par-
ticular, for every k € w, k>1, the functional I, is of type k. '

The idea of using functionals like I,, ..., I, is not new. In [4] Paris presents,
referring to Aczél, a sketch of proof that for every o < w,,.; the existence of «-large
sets is provable in IZ,. That proof is based on the use of the above-mentioned
functionals. : : :

Unfortunately, a considerable difficulty in reading that proof arises from problems
connected with the formalization of the above functionals in arithmetic. Moreover,
all lemmas are sketched and it is not obvious that they can be formalized in IZ,.

In the present paper we only formalize functionals of type 1, strictly speaking’
only those of them which are formed of I, I,, ... by means of application and
superposition. In order to reach this objective we use a kind of miniaturization of all
functionals. This topic is discussed in § 2 and § 3.
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The essential part of the paper is § 4, where we show that for n>1 a formal

counterpart Y, of the function

Y,(a, b) = maxy (L) ... UD(@) <b
m
is an indicator in models for IZ, for segments satisfying IZ, (Theorem 4.16).

To prove that ¥, is an indicator we show that the sentence Va3b Y,(a,b)>c
implies ixt IZ, a certain simple combinatorial property-(a. weakening and modifica-
tion of FCP in [5], which is known as the Friedman-Pudldk principle), which can
easily be used to construct segments which are models for IZ,.

By Theorem 4.16 it follows, in a standard manner, that the family of functions
{I", (1) ... dy): me w}is a cofinal set in the class:Rec(I2,) — Theorem 4.17, where
Rec(IZ,) (more generally Rec(7") denotes the family of provably recursive functions
in ]E,, (in T).

> In’the last section.(§ 5) we present a short" 'proof of 'a' result connecting our
functlonaIs with Hardy s functions H,: &< gy ~— Theorem 5 3-and Lemma 5. 5
The follow' ) 'equahty hoIds .

n+1(fn) (Il) =

It 1mp11es, by Théorem 4.17, a subtle version of a well known theorem of
Wamer [71(§ 5, Corollary 5. 16) the hierarchy H,: o < tyyy i a coﬁnal set in the
élass’ Rec(IZ‘)

Moreover we give in § 5 some weaker and easier to prove versions of Lemmas 4. 9
and 4.12. Using those versions we ean show that the hierarchy H,: o < @, majorizes
the class Rec(ZZ,) (this is an essential part of Corollary 5.16), without caring about
fornializing any:notion in.I%; .»One of the profits that:can be derived from this paper
is a simple proof of Wainer’s theorem about a hierarchy of functions majorizing
Rec(iZ,) (the simplest form of this proof is. only sketched here). The classical proof-
theoretic proof of that théorem it Tather long and requires several intermediate steps:
cut-elimination, definition of this process in terms of: «-recursion. (or alternatively,
functumai interpretation [1] and reduction of primitive recursion for functionals to
a-récursion [6]) and bounding the class of functions < a),.ﬂ -recursive by Wamer 5
or. Hardy’s h1era,rchy 7.

-Consider.now the possﬂnhty of some generallzatlons Lemmas 49 and 4.12
are pzovahle in, ]X,,+ ¥ for n>1 One of the possible generalizations of Theorem 416
is the following: Let MEPA. I SeM and Vmew ME “Sis Wy -large” then there
exists-an. L=, M such that (I, S0 Q) k IZ,(R), where R is mterpreted as Snl, and
the set. SnI is coﬁnal in I

Thls follows from 4. 13 4. 15(2) and.the formalization of the proof of Theo-
tem 53 in PA.

Fmally, let. us compore the mformauon mcluded in Theorem 4‘16 W1th that
1p Corollary 56 Fr Theorem 416 we can deduce that every. f € Rec(IZ',.) is,

Hyp  for all m,neE®.

Iz, provably, bounded by some functlon of the foim T,,+ l(f,,) (I D= # Hms Where.
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me @, whilst. 5.6 only says that f is bounded by somé Hu.,. and not that: tlns fact is.

plevable in IZ,. From 5.6 ‘Wwe cannot’ dlrectly deduce 4.16. : T
Indeed, if a famlly of recursive functions { Juime w} is “such™as the famlly
1Hm,,,' me o} in 5.6, 1 e. 21 deﬁnable and f s f,, (“ o eventually dommates fm )

Rec (IZ ) iff the formula defining max f(@)<bi isan 111d1cator f01 segments ﬁatlsfymg
IZ,. in stmcLures elementarﬂy equlvalent to. N S

§ 2. Introductmn to the formahza,tlon of functmna]s In this Sectlon we descrlbe
a mmlatul 1zat1011 of. the spaces F,,co and the functionals I,, consisting in replacmg co
by a finite set S and 1m1fatmg those notions over such set.

In the next section we use this idea to get a formalization in 1z, where 7 > 1
of the functionals of type 1 Wthh are formed of I i Iy .. by means ‘of apphcatlorr_
and superposition, © -+ v . : o T

Because the counterpart of I, on [0, 1], i.e. I l'n [0, n}?, is a partial function for
n € o, for the miniaturization of F;w we take the-set F; S of all partial functions
from-S to S. There exist many possibilities of formalizing F; § and.all functionals of
finite type over F;§ in arithmetic, Tt will be convenient to base.our formahzauon
on an’ ‘interpretation. of a ce1ta1n fragment of set theory in IAo+exp

Let V,, denote the famlly of hereditarily finite sets, Let I'be the following standard .-
1nterpretat10n of the language L, of the model (V,,, €) in the language of arithmetic
extended by the exponential -function 2%, Ly v {2%}:.- : -

(xep =Fu, o<y (y = FQut+D+v A0 <2,

Since Mo+'expy “w"is isomorphic with the universe”, this interpretation is unsuit-
able for ‘our purpose. In order to define an improved interpretation, _COHSldC] the

1-1
functlon he ¥V, > o deﬁned as follows

’h(n) =2nfornewm, h(x) = 2'2”(’)‘*1_._12
yex. i, ¢ .

“for xe HF\CL_).

n
Let Ev = (2n: ne o}, let 4 ="{ ¥, 22" —1; ne o} (i.e. 4 is the set of “bad codes
i=0

of natural numbers”). It is easy to observe that meh[V,]n(&o~Ev) iff m ¢ Ev
and m¢ A and for every ki, if k, is an odd exponent in the decomposition of
(m+1)/2 then k, ¢ A and for every k,, if k, i an odd exponent in the decomposmon
of (ky+1)/2 then k, ¢ A4 and so on. :
_ Using this observation we construct a AO(Z") formula w’(x)[xe [ ] deﬁnmg
the set h[V ] in the model (@, <, +,2%0,1).
The relation x e’ y < h~(x) e h~1(y) for x, ye & is définable in the model
(0, <, +,+,2%0,1) by the following 4y(2%)-formula:

”"-y(x,y’é'Ev}\aé<y)"\"/ ((x Vew Ayd:'EVA(xGJ:;—‘)_)
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which we denote by (x € y)’. This formula determines a new interpretation J of the
language Lzp in LyU{2"}. The image of Lyp under J will be denoted by Lgg.

The following axioms of set theory are, in the interpreted form, provable in
Idq+exp: the axioms of equality, pair, sum, power set, separation for A,-formulas
and regularity for 4,-formulas. Denote by Zg the theory based on the above-men-
tioned axioms. Of course (Vy,€)EZg. The second natural model for Zj is
(Vm+m E). )

Let Ly {P} be the definitional extension of the language Lzy by the symbol P
denoting the power set function. Let 44(P) denote the class of formulas of the
language L5 {P} with the quantifiers bounded by the terms P*(x), where k€ o.
Let us mention that 44(2%) denotes the class of the formulas of the language L, v {27}

with quantifiers bounded by the terms 2 % with k-fold exponentiation, k € @. The

interpretation J transforms formulas of class 4,(P) into formulas of class Ao(29).

In the sequel we shall say that J is the natural interpretation of Lzp in LyU {27}
The following facts are true:

2.1. () Id,+exp k- ¢ = Vo, O F o,

(b) The function g(x) = %x establishes in IA,+exp an isomorphism between
(@, <’, +7,x”) and the universum of the theory I4,+exp.

(©) It is a theorem of IAy+exp that g maps in a one-one manner the family
of subsets <o in the sense of L} into the family of bounded codable sets of natural
numbers.

Since the theory Zg is interpretable in I4, +exp, every definition in Zg can be
regarded up to the interpretation J as a definition in Jdy+exp.

2.2. DEFINITION (Z7). Let S be 2 set So. Let FoS§ =S, F;§= U §*. For
AsS

n>2 the sets F,S are defined by induction: F,S = (F,_yS)™*, just as the sets
F,o. Next, let I3(q) denote the immediate successor of @ in § with respect to the
order < on o. The functional I{ is defined for a€ S\{max S}, and for n>2 the
functionals I5: F,_;S - F,_; S are defined by
B (f) = () (D)

for x€8S, fle F,S,...f"" Y €F,_,S, where .

J® = g@e(F@LAgRL AL =g@VI@TVe()T),
F @)} —f(x) defined, f(x)T —f(x) undefined.

Remark. This definition is, of course, correct in set theory, i.e. it is. correct
in the model (V,,o,€). It is also correct in the model (¥, €). The proofs of its

correctness in these models can be based on the axioms of Zy . Hence the definition .

is' correct in J4,+exp.
Moreover, observe that for arbitrary 1<m,new we have IN{,-y) (I
= I ) - dD)- -
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To analyse the properties of the functions (I3 Y"(I2-1) ... (IY) we shall need
terms for all funcdonals that can be obtained from I3, ..., IS through application
and superposition.

2.3. DEFINITION. The symbols T, ..., Ty denote 4,-definable classes for which
the following conditions of forming terms are provable in Zg +Z-Ind:

(D) LeT fori=1,..,n

@) Vs, t (s,teT} > (sot)eT}) fori=1,..,n,

(3) Vs, t (seTih ateT »s(t)eT}) for i=1,.,n-1,

(4) te T! — t is formed in a finite number of steps as a result of applying
);, (2); where i =1,...,n and (3); where i =1,.. ,n—1.

¥,-Ind denotes mathematical induction for Z;-formulas in the language Lyg.

2.4. Remark. (a) Since the interpretation J maps theorems of the theory
Zy +Z;-Ind to theorems of the theory IZ;, the above definition is also correct
in IZ,.

(b) It can be proved in Zy +Z,-Ind that the classes 77, ..., T, are the smallest
among the 4,-definable classes satisfying (1), (2) and (3)-

Below, we shall denote by T the class T7u... U7y and by FS the sum
F,Su..UF,S.

2.5. DEFINITION (Zg +E,-Ind). The value of the term £ € T in the model FS, t°
is defined by the following inductive conditions:

() Fori=1,..,mn I is a functional defined in 2.2,
Q) (tyot)° =150t for t;, 1, T}, 1<i<n, Sco,
(3) t,(ts)° = 55 for t; € Tpyy, 1, €T1, 1<n~1,5c 0.

Tt can be proved that there is a mapping teT, SSo + #5 of class 4, in the
theory Zg -+ 24-Ind for which conditions (1), (2), (3) are provable in Zg +Z;-Ind.
To this end we first construct a mapping te T,, SS® + t5 of class 4 satisfying (1)
and (2) for i = n and then a mapping t€ T, Sco 5 of class 4, for which
conditions (1), (2), (3) are provable for i = n—1, etc.

§ 3. Formalization of functionals 7 of type 1. The aim of this section is to obtain
a formalization of the functionals #, where 7 € T3, in the theory IZ, (Lemma 3.9)
using the miniaturization 5 of those functionals described in §2.

In the first part of this section we show that the miniaturization in question is
adequate (Theorem 3.1) and has good properties (Theorem 3.2).

Using Lemma 3.3 on which Theorem 3.2 is founded we also prove that functions
definable by “more complicated terms” are growing faster (Corollary 3.6), whence
we infer a result which is simple but important for further combinatorial conside-
rations (Lemma 3.8).
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3.1. Turorem (adequacy of the miniaturization). For every n, 1 <new, and
for every te Ty ‘
%) =bet"Na) =b foralabeo.

For S8, fieF S, feFS, let fis,fz ‘denote the relation
fi = f20(Sy x S,). Theorem 3.1 is a particular case of the next theorem.

3.2. THEOREM (good properties of the miniaturiiation). Let1<neo.

() VSco VteT! Va,be S 7P g 7%,

(2) The sentence in (1) is provable in IX;.

(3) The sentences: Y SeFin Va,beS I'(l,-y) ... ()N <, LXT,—y) ... (I)
are provable in IA,+exp for all m & w, where Fin denotes the class of all finite subsets
of w. ’

Since the structure (V. o, €) is a model for Zy +4-Ind, in order to prove (1) it
is sufficient to prove it within the system Zg +Z;-Ind. Hence follows also (2).

In fact, (1) is provable in Zg, but we shall not need this.

Proof. Observe that the first part of the proof of (1) in Z; +Z;-Ind given
below runs within the system Zg ; this will permit us to deduce (3).

Part 1 (Zy). Given a set SS o and a, be S, the set Sn[a, b] is an interval
in S. Further, denote S by S, and the resulting interval in S, by S;. We define:

fiCifoefie IS ALEFS A fL S, fan Vx(fz(x)l - ngz(x))
fiSimaefieFiSiA2EF 15 A
A Vg1,gz(g1 (=P "’fl(%)gi.fz(gz)), fori=1,..,n-1.

Observe that if f,S/2,0:S192 then (fieogy) =1(f2092). Moreover,
s Ellfz. The following facts are also true: i

() f1 '—C—jf; AG1Eig2 = (fieg)s(fae g2)

() Ifre;If for j=1,..,n. ‘ :

Instead of proving these facts directly it will be more advantageous to formulate
and prove in Zg a general lemma which implies them. First note that (i) and (i)

m

imply (I )5t <4 ((I™. )2, whence in view of (if) and the definition of S,y 45 .» €
I AG) o () S B o (T) o (1) |
Hence (3) will be proved when we prove the following:

3.3. LeMMA (Zg). For arbitrary sets Sy, S, such that Sy S Sy, if rys o, by i
a sequence of relations such. that for all fi, f5, g1, 92
) ry €F S, X F S Afirifa Agerigs = (frog)ri(fae g2
D fitisr oo f1€Fip1S1 A€ FiqSa A
V91gz(g1”agz ‘*f1(g1)’ifz(92)) Jori=1,.,n~1,"
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(3 freF1 Sy nf€F S5 A ' ' S
AVae 5139192(9‘1"1192_.’}.1’1(‘1) = g4(a) Af2(a) = 92(4))‘ﬁf11'1f2 s

then v ‘ '
) fitife Agir;g2 = (fi o g)7(f20 g2) and
(5) I 152 for j=2,3,.,n - . _
(1) and (2) are of course satisfied for the relations =y, .., c,. Let f,e F;5;
for i = 1,2. M for aeS, there are g, g, such that g; S;g,,f1(a) = gi(a).f-(a)
~ g,(a) then fi(a) = g,(a), under the condition that fi(@) | or fy(@) € §y. Therefore,
if the assumption of (3) is true, then f; S f;. Thus (3) is satisfied so Lemma 3.3
indeed implies the validity' of (i) and (ii). :

Probf of Lemma 3.3.."We apply induction with respect tokj, 1 <j<(z. For
j=1, (4) coincides with (1). Assume therefore that (4) is true for 1 <j<n Let
Sfirr1/2 and 91701925 of course fy o gy € Fy41S1, o092 € Fpuy 8o

. Let hy, h, be such that s r;h,. Thus, by (2), we have g1(hy) 7;95(hy), whence,
also by (2), f1(g1(/11))"jfz(gzth2))- Therefore (3 © g;) (1) 7;(f2 © 92)(h2), and wi
conclude by (2) that (f; ¢ g1)rse1(f2 2 92)- C

(5) Suppose that 2<j<n. Take an arbitrary sequence of pairs .

(f1s 915 s (ff—ls gi-1)

such that firigs for k=1, .., j—1. |
Let ae S;. Thus, by (4), fjajil"j—19§t}~ Hence, by (2), we have

o) o (719532 - @0 -

Denote thebfunction on the left of ry by f;, angi the one on the right by g;. By
the definition of ‘the functionals If, IS we havé I}'e F;Sy, I € F; S, and

B o) o (F)@ = 5@, I65-0 - @)@ = 6@

This implies by (3) that L fy-1) - (fO)rs If”(gj‘_‘lv)_... (9)- Hence, by @),
it is easy to show by induction with respect to £ =1,:., j—1 that- ) S

) - (G- - (@)

for any fi, gk, s Jj~1, 951 satisfying the assumption. Thuss’ By sf,-_rl)rj_ilf’(gj:_lj
for every pair fj;, ¢;-1 such that f;_47;-;g;-1. Hence IPrIe e

Remark. The proof of the lemma will not change if we weaken the assumption
by ‘supposing that instead of the sets Fy Sy, Fy Sz, FaSy, F253, ..., €iC. 'We are given
arbitrary sets Gy Sy, G182, G2 S, G252, -, €tC- contained, with the order preserved,
in thé preceding sets, closed under superposition‘ and such -that I} e G,S; for
i=1,2,.,mJj=1,2 and fe G 1S;A g€ G,S; implies f(g) € G;S;.

Part 2 of the proof of Theorem 3.2; carried over in Zg +Z-Ind; proof of (1)
and (2). R
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For j =1, .., n we have the equivalences

5 gjtsz‘:’afufz (fi=tAfy =12 Af; s )+
SV filfi=tAf, =12 f <, ).

Since the relations {(f, ¢, S): fe FSAteT" ASS w0}, Sy, ..., S, are 4;-definable
(cf. Def. 2.5), the classes 4; = {tre T: ™ =1} are 4,-definable.

By (i), (ii) and the definition of the relations <y, ..., &, we obtain:

(a) 4; is closed under superposition,

®) edjforj=1,..,n

(© sedjnted; > s(t)ed; for j=1,..,

Hence, by Remark 2.4(b), 4, = 77,

S, o VieT§ (S, is an interval in S, —
5ot 4S5 M

n—1.
Ayy =Ty y, ..., 4y = T]. Thus VS,
5,15, ie. VScow View Va, be S

In the sequel we shall need, loosely speaking, the following fact: if a term t,
is “more complicated” than t,, then Ya € S #5(a) <5 (a). To obtain this we define
a relation of majorization <y in F,S and extend it to relations <, on some func-
tionals belonging to F;S, where i = 2, 3, ... Then we show our result by induction
for terms of type n,n—1, ..., 1.

3.4. DEFINITION (Z5). If f, g are partial, then f(x) < g(y) means that g(y)}

implies f(x) ] Af(x)<g(p). For every S<w we define:
S = {feF,S: fincreasing A Vx f{x) | »xef(x)},

f<igef,9e G SAYxe S f(x)<g(x) and further by induction:

feGi S feF. SAVgeGS(Vx<minS)g™ ' <, f(g) A

AVg1, 9291 <92 ""f{g1)‘<if(£/2)) ,

T<inig=f0eGu SAYF, g,(fi<ig0 = F(f) <;9(g1) for 1,2,..

Immediately from the definition it follows that
Ly FfeGuiS 1<y f.

Itis also obvious that the relation < is transitive in Zy . Assume that <, is transitive
in Zg. We shall prove the transitivity of <j.,. Let I g, h be such that
J<i419,9<i41h Take fy, g, such that f; <,g,. Hence f1eG)S and f; <, f;.
By the definition of <;,; we have f(f3)<;9(f:) and g(f1) <h(g,), whence by

the inductive assumption f(f;) <;4(g,). This shows that f<,, (k. Hence we Lave
shown that for each i, Zg F “ <, is transitive”.

3.5. LeMMA (Zg) (properties of the majorization). For every S and the relu-
tions <; corresponding to it:

D figi419. 712,95 = fi(£2) <.:94(92),
() feGii1SAgeGiS — g™ <,/ (g) for each x <mins§,

icm
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(3) 9GS »Vaew (Vi) gag™t < g%t

(4)f1\i91/\f2 <ig2— f1of2 <0109z,

%) IF< 15,

6) Z5 +Z,;-Ind F Ve TIVS S o “ is increasing”.

Proof. (1) and (2) are explicitly contained in the definition of <;,;. Since
for every function geG;S and x<a we have g"<,¢°"", in the proof of (3)
we can assume that i>2.

Let g € G;S, x < a. Take fy, f, such that f; <;_yf5. Thus by (1) and the re-
flexivity of <; we have ,9?+1(f1) <i—19x+1(f2)-‘ By (), Vfe 618 f<;-19(f)
Since g(f,) € Gi-1S it follows by 4dy-induction that

9(f) 1182 (fD) Simg o Sim1g™ (D) -

By the transitivity of <;—y, 67" *(f5) <1-14°7(f2). Hence AR CARFIRY il 0298
and we conclude that g*** <,;g"*"

To prove (4) and (5) we first prove in Zg that G,. S is closed under super-
position and that I5.,eG,, 1S where n is an arbitrary natural number.

Assume that fy, f» € G,+1S. Let g € G, S, x <min$S. To prove thatf; o f; € G, 1S
it is enough to verify that g*** <,( fy = f2)(9). We have g* "' <, fo(9) and f5(9) € G, S.
Similarly, /2(g) snfl(fz(g)) Hence g™+ <u(f; °f2)(9)-

To prove that e G, 4 S it “suffices  to -show that g
g€ G,S and that g5 <,9, 1mP1135 +1(g1) ohax1(92)-

To see this let g € G, S and g <,g2 and take a sequence of pairs of functions
such that f; <1015 > fum1 Sn-1Gn-1- By (3), g5t g, g" " for ae S. Thus we

rnmS+1

\nlml' l(g) for

have Vae Sg™™S* 1 (£,_0) o (f) <19°*1(@a-1) - (91). Consequently, for every
aes, ‘

gmmStLA D) W (@], +1(9)(9n— D (g)@) .
Similarly we obtain

Li(gD (a1 (f1)(¢) ST 100 (Gn-1) - (g0 (@) .

Using (3) we verlfy, that the function I, () (gn~1) :-- (g1)(@) is increasing and simi-
latly for g}, g, instead of g. We thus obtain g"nStY < IS () and Ifa(gy)
< Iul\tllcffezgver it is easy to verify that the relation < satlsﬁes ‘all the assu.mptxons
of Lemma 3.3. Thus the sets GyS,..., GiS, ... and the relations <y, ..., $y5 oo
satisfy all the assumptions of Lemma 3.3 including the remark. Hence we
have shown (4) and (5).

(6) follows from (4) and (5). M

Now we are ready to show what we have announced, namely that functions
defined by more complicated terms are growing faster.
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3.6. COROLLARY (Z;). Assume that 3<new and ae w.
(1) For every Sco such that minSz1

(1) o UNBADY < I Eimg) o (LT
(2) For every Scw and also for n = 1,2

By—) o T+ 1< I 2 ) o (1)

By 3.53) .
[(f T )T Si-1[(f(11)(ft-1))mms+]]S . :
By 3.5(2 and 5) the last functional is <;_,J; (f(]i)(llpi)). By 3.5 (2 and 1),
. Hf@@-0f <ima SIS WE-0) -
Hence by the transitivity of <;_q,

(fULT- )T S (F@O)-0 -

Since
[(l,:"(],,_ 1))].9 < - 1 I:H-I(In— I)S ?

we infer from the above that

) o WPA < I Tyg) o T
Denote I/ (I, ) ... (I,)° by g. ‘
We have I3(I)°<,L(I)UI)° <, g(I)°. Thus g(BU)%) <,g%I5) and this
completes the proof. W .

Now we proceed to the proof of the announced simple combinatorial result.
In the theory Z, we define for S w -

g{a) = min2°<bh for ae S, §' = {g"(minS): new}.
bes c

Thus S’ S zmd‘ .‘v’q, beS' (a<b —2°<b). Of course, minS = minS’. In some
sense, the set S can be regarded as rare. ‘ ’

First, we. define f; < f; < fieF, 8 Af,eFISAfi,f, are increasing A
Vae S'(fi(@) <f(@). : R

3.7. Remark. If f; <, f;, then fo(minS) | implies f;(minS) | .

VsVe vcrifysthat I < (L) Let ae S". For every be S, if 1,(7,)°(b) ), *hen
L) ,(b)s= (I MB)>2b+1>2b. Thus, if I2(I)%a)}, then 1)@
?UZ(]‘) )" }@) > 2% q, i.e., I}(1)%(a) > 2° Therefore I3(1,)%(d) > ¢ (a) whence:
B@<I(,) (a). W o :

-. . Next; we define.

fifiihofie FuyS' A e FioiSaVay, g2 (05 Sigs (9, <, 12(g).

Proof. We only prove (1). Assume that minS>1. Let 2<i<n, fe (],-,1.15.”
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fori = 1,2, .. It is easy to verify that the relations <;, <3, ... satisfy the assump-
tions of Lemma 3.3.. o ,
Hence f1 §tf2 Ag1<14d2 implies thaF ._,_f1 of3<:1g1°9; and I} <, I for
i=1,2,.. )
- Since I§ <4 I5(I))°, we infer from the above that for 7> 1

a8 ol ) oI s @) o () (IRAD)S
This, together with 3.6(1) and 3.7, implies the announced lemma:
3.8, LomMa (Zg). Let n> 1. For every SSo, if minS =1, then
) o () minS) | B8 o (1) (minS) | . W

This result says there exists a sufficiently large and rare set S'=S if § is.
sufficiently large. : ; B
.. Assume that ¢ is a term of type 1: By 3.1, F = {(a, b): #***(a) = b}. Since the
image of the formula ™% (g) = b under the interpretation Jis of class Xy, ¥ is
a recursive function. The following lemma shows that for t € T4+, n> 0, the func-
tion 7 is provably recursive in IZ,. It also shows that (#1*"(a) = b)” is a formalization

of . : S
1,9, LemMA. Let n> 0, For every te I3+t
ON I3, Ya b %¥(a) = b.
 Proof. Let A,(1):=teTi*! AVadb f*Ma) =b. By 2.5 the formula
A4(t) is of class IT, in IZ,. We define ; ;
Ay = Vi (4 > Afs@)) Ase T for i=1,.,n=1.
Let
- Bi={teTM  IL,F A()y fori=1,...n,
Byyy = {seT,',’J:i'i Vte B,s(t)e B,}.

The lémma is of Gourse equivalent to the equality B; = 73" *. To prove this equality
it suffices to show, in view of the definition of T7™*, that- :
(1) se B, 'AteB > s(t)eB fori=1,.,m
(2) s,teB; > (sot)e By fori=1,., n+l,
(3) LeB, for i=1,..,n+1. : " , ‘
If i<n and s € By, +€ By, then-IZ,t A; () A A(z): Thus =+ A{(s(i));.
i.e. §(t) e B,. If i = n, then (1) results directly from the definition of Byyy. = **
@) Case (a). 1= 1. Assume that &, z€ By, We carry out btlhe proof in I)J,_!_."
Leét o be an arbitrary natural number, b; a number such that 1""(g) = by, and b;
a number such that s®%b,) = by. By 3.3(1), #**"(a) = b, and s (b,) = by
Hence (s o 1)**(a) = b,. Thus (s )€ B;. L
. Case (b). Let 1 <i<n and assume that §;, 8, € By, i€ IZ, F A(s)) A Ai(sa).
It is easy to show that IZ, F V|4, -1 (1) = 4;4 (sl(sz(t)))]. Ifi=n+l, 81,526 Bis1s
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t€ B,, then s,(s,(2)) € B,, i.e. I, F 4,(s;(s2(2))). It suffices to show that in the above
formulas the term s,(s,(¢)) can be replaced by (s, ¢ 5,) (£), i.e. it suffices to show that
12, Ai(sy(52(0))) > Ai((s1 08)(8)) for i=1,..,m.

We carry out the proof in IZ,. Let Ai(sl(sz(t))). Assume that #;;, ..., #; are
terms such that 4;_y(t;—), ..., 41(t;). Therefore Ay (sy(sy(1))(ti-1) ... (¢1)). Take
any a. Hence there exists a b such that sy(s,(t))(#;,—q) .. (¢)"(a) = b. Since
53(52(O)" 2 (540 5) ()", we have Ay((sy °5)(#)(ti~1) .. (t,)), Which proves
that A4{(s, o 5,) ().

(3) It suffices to prove that

I, F ALY A o A Ay(ty) > Ay(T44(8) ... (20)
for i =1,..,n We first prove that IZ, + 4,(s) - V¢ 4,(s°*%),

Case (o): i = 1. We carry out the proof in IZ;.

Let se 77" be a term such that 4,(s). The formula Ve 4,(s°*?) is equivalent
to Ya Ve 36 (**1)*)q) = b. Fix a. From the proof of (2) we obtain
Ay(s) ATb (T H(g) = b - Fb (s°* 2P} (g) = b, and the proof is completed
by Z;-induction.

Case (B): 1 <i<n. Observe that 4;.., is of class IT, in IZ,. We carry out the
proof in IZ,. .

Assume that 4,(s). To prove A,(s°t?) it suffices to show that V¢ (A,_i(t) -
> Ay (1)),

Take a ¢ such that 4;_,(z). The initial step and the inductive step in proving
Ve d;_y(s"* () result from the implication A;_y(f) — A;—,(s(t,)). Thus, by
IT,-induction, Ve A;_,(s°**(¢)). This completes the proof because IT,-induction
follows from Z,-induction.

Completion of the proof of (3). We carry out the proof in IZ,. Assume that
A1) A ... AAy(2)). Take any a. Thus 4,(#7**), and so 4,(¢* (2, ) ... (1,)). Conse-
quenty, 3b £ (t;-1) ... (1)'*"(@) = b, which proves that A,(Z,.(z)... (1)) W

§ 4. Combinatorial properties and models of arithmetic. One of main ainis of this
section is to prove a theorem stating that a formal equivalent Y,(a, b) of the function

Y(a,b) = maxIly,(d,) .. (1)@ <b
m
is in models for IZ, an indicator for segments satisfyng 1Z,, where n>0 (Theorem
4.16).
To do this we define a combinatorial property FCP/(S) (Definition 4.11) basing
on a property of approximation (Definition 4.1), W use a combinatorial property
> (1;,1,) as a tool in the study of the properties of FCPJ(S) (Definition 4.4).

. o f
Basing on the central Lemma 4.9 about the property t -+ (¢4, t,) we derive

a connection between the function ¥,(a,b) and the property FCP([a, b])
(Lemma 4.13),
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Since the condition: M k FCPY([a, b]) and ¢ > w is sufficient for the existence
of an initial cut <, M such that 7k IZ, (Lemma 4.15), 4.16 immediately follows,
as we show, from 4.13 and 4.9. .

4.1. DEFINITION - (I4,-+exp). The pair (Sy,S,) is an approximation to f if
(1) Sy, S, are codable restricted subsets of w (S, S, &7 @’, i.e. 8,8, € Fin),
(2) fis a codable function with a bounded domain included in ». We write
briefly fe <,
(3) maxS, = minS, and for every ae S;—{maxS;} we have
Vx<a-1[f(x)} - (f(x) <@V f(x) > maxS,)].
S is an approximation to f if, as above, S, f satisfy (1), (2) and
VaeS Yx<a—1 [f(®) |- (f() <I’@V f(x) > maxS)].

4.2. Fact (Id,+exp). If the pairs (S;, Sa), (S, Sy) are appro:sima?ions for
few<® and §3U S, S S, then the pair (S; U Ss; Sq) is also an approximation for f.

4.3, DEFINITION (IZ,). Let te 77, n>0. We say that a finite se_t S of natural
numbers is z-Jarge if t5(minS) | (this notion corresponds to the notion of a-large
set in [2]). .

The pair (Sy,S,) is (fy, t)-large iff S is ty-large, §; is t,-large and
max §; = minS,.

I .

4.4, DEFINITION (IE,). For t,1,,1,€ T} the symbol f— (#;, t,) denotes that

for every t-large set S there exists a (¢, 2,)-large pair (S}, S) which is an approxi-
mation to f such that §;US, €8, minS; = mins.

The definition directly implies the following fact.

T
4.5. Fact (IZ,). If t > (#;,1,) and

S-
VSeFin [ =t atf=tfati =171,

!
then t' — (t1, t3). P
In Lemmas 4.6-4.9, we present results related to the property 7 — (s, ta)-

i
4.6. Lemma (E). If t, 15,15, 1, ta€ T3, 5>0, and also t— (ty,1;) and

f S
ty = (t3, 1a), then t = ((t3 o 1), t4):

Proof. Assume that ¢ —f¢ (1, 15), 1z —{» (t3,2,) and S is F-lm:ge. Consequently,
there exists a (¢4, 1,)=large pair (Sy, Sz) which is an appromma'fxon to f such tha't
min S, = minS, and S3U Sy € Sz By 4.2 the pair (,S.‘1 U Sy, S4)' is also.an approE-
mation to f. Moreover, min{(S; U Ss) = minS, = minS. Thus it .remams to verSy
that S, US; is (45 © t,)-large. Write @ = min Sy, b = maxS; =minS,, ¢ = ma; 3

Since S, is #;-large, i.e. 11%(a) | and (S;US3)nla, bl = Sy, by 3.2(1) we have
1§4(a) = £7*V5%(g) <maxS, = b. . : .
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In view of °(B)} and (S;uS;)N[b,c] = S;. we have 15:953(p) | . Since
154(d) < b, we infer by 3.5(6) that t5V™(1§(@)} . Consequently, 13*“%(7***(@) |,

and so S1 U Sy is (23 0ty)-large. W

We wish to prove that if § is sufficiently large and fe w™® then there exists
a sufficiently large S’ < § which is an approximation to f. The first step is the
following: :

4.7. LEMMA (121) For every teTt, n>0, the following combinatorial property
is true: ‘

wa
Vfew®® L(t) -,
Proof. Take an fg’(t)-lérge set S. Denote minS by a,. Thus (DR CAN

Let a; = (1%Y(a) for j=1, .., a5+1. Hence t(a) = a;; fot j=0,1,...
which implies by 3.5(6) that 2, <ay ..

» Gos
+ < @y, +1. The function f assumes for x < a1

at most a, — 1 values, and so by the plgeon-hole prmmple there exists a j, 1 <y s dy,

such that there is no value of f in [a;,, Gjy+1)-

Let S, = {ay, am, Sy = [y, aj,+1] 0 S. Thus Ifap) | ‘and £5%(a,) | by 3.2(1)
inyview of 2 (ajo) =.,+1+ The pair (Sl, Sp).is thus (7y, t)-large, minS = minSy
and, for every x<ay—1, f(x)<g;, or f(x)>a,4+s = maxs, Consequently,
(S1. S,) is-an approximation to f.- l :

To make the second step we need a mapping & from T;U ..
TV . UTy defined as follows, where ¢* denote A(z):

uTy into

" 4.8 DERINITION. The term ¢* is defined by the following inductive condmons v

WL, =1 fori=1,.,n-1,

Q) (ty o t)* = (13 0 t7) for t,, 1, € T3,

(3) (£, o 1,)* = (tf o t3) for t,,t, € TF where 2<i<n,

@) t(s)* = t¥(s%) fOl sS€ T,", te T,+1, 2<gi<n.

Our main and ﬁnal result concermng ‘the property ¢ —» (tl, t,) is the following:

; 49. Lemma (IZ,, where n>0).

VieT;"! VreTi™ Ve o™t (tl)—+(t ).

.....

Proof. We define:
A ST AVL e TV e (1) D (% 1),
A 1(S) = V1 (A(0) > Afs@))  for i=2,..,m.

It is easy to observe that Ai+1 is a formula of class 1T, for i = 1,
all the formulas under cons:deratlon are of class II

CLAM 1. Ay () A A(r) > A;{(s = ).

., n. Thus
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Lfet A(s), A5(2). Take an arbitrary ¢, € T and an arbitrary f e 0= Therefore
7
t(#y) = (t*, 1,), and since #(z;) e Ty, we also have s(1(z,)) = (s*, t(z))). By'4.6 and
= ((t*o5%),1,). Since

Vs (S is s(z(z))-large < S is (s o )(2,)-large)

the last two corollaries we have s(2(t,))

: s
and (5o 1)* = (t* o 5*), we have (so1)(ty) > ((s 0 £)*, #). Hence 4,((s < 1)).
CLAM 2. Ay () A Ayy(t) > Apyy((s01)) for i=2,..,n

Take an arbitrary ¢, such that 4,(¢,). Then 4(¢(¢)) and for arbitrary #,4, ..., f;
such that A;_((t;1), ..., 42(f2); 1, € T3™1 and an arbitrary fe o® we have

st 1) . (1) (2t i’ (S(t(ti))(ti—l) e (B)%, t1) .
By 4.5 and the definition of * we obtain

(s01)(2) -
which proves that A, ((s < 7)).

) S (o D) o (1) 1),

CLAM 3. Apy1(8) A A4,(t) > Afs()) for i=2,3,...,n
This results immediately from the definition of the formulas 4;.
CLAIM 4, Agy (T;.) for i=1,..,n

For i = 1, Claim 4 comc1des with 4.7. Thus we can assume that i> 2. Take
arbxtrary fistiogs ey 1y such that Ayt), .., dy(t;), 1, €T, fe@™®, and an
arbitrary S which is 1y (z)) ... (tz)(tl)-large. Let a = minS. By Claims 1 and 2 we
deduce from A(t;), by II,-induction, that A(rfFY). Hence

(59 tr) o () D (7 ) e 12
() () (@) = ’i“l(tt—z)
1 (tag)

Thus there exists a (£°**(t11) ... (1), t;)-large pair (Sy, S3) which is an approxi-
mation to f and minS; = minS = a and S, US; = 8. Since min S, = a, the set Sy
is I_((t9Y@E. ) ... (t)-large, i.e. Ii(#;) ... (t5)*-large. We have shown that for arbi-

Hrary 1,, fi-q, s I3, ty, f 8 above we have I,y (£) ... (tz)(ti) i (Iiﬂ'(ti) ()% 1)
Hence A;41(7i+1)-

Using Claims 1-4 we now prove by II, -mducuon that Vee TN L t€ 4,1
which implies by II,-induction that Yte T, ** ¢ € 4,, etc. In the n-th step we show
that Vie Th*! te A,, and this completes the proof. M

4 — Fundamenta Mathematicae 130, 3

Since I, () .. (1) (t)(a) the set S is

(t)(t,)-large .
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By 3.6Q2) o+exp FIiwy (). I @1 > LT . 0D (@) 1. Thus
the formula

Y@, b,0): L) . ()@ Ae=0v
L) (D)@ L A LT HIARNOALAL NI

defines in Jd,+exp a certain mapping, denoted in the sequel by ¥,(«, b), which by
Theorem 3.1 can be regarded as a formal counterpart of the function Y, (, b), recalled
at the beginning of this section. Before we prove that Y,(a, b) is an indicator
(Theorem 4.16) let us first check that it has some of the required properties.

4.10. LemMA. Let n> 0.

() Idg+exp by < b — Y,(a, b)) < Y(a, b),

) IZ,-Va3b Y,(a,b)=>m for all me o,

Q) If I<c. M and I, M are models for IZ,, then

Va,be M (aeI<b — ¥ (a.b)> w).

Proof. (1) We work in Id,+exp. Let b, <b and ¢ = Y,(a, b;)>0. Thus
Ly (1)@ | . By 3.2(1) we also have Iyy(Z,) ... (™" (@)} . Hence
Y(a,b)>c.

(2) For me w let t,, denote the term. I} (7)) ... (Zy). Fix m > 0. By Lemma 3.9,
IZ, b Va3b t©»™a) = b. Thus it suffices to observe that IS, t5a) = b~
- Y(a,0)zm.

(3) Assumethat Mk IZ,, I< M, Ik IZ,. Take arbitrary a, b such that ae I <b.
By (2) Vme o 3b, € IY] (a, b;) > m. Since the formula Y,(x,y) = z is of class
Aq(exp), it is absolute and hence Vme o by <b YM(a, b)) = m. By (1) we thus
have YM(z,b)>w. W

Below we give a deﬁnitiop of certain weaker variants of the combinatorial
Property FCP (finite combinatorial principle) studied by Smoryfiski in [5] whose
independence from PA was discovered by Paris and Pudldk. The variants considered

here are applicable in constructing segments which are models for 1Z,. Assume that
te T3 where n>1.

4.11. DEFINITION (Id,+exp). The symbol FCP(S) denotes that S is ¢-large
and Ye,de S (c<d- 2°<d). By FCPJ(S) where j> 1 we denote the following
property of the finite set S:

Vfleco“’ 3S1 cS.. Vf}+1ew<“’3SH 1 QS‘...V]‘_} HSJESJ.‘l

J
[f‘ké\]. Sy is an approximation to f;” A “S;is t-large” A Ve, de Sic<d — 2° <d)].
For t = Iy, §; is t-large <> |S)| > m.

Instead of FCP/(S) we write in this case FCPi(S). The definition of FCP{(S)

and. Lemma: 4.9 immediately imply that the following implication is provable for
every j>0. : ‘
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412. LemMA (IZ,). Vit e T5* {(BCP);,(S) - FCPL 1(5)). W
We have the following connection between Y,(a, b) and FCPi([a, b]).
4,13, LEMMA. For arbitrary 1l<m,neon v o
IZ, FYa=2Vbl Y, (a, b) > m+2 —» FCPy([a, b))
Proof. We work in IZ,. Let Y,,(d, by>m+2, a=2. Thus

BYEE) - @)

For 0<j<n, 1<k <m+2, let ¢§ denote the term Ify () ... (I1); we canthus write
that [a, b] is £ Z-large. By Lemma 3.8 there exists a set §<[a, b] such that
Ve,de Sle<d~ 2°<d]and £;5,(minS) | . Hence S has the combinatorial property

0
FCP, (S). Let 1<j<n. Since there exists a e T; such that 7., = ¢ (I,) where

o
¢ — 7, we infer by 412 that VS'[FCPy (S") » FCPy ()] And so, on
account of the initial condition FCP:;m [(S), we obtain FCP:Y.(S), i.e.‘ FCPL(S).
It follows that also FCPp([a, b]). B
4.14. Remark. Essentially, we have prow)éd that for‘ arbitrary 1<m,new
IZ, + VS & Fin(I (L) -.. 1) (minS) | AminS>2 - FCPL(S)).-
We now prove a key lemma on the existence of initial segments for IE,,.

4.15. LEMMA. Assume that M E Idy-+exp and that M is nonstandard.

(1) For arbitrary a,be M such that for some ¢> w, M EFCPYla, b)), there
exists an I M such that aeI<b and IF 12, . .

(2) For every Xe Fin¥ and every S€ Fin¥ such that for some c¢> o,
M EFCPYS) there exists an I< M such that Snl is cofinal in I and
(I, XAI) E IZ,(R), where R denotes the set X nI; Z(R) is the class of Z,-formulas
in the language L, U{R}, and IZ,(R) denotes the induction scheme for such formulas
plus the axioms PA™.

Proof. (1) is, of course, a particular case of (2). Observe first that, becaunse of the
existence in the theory IZ,(R) of a universal formula for I1,(R)-formulas, IZ,(R)
is equivalent to the theory PA~ plus the minimum principle for some IT,(R)-formula
x(x,¥): s

Vx[3y x0x,») - Ip(x(x, ) aAVz <y Tzl 0]

Assume now that M is a nonstandard model for IZ,. For every i€ o denote
by II} the class IT, of formulas in the language L, with parameters belonging to M.
If 7 =, M, then we define a relation I E* ¢ on the set of sentences belonging to bitg
by Ik* @ <> M ¢ for ¢ € 43 = II; and by Tarski’s conditions:

(I E* Vxo(x) < Yae I IF* 0@, IF* (g » ¥) <= [IF* @)~ TE*¥)]. -

Let ce M, c> .
We shall prove by induction with respect to i = 0, ..., n the following claim.
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CLAM. For every S'e Fin™such-that M-k FCP(S) and every, formula p(X) e},
there exists an. initial segment Ie, M such that

() Yael 2"eI Snlis coﬁnal in I,

(B) there exists a v,b(x) € Ao such that

Vae[]h*(/)(a)chl,’/(a)

Assume that i = Oand M k FCPO(S) Then |S|" > ¢>w and the initial segment
determined by o initial elements of S safisfies of course (). Property () does not
require a proof.

- -Assume now the validity of the inductive hypothesis for i and assume that we
are given an Se Fin™ such that ME FCPL!(S) and ¢ (%) € 1T}y . We have

Qir1Vinr 00X, Yis s Yie1)s

where ¢, is-of clas§ A%, Let k denote the length of the sequence of variables X, We
denote by @, the formula @, or “lg, accordmg as Q;4q =13 or Q,+1 =Y.
“"We definé a functioh feM:

MEVYx<maxS f(x) =

PE) = Vyy Apy

min_ a(x)k-u, Vi+t) s

Yir1SmaxS

Fono

WA

where (x); is'the function: decoding the polynomial code J for (k+i)~element se-
quences in M. Since M k FCPL"'(S), there exists an S; < S such that M k FCP((S,)
and ME ¢ “Sy is an approx1mat10n to f.

Let d maxS1 Wc deﬁ.ne a formula of class ¥

5 Y Yiwd) -

Slnce M E FCPL(SI), by the mductxve assumption there exists an I <, M such that
Va el 2°el, S;nI is.cofinal i in I and there exists a i (%) € 45 such that '
“VaelIIE* ¢ (@)<=MEW@ . .

Moreover, observe that I<d.
i Thus 1t sufﬁces to prove that

VaelIF o(a) @IF* 040,
whlch follows from the fact that

901(35)@\7'3’1 Ays e Q¥ Qi1 Vi1 <d (Po(x Yisoee

» Va EEI II:* Q;+1y1+1‘/’0(“ b, p141) <
<« IF* Qi+1yi+1 <d ¢o@, B,J“iu)

To prove thls fact, take arbltraly @,bel Since I is closed under exponentia-

tnon, there exists a ¢ e. S1 nJ such. that J(a b) <c] Let ¢, denote the immediate
successor of €1 in Sg.

Since S1 is an apprommatlon to f in M we mfer that h

@, DY< ey e £ (U@, B))< max Sy, = d. ‘
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Hence, by the definition of f,
ME 3J’v+1 <02 Pofa, b, yi+1)°M}‘ yie1<d ‘Po(a b, J’z+1)
Since ¢, €1 <d we also have
ITE*3y;0y Bo@, b, yiaq) s TE* 3y, <d 3@, b, yiee)

and the fact in question follows from. the definition of @,.

In order to complete the proof of the theorem, assuime that Xe FmM SeFinM
ind for some ce M, ¢>w, M E FCPXS). Denote by W(x) a 4,-formula such that
MEVx (x e X< (), and let xo(x, y) denote the IT}-formula obtained from the
formula y(x, y) (defined at the beginning of the proof) by substituting ¥o(z) for R.

By the claim there exists an initial segment I <, M such that SnIis cofinal in I
and there exists a formula ¥ (x, y) € A* such that

Va,bel IE ya, b)¢>MFll/(a b .
By the " defifiition” of B ‘v’ael ((I X nI)Fan)&(I E* |,l/0(a)) Hence
I, an) E x(a, b)<> I F* xo(a, b) for a, beI Thus, finally,
Va,bel (I, XnID)F xa, b))«»(MI:l//(a B).

Hence, in view of the minimum principle for Vr(a, y) in M for any parameter
a e M, we get the minimum principle for x(a, y) in (I, X nI)for any parameter a € 1.
Therefore (I, X I) E IZ,(R), which completes the proof. M

Now we are ready to prove the main results of this section, related to the func-
tions p1ovab1y recurswe in IL‘ :

4.16. THBOREM TIn every model M for IZ, the formula Y,(x, y) = z is an indicator
for segments whlch are ‘models for 1z, i.e.

Va,be M [YM(a, b)>w¢3]ae]<bAIl=IZ,,]

Proof. The implication <= is the content of Lemma 4. 10(3) To prove the
opposite Jmpl]catlon, assume that Y@, B> o. Thus, by Lcmma 413,

Ymew M F FCP(la, b])

Hence thcre ex15ts a.c>w such that M & FCPy([a, b]) By. Lemma 4. 15 there cx1sts '
an: Ic,M such that Tk IZ,, ae I <b, Whlch completes the proof. W .

4.17. THEOREM The famiily of functwn.s‘ (I (1) ... d): mew} is a-cofinal set"

in the class of provably recursive functions in Iz,.

Proof. By Lemma 3.9 each of the functions in’ thé. above family-is provably
recursive in IZ,. On the other hand the fact that Y,(x,) is an indicator for IZ,
in every model for Th(N) where N = (w,°<; +, )Jmphes, in-a standard manner,
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that if f is provably recursive in IZ,, then there exists an mew such that
f(a) < min Y3(a, ) = m for ac » (cf. [3]). We have

min( ¥Xa, ) > m) <min N k I () . I <b
b b
and the last value is, by 3.1, <I% (@) ... ) (@). Thus f<Ipy (L) ... (I,). W

§ 5. Hardy’s functions and functionals. To render the picture complete we give
in this section a short proof of a theorem defining the relation of the function
I"(T,_;) ... dy) to the sequence of Hardy’s functions. Because of this relation,
Theorem 4.7 takes the form of Corollary 5.6, which is known as Wainer’s theorem
about the majorization of the class Rec(IZ,) by Hardy’s functions.

Moreover, we present here a sketch of a much shorter proof of Wainer’s theorem.

Let us begin by recalling the fundamental concepts necessary for the definition
according to Hardy’s method.: . -

Let of =m, o = "% for m,new. In particular, we have g, = sup oy
formea. P ‘ reo

For a, B < &, we define a3 f if and only if there exist ordinal numbers 7, § and
a number # e such that & = &’y and B < o’ n. This definition directly implies
the following properties:

5.1. (1) 0>« and a»n for every ¢ <& and every ne o,

" (2) For every number 1 <y < g, either y is of the form w® or there exist
numbers 0 <w, f< g, such that y = a+p, a>p. » ‘
(3) a» B, o >0 then f<a+f. ..
@ Ify=a+P, y=a+p, > B, «'>p and o> then a'>o-—a'>f.
~ 5.2. Fact. There exists exactly one family ({ac}(h)),,e,,,: 0 <o < g of sequences
with the following properties: ~ -~ = ==~ - o S
(D) (@+1)(n) = o for a< g, new, a = sup {a}(n) for «eLimn &,

. . new -

2) {a+B10D) = a+{BY(m) for a> B, a, B <z, B # 0 and new.

3) {&’} ) = 0" for aeLimney, new. -

@ {0} (@) = o'n for a< g, new. - S

The sequence ({e}(1)se, is called the fundamental ‘sequence for o.

The sequence of Hardy’s functions H,: 0 <« < ¢ is defined by the following
inductive conditions: Hy(m) = n+1, H,.(n) = Hn+1) for 0<a<sgy, Hyn)
= Hyyu+ 1y() for 0 < a & gon Lim. The above definition differs from that encountered
in the literature in changing Hyym+ 1y into Hyyy in the inductive condition for H,.
Now we can formulate the announced basic result on functionals and Hardy’s
functions. e

5.3. THEOREM. The following equality holds:

.j:'h(j..-ﬂ_-.-- Iy = y: fof 0‘<km,‘nea‘)‘. '
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Remark. If we modify the definition of I, so as to introduce the equality
TS - (x) = (f)" ... (x), we shall have a true equivalent of 5.3 for the original
definition of Hardy’s sequence. All the theorems proved so far will of course remain
valid, up to minute details, in the case of modification of the definition of the func-
tionals 1.

In order to prove Theorem 5.3 we shall consider certain functionals defined on
the pattern of the definition of Hardy’s functions.

5.4. DrENITION. For every matural number i>0 the sequence of Hardy’s
functionals H': 0 <o < g, from F,_; oto F,_; wis defined by the following inductive
conditions:

() " =1,

(2) Hpsy = Hjo H, for p>y, 0<p, 7 <&,

(3 Hrf)/’(fi—l) w (O = H{;ﬂ)(w 1)(fi-—1) o (SO

The consistency and completeness of the system of cases (1)~(3) resuits from 5.1,
and the inductive character of (2) and (3) follows from 5.1(3) and 5.2(3), (4).
However, (2) is not a usual form of an inductive condition since there are numbers
« < &, which can be represented in several ways in the form of a sum B+y, where
B>y, 0 < B,y < &. Thus we must show that (2) is unique in the context of the above
definition; we prove this by induction. We assume that the definition is correct
below o and assume « = B4y = B'+v', where B>v, p'>y and B,y, 8,7 >0
We have B,p <o. We may assume that B> B Let B = p—p’. By 5.1(4),
B'>B">y. Hence HjoHj = Hppypro Hy = Hp o Hpo o Hy, because B+p < .
Since f'+7 = 7' <awe also have Hj, o Hy = Hy, i.e, finally Hj<H} = Hj. Hy
which was to be proved.

Remark. It is easy to verify that the sequence of functions H} x O<a<e
satisfies the inductive conditions for Hardy’s functions. Thus H, = H, for

0<a<gy Let
C = {w'n: y<e, O<new}.
Theorem 5.3 is a direct consequence of the following lemma:

5.5. LeMMA. For every natural number i>0 and for every peC
(%) Hi*Y(HL) = Hywss on condition that a3 B.

Proof. Fix i> 0. We use induction with respect to BeC.
Case 1. § = 1. Denote the functional Hi¥ YHL) = IiH(HJ,.) by H. From the
definition of I, we infer that

H(fi-1) . (SO0 = (HLHA(fim)) - (SO
Thus, by part (2) of Definition 5.4 and part (4) of Fact 5.2, we have
| HUoon) o (S0 = Hiersgus (fi=2) = (S0


Artur


212 yoooo- Z. Ratajezyk

Finally, by .5.4(3) -
‘ H(fz—l)
H= Hies.

Case 2. The inductive step o’ — w’n. We show it by induction with respect
to n> 0. Assume that (x) holds for @’ and w’n. Let a» w’(n+1). Therefore ac>\ o'n
and a+w’n>w’. We thus have

i+1 i+1 1
mV(n+ 1)(H:n¢) = ;)+ ovn (Hmﬂ‘))

Case 3. We assume that (x) is true for numbers in C less than «’ where
0 <7 < g. We shall prove that it is also true for f = w’. Assume that o> 8.

Note first that {f}(n+1) e C, {f}(n+1) < and a>{f}(n+1) for every ne w.
By part (2) of Definition 5.4 applied to Hi' we have Hj" (HL)(fi1) ... (f)()
= I{W,,+ OCHE) (Fiz 1) o (f) () — denote th1s value by m. Hence, by the inductive

assumption, m = Heermein(fi-g) .. (fO@). Since by 52(2), a+{f}(n+1)

= {o+p}(n+1) and by 5203), {7} @+1) = 0P because o+ fe Lim,
e see that = Bosor(fie) - (RO, L= Hogrlfios) - ()
Therefore Hi" '(HL) = Hpwss-

By Theorems 4.17 and 5.3.we obtain

(A0 = Haeri(fis)) o (f@), e

'+1(Hmn:+m7’n) = Hnl,wm"(un; .

5.6. COROLLARY. The family of functions {Hym: me€ w} is @ cofinal set in the'

class Rec(IZ.,) for every n>0.

. The fact that cvexy function feRec(JZ,) is bounded by some H, whe1e
.c< Dyt is interesting in its own right. Theréfore we shall’ also give a sketch of

& more direct proof, based on a modification of some definitions and lemmas used.

in this paper.
If Scw then we’ deﬁnc Hs,— Il, H(x)
for xeS ~ou
We say that §is a- Iarge 1ff H3(minS$) | . This notion somewhat d1ff'c1<; from the
notion considered in [2]. Substituting “S is z-large” by “S is a-large” in Defini-
tion 4.4, we obtain

HS(HS(x)) Hi(x) = Hijyo()

o

5.7. DEFINITION, The symbol o~ (ﬁ .7 denotcs the .»emence for avmy o large
set S such that min S 2 thére exist S1, S, &'S such that min§ & mm S,, (Sl, S,)
1s an approximation to f and Sy is B-large; S5 is y-large.

A counterpartof. Lemma 4.9 is the following:

5.8, LEMMA. The combinatorial property Vf w**# 5

(B, ) is trie (in N) for all
o, <& such that a>p and o> 2. : ‘ R

This can be proved'dy induction on: B. The first step and the nonlimit step are
similar to the coresponding steps in the proof. of 4.7.

By the lemm3d’we eaqﬂy infer the’ followmg connection Just as 4 13 was deduced
from 4.9. AR, . H
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5.9, LuMMA. If S is ol *-large and minS > 2 then FCPY(S).

By 4.15, we can now infer that if M = N and Vmew ME “[a, b]is wy-large”
then there exists I <, M such that aeI<b and Ik IZ,. From this it follows imme-
diately that cach fe Rec(JZ,) is bounded by some Him, where m e o.
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