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which satisfies Fy = f|f Y(B¥x2B"). ¥ extends to a homeomorphism
@: f~}(U)y > F~Y(U) defined by ¢ =f on FH(BNEBY x R™). This ends the
proof of Theorem 2.1.

3. Concluding remarks. To prove Theorem 1.1 we now repeat the argument
of [€~F]. First we prove a theorem corresponding to the “Main thecrem” of [C-F].

For notation, let ¥? be a 3-manifold, 3 = m+k, and let F: ¥V — B*x R" be
a proper map such that 9V =f '1(6kaRm) and f is a homeomorphism over
(B¥x1B¥y % R™. ' o , ‘

THEOREM 3.1 (main theorem). Suppose that V contains no fake 3-cells. Then
for every &> 0 there exists a 6> 0 such that if f is a 5-equivalence over B*% 3 B then
there exists a proper map f: V= B*x R™ such that:

(1) J is an e-equivalence over B*x2.5B",

() F= £ over [(B“ZBYx R"]U[B*x(R"™2B")],

(3) J is a homeomorphism over B*x B™.

The proof of 3.1 is precisely as in [C-F]. We have only to use the fact t}}atl vV
and subsets of BPx S™ contain no fake 3-cells, and the 3-dimensional “Splitting
theorem” of [J]. Having proved Theorem 3.1, we prove 1.1 as in [C-F].
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On indecomposable representations of
quivers with zero-relations

by

Mirostaw Dembiﬁski; Piotr Dowbor and Andrzej Skowronski (Torun)

.Abstract. Let 4 be a bound quiver algebra KQ/I with zero-relations and R = KQII its uni-
versal Galois covering. Applying new covering techniques [5], [6] we give a simple description of
indecomposable finite dimensional representations of A in case each indecomposable finite dimen-
sional representation -of R has a peak [4].

0. Introduction. It is well known that in many cases [4], [10], [12], [14%, [16], [18]
the representation theory of finife dimensional algebras over an algebraically closed
field can be reduced to that for parfially ordered sets, shortly posets. In particular,
if 4 is a tree algebra KQ/I of a finite tree Q with zero-relations I, then by [4] 4 is
representation-finite, that is admits only finitely many nonisomorphic finite dimen-
sional indecomposable representations, if and only if the partially ordered sets
associated to all vertices of Q are representation-finite, and in this case each indecom-
posable representation of 4 has a peak. Similarly, by coverings techniques, the
classification problem of indecomposables of a representation-finite quiver algebra
with zero-relations can be reduced [12], [14] to that for representation-finite tree
algebras (with zero-relations), and consequently to posets. :

The purpose of this paper is to give a rather simple description of indecompos-
able finite dimensional representations of an arbitrary quiver algebra with zero-
relations for which every indecomposable finite dimensional representation of its
universal Galois covering, being a locally bounded tree category with zero-relations,.
has a peak. Applying the covering techniques developed recently for representation-
infinite algebras by the second and third author [5], [6], we reduce the classification’
problem of indecomposable to that for the corresponding posets and to the classi-
fication of indecomposable finite dimensional representations over the .algebra
KI[T, T™*] of Laurent polynomials. In particular, we will show that any such algebra
is tame if and only if the corresponding posets are tame.

1. Notation and conventions. Throughout this paper, we denote by K an alge-
braically closed field. By an observation of Gabriel [3], [11] a basic connected finite
dimensional K-algebra 4 can be written as 4 = KQ|I, where Q is a finite connected
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quiver, [ is a two-sided ideal in the quiver algebra KQ [3], [t!] with J"= I<J?,
732, and J is the ideal in KQ generated by all arrows of Q. In case I is generated
by a set of paths of length =2, (Q,I) is called a bound quiver with zero-relations
and A = KQ/I an algebra with zero-relations. In the sequel we assume that 4 = KQ/I
for a bound quiver (@, I) with zero-relations. We will consider both the algebra 4
and the K-linear category associated with (@, I), and representations will be left
modules or K-linear covariant functors from A to the category of K-vector spaces.

Applying classical topological covering construction [15, Chap. 9] we get the universal

cover § 5 Q with the fundumental group G of Q. 0 is a locally finite tree, G is free,
and 7 induces the canonical Galois covering functor F: R— A4 with group G [12],
where R =KQ|I is a locally bounded K-category [3] and I is the ideal in
KO generated by all piths o in @ such that z(w)el, which assigns to each
object x of Rits G-orbit Gx. An R-module is a K-linear covariant functor from Rto
the category of K-vector spaces. The support supp M of an R-module M is the full
subcategory of R formed by all objects x of R'such that M(x) # 0. The dimension-
vector of an R-module M is the family dimM = (M(x): K)xcr and dimM is finite
if the dimension dimM = Y (M(x): K) of M is finite. An R-module M is called
XeR

Iocally finite dimensional if (M (x): K) is finite for all objects x in R, and M is finite
dimensional if dimM is finite. We will denote by MODR the category of all
R-modules and by Mod R (resp. mod R) the full subcategory of MODR formed
by all locally finite dimensional (resp. finite dimensional) R-modules. Further, we
will denote by Ind R (resp. ind R) the full subcategory of Mod R (resp. mod R) formed
by indecomposable modules. The group G acts on MOD R by the translations i),
g € G, which assign to each module M the R-module *M = M(g~'(—)). Finally
denote by F,: MODR —» MODA the push-down functor [3] which assigns to each
R-module M the 4-module F, M such that (F, M)(Gx) = @G M(gx). It is well
ge

known [12, 3.5] that F, induces -a bijection between the G-orbits of isoclasses of
indecomposable objects in mod R and the isoclasses of indecomposable 4-modules
of form F, M, for M eindR.

Following Drozd [8], [9] 2 locally bounded K-category A is called tame if for
any finite’ dimension-vector d in A there exists a finite (parametrizing) family of

functors U; ® -: modK[T] - modd, i =1, ..., n;, where K[T'] is the polynomial
[T}

algebra in one variable 7, satisfying the conditions () and (b) below:

(a) For each i, 1 <i<ny, U;is an A-K[T]-bimodule and a finitely generated
free right K[T]-module.

(b) Every indecomposable A-module M with dimM = d is of the form
M = F(N) for some i and some simple X[T]-module N. For equivalent definitions
oftame locally bounded categories we refer to [7]. One can prove (see [7]) that

a locally bounded category A is tame if and only if every finite full subcategory
of A is tame.
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Following Gabriel [13], for each finite poset S, an S-space (K-representation
of S)is a system ¥V = (¥, V,),.s, where ¥ is a K-vector space, V. are subspaces
of Vand V, = ¥V, provided x <y. A map f: ¥V — V' between S-spaces is a K-linear
map f: ¥V - V' such that f(V,) = V. for all xeS. The coordinate-vector of an
S-space V = (V, Vi )xes is the family cdn(V) = (¢, ¢,; x€S) where ¢ = (V: K)
and ¢, = (V,: K), x€ S, and cdn(¥) is finite if ¢ is finite. We will denote by S-SP
the category of all §-spaces and by S-sp its full subcategory formed by all Y e S-SP
with cdn(¥) finite. A finite poset S is called rame if for any finite coordinate-vector
¢=(c,c.; xe8§) there is a finite (parametrizing) family of representations
(U, Ud,es, i=1,..,n of S in the category of finitely generated free right.
K[T]-modules such that all but a finite number of indecomposable S-spaces (over K)
of coordinate-vector ¢ are of the form (U ‘® N, Im(U:Q N iﬂf—) U'® N)),,Eg

KITY KIT1 X[T]
where i,: Ul— U' is the canonical injection and N is a simple K[T]-module.
L. A. Nazarowa proved in [17] that a finite poset S is tame if and only if S does
not contain full subposet whose Hasse-diagram has one of the forms

]

N,

(R @ Cer @ o G e P Got

) PPt
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Indecomposable finite dimensional representations of tame posets are described

{11, [21, [17], [19].

Following Bongartz and Ringel [4] an R-module M has a peak X€ R if for
each arrow o leading to x, M(x) is an mjectlon and for each arrow g going away
from x, M (f) is a surjection, where an arrow y: y — zis said to be lead to x provided z
and x belong to the same connected component of J\{7}, otherwise y is said to be
go away from x. For each object x of R, we denote by £, the full subcategory of
mod R consisting of all representations having peak x. Moreover, for a connected
convex subcategory 4 of R, we will denote by £.(A4) the full subcategory of £,
formed by all objects with support in 4. Recall that a full subcategory C = KTJKTn1
of R is called convex if all vertices of any path in 3 connecting two points of T'
belong to 7. It is shown in [4] that the set S, (resp. S,(4)) of all walks in R (resp.
in /) with end point x, having no subsequence of the form o™, 0™, w or W™ 1
with wel, admits a partial ordering and there are two canonical functors
G (A): 8,(A)-sp - P(A) which yield an equivalence
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of #(A) and S,(4)-sp. Moreover, every S.(4) is a full subposet of S, and
S, = U 8,(4) where the sum is taken over all finite convex subcategories 4 of R.
Finally, observe that for x€ R, g€ G, .Sy = S, and hence we can associate with
each vertex Gx of Q a partially ordered set g, = Sx. :

2. Main results. Tn this section we formulate the main results of the paper. Let
us start with some definitions (see [6]). A full convex subcategory L of R is called
a line provided L is isomorphic to the quiver algebra KQ; where Oy isa linear quiver
of type 4,, Ay or AZ. A line L is called G-periodic if G, = {ye G; gL = L} is
nontrivial. Since G acts freely on the objects of R, for any G-periodic line L, Gy, is
an: infinite eyclic subgroup of G. The group G acts on the set £ of all G- -periodic
lines of R and denote by %, some fixed set of representatives of G-orbits in .
Foi each Le #, denote by B the indecomposable locally finite dimensional
R-module with supp B, = L defined by setting By(x) = X for any object x of L
and.B,(a) = idg for any arrow of Q. Then Gy equals to {9€G; ‘B, = B}, the

group algebra K[G;] is the algebra of Laurent polynomials K[T, T~ 1, F, By has’

a structure of an A-K[T, T~ *]-bimodule and we have a functor

¢ =FB, ® -:modK[T,T ']—modd4
RLT,T-1]
where mod K [T, T~ 1] denotes the category of all finite dimensional (over K) left
KI[T, T~']-modules. ;
Moreover, denote by 2 the famlly of all finite convex connected subcategories
of R and by %, a fixed set of répresentatives of the G-orbits in 2. For any 4 € 9,,
x e R, consider the composed functor

Gx(A) Fy
Yol d): SfA)-sp — P (A)S—mod R - mod 4.
We can now formulate our main result.

THEOREM 1. Assume that each indecomposable finite dimensional R- module has
a peak. Then in our notation the following statements hold:

(@) Every finite dimensional indecomposable A-module is isomorphic either to
VA A) (V) for some x € R, A € D, containing x and an indecomposable finite dimensional
S.(A)-space ¥V, or to ®Y(W) for some L e £, and an indecomposable finite dimen-
sional K[T, T™*]-module W.

(i) 4 is tame if and only if every poset S,, associated with each vertex a of Q,
contains no full subposet whose Hasse-diagram has one of the forms (1,1,1,1,1),
a,1,1, 2),(2 2,3),(1,3,4), (1,2,6) or (N, 5).

For each x€eR, let R, be the full subcategory of R formed by all objects of
supp M, for all MeindR such that M(x) 5 0. Following [5] R is called locally
support-finite if R, is finite (has a finite number of objects) for each object x of R.
Recall also that G acts freely on IndR if 9M % M for any MeIndR and each
1# geG. From a general fact [5] it is known that if R is locally support-finite
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then every X e ind 4 is of the form F; M for some M e ind R. The following theorem
shows that in our case the converse is also true,

THEOREM 2. Assume that each indecomposable finite dimensional R-module has
a peak. Then the following statements are equivalent:

(i) Every finite dimensional indecomposable A-module is isomorphic to yr.(A) (V)
Jor some xe R, Ae D, containing x, and an indecomposable finité dimensional
S (4)-space V.
(1) R is locally support-finite.
(iii) For each vertex a of Q, S, is finite.
@iv) G acts freely on IndR.
(v) IndR = indR.

3. Tamness of a tree category. The main aim of this section is to prove the
following proposition which we shall use in the proof of Theorem 1. .

PROPOSITION 1. Let A be a finite locally bounded tree category such that each
indecomposable finite dimensional A-module has a peak. Then A is tame if and anl Iy if
all posets S(A), xe A, are tame.

For the proof of this proposition we need thé following lemma.

LﬁMMA 1. (a) Let I" be an integrél domain and @: I'" — I'™ be a monomorphism
of left free I'-modules where m, ne N. Then there exists an element he I' such that
1 ®¢: (I'y @ I > (I'y ® I'™) is a splittable monomorphism of left free I'-modules.

r

(b) Let I = K[Ty, for some he K[T] and @: I'" — I'"™ be a homomorphism of
Jfree left I'-modules given by (mxn)-matrix | Jilligism With coefficients in-I. If

1<€j<n

a homomorphism of K-vector spaces ¢(t): K" - K™, defined by the scalar matrix

[fij(O]1<igm is a monomorphism (resp. epimorphism) for some t € K which is not
1sj<n

a root of h, then so is ¢ (resp. 1 ® I';,, for some hy e /).
r

Proof. We start with the following remark. Let I"' be a commutative ring and
@: I'" = I™ be a homomorphism given by mxn-matrix f= [fijl;<i<m having

<j<n

a nonzero minor i of order p, where p = min(m, n); then 1 ® ¢ is a splittable
r

monomorphism (resp. epimorphism) if m =n (réesp. m < n). Indeed, if m>n and,
for example, the matrix f = [ fi;]1</, y<» has nonzero determinant /, then the matrix f
considered as a matrix with coefficients in I', is invertible and a homomorphism
Y (O™ = (I')" defined by matrix [(f)™%, 0] furnishes a retraction for 1 ® ¢.
Dual case can be proved analogously.

Now we will prove (a). Let I' and ¢ satisfy the assumption of (a). Observé
that f produces a monomorphlsm of I'ey vector spaces (I"y)" — (I'0y)™. Then there
exists a nonzero minor 4 of order » and (&) is a consequence of the remark.

2 — Fundamenta Mathematicae 130.3
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(b) Let f= [fijli<icm be a matrix with coefficients in I' = K[T], for some
Ljsn

he K[T], and let ¢(r): K* - K™ be a monomorphism (resp. epimorphism) for
some ¢ which is not a root of A. Then f(r) admits a nonzero minor of order
p = min(m, n). Without loss of generality, we can assume that the determinant of
the matrix f(¢) = [/i{D)]1<i,jxp 15 nonzero. Consequently the determinant of f is
nonzero. Now, for n < m, the columns of f are lineary independent over 4 and so ¢ is
monomorphism. Case m <#n follows from the remark.

COROLLARY 1. Let I' = K[T},, for some he K[T], let A be a locally bounded
tree K-category, and U an A-I'-bimodule, finitely generated free as a right I'-module
and x € /. Assume that the set W of all isoclasses of indecomposable A-modules of the
form U ® N, for some simple T-module N, belonging to P(A) is nonempty. Then

r

there exists an element b’ € I' such that the set of isoclasses of all indecomposable
A-modules of the form U' ® N', for some simple I'-module N', where I'' = I,
o

and U'=U ® I, consists of all but a finite number of isoclasses from W, 4U’ has

a peak in x, and U'(a) is splittable monomorphism or a splittable epimorphism for alI
arrows o in the ordinary quiver Q4 of A

Proof of Proposition 1. Let 4 be a tame finite tree category. Take any x e A
and a finite coordinate-vector ¢ = (¢, (Cx)xesn(ay) Such that there exists infinitely
many isoclasses of indecomposable Ve S (A)-sp with c¢dn(¥) = ¢. Then by our
assumption there exists a finite family of A-K[T]-bimodules U;, i=1,..,n,
finitely generated free K[T']-module such that for any indecomposable M e modA
with dimM. = d, where d = dim G (A)(V), for some Ve S (A)-sp with cdn(¥) = ¢,
M has the form U; @ N, for some i and a simple K[T']-module N. By Corollary 1 we
can assume that there exists a family of bimoduwles ,Uy, i = 1,...,n', ' <n such
that I'; = K[T7,, for some h;e K[T), all U/ are free finitely generated right
I'-module, all 4-modules U/ have peak in x and, for any arrow o in Q4, U/(x) is
a splittable monomorphism or a splittable epimorphism, and moreover for all but
a finite number of isoclasses of indecomposable modules M e P (A) with dimM = d,
M has the form M = U] ® N for some i and simple I';-module N. Thus by defi-

nition of the functor F, (/1) we get that F(A4)(U{ ® N) = F(AD)(U)) ® N for
r

any i and N. Hence by [7, Lemma 3.] S,(4) is tame

Let now S,() be tame for all x € 4. Take a dimension-vector d in 4 such that
there exists M eindA with dimM = d. By our general assumption M has some
peak x. Since S,(4) is tame, there exists a finite number U of répresentations of
Sy(A) in finitely generated free right K[T]-modules, i = 1, ..., n,, such that for-all
but a finite number of isoclasses of indecomposable objects Ve S.(A)-sp, with
cdn(¥) = ¢, where ¢ = c(d, x) = cdn(F(A)(M)) for some M with dimM = d,

Y has the form Y=U® N for some i and a simple K[T]- module N. Since Sy()
K[T] .
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are finite, by Lemma 1 we can assume that all inclusions in U are splittable mono-
morphism. Hence, by the definition of G(4), G/A(UF ® N) = G(A)UH® N
for any i and N. Thus the family of bimodules G (A)(UF), where xed and
i=1,..,m, parametrizes all but a finite set of isoclasses of indecomposable
A-modules of dimension-vector d. Consequently by [7, Proposition 1] 4 is tame.

4. Proof of Theorem 1. Assume that each indecomposable finite dimensional
R-module has a peak. Let 4 = KT/I;, where T is a connected subtree of § and let
Ir = KT'n1, be a convex subcategory of R. Denote by T, the set of vertices of T'
and by T the set of all its arrows. The degree degy(x) of a vertex x e T}, is the number
of times # is used as an endpoint or a startpoint of the arrows in T. A vertex xe T,
with degr(x) = 1 is called a tip of T. Denote by 4(T) the maximum of degs(x),
for x € T, and by Q(7") the number of tips of T'if it is finite and oo otherwise. Recall
that M eind4 is sincere if M(x) # 0 for all x e T,,. For each sincere M eind4 we
will denote by Ay = KTy/Iy the shrinked algebra of A obtained by shrinking (in

the sense of [4, § 3]) of all arrows x f» ¥ for which M(p) are isomorphism and x, y are

not tips of T, and by M the 4,,-modulé corresponding to M. Then mod 4, can be
interpreted as the full subcategory of mod/ containing only modules for which all
these shrinked arrows f are represented by isomorphisms.

LEMMA 2. Assume T is finite and A(T) = 2. Then, for any sincere indecomposable
Sinite dimensional A-module M, 4(Ty) <24(T)—2.

Proof. Obviously, for A(T) = 2, A(Ty) = 4(T) = 24(T)—2. Assume A(T)>3,
Since any quiver algebra of a Dynkin type D,, n> 5, has an indecomposable module
without peak and M is sincere, 7 has no subtree of the form

where 22> 1 and M(a,), ..., M(o,) are isomorphisms. Then a simple analysis yields

the required inequality.

Lemma 3. Assume T is finite and 2< A(T) <e. Then for any M € indA with
(Mx): K)<d for all xeT,, holds Q(supp M) < (2e-2)".

Proof. First observe that Q(supp M) = Q(suppM) and for each arrow y 5 z
in T}, such that y and z are not tips, M(x) is a proper monomorphism or a proper
epimorphism. Let x be a peak of M in A. Then xisa peak of M in Ay and from the
above remark, the lengths of the walks

X—X{— i—X; *
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in Ty, are bounded by d. Since by Lemma 2, A(Ty) <2e-—-2, we get Q(suppM)
< (2e-2)%

Proof of Theorem 1. In order to prove (i), it is enough by [6, Theorem 3.6]
to show that the support of any YeIndR with Gy = {g€ G; ?Y = Y} nontrivial
and supp Y/Gy finite is a line. Let ¥ be such an R-module. We will apply funda-
mental sequences introduced in. [6, § 4]. For a full subcategory C of R we will denote
by C the full subcategory of R formed by all objects x such that R(x, y) # 0 or
R(y, x) # 0 for some ye C. For X and Y€ MODC, X ¢| Y denotes that X is iso-
morphic to a direct summand of ¥. Moreover, if D is a full subcategory of C and
XeMODC, then X|,e MOD D is the restriction of X to D. Denote by C,, ne N,
a fixed family of finite full subcategories of R defined by setting C, is a subcategory
given by a fizxed object x of R and C,,, = C, for n e N. Observe that R is the union
of C,, ne N. Then Y produces a sequence (Y,,u,),cy Where ¥, emodC, and
u,: Y, = Yyi1le, is a C,-homomorphism for all ne N, satisfying the following
conditions:

(a) For each ne N, Y,eindC, or ¥, = 0.

(b) ¥, # 0 for some ne N.

(c) For each ne N, u, is a splittable monomorphism.

(d) For each ne N, Y,¢€| Y|g,.

Observe that, since supp ¥/Gy is finite and ¥ is locally finite dimensional, there is
a common bound d for (Y,,( ¥): K), ye R, ne N. Moreover, we know by
[6, Corollary 4.4] that ¥ = lim(¥,, #,). Let D, = supp ¥,, ne N, and D = supp ¥.
Obviously, D= {J D,. Moreover D = KTyp/lp, D, = KTy, [Ip,, ne N, for connected

neN

subtrees Tp and Tp, of 8, and I = KTpn 1, I, = KTp Al D is a line if and only
if 4(Tp) < 2. Suppose 4(Tp) = 3 and denote by U the set of all vertices x of T}, with
degr,(x) = 3. We claim that U is finite. Indeed, e = 4(J) = A(Q) is finite and hence
2< 4(Tp,) < e for D, containing at least three objects, say for n>n,. Thus there
is m > ny such that A(Ty,,,)= A(Tp,) for n > m. Hence U is contained in Tp,, and
consequently is finite. On the other hand, Gp = {geG; gD = D} contains
Gy={geG; °Y = Y} so there is 1 # ge G such that gU = U. But this is
impossible since G is free and U is finite. Therefore, 4(Tp) < 2 and D is a line. This
finishes the proof of (i).

In order to prove (ii) observe that for each x € R the posets S,(A), where A € D
with x € 4, form a family.of full subposet of S, such that any finite subposet of S,
is contained in some S,(4). Then (ii) is an immediate consequence of Proposition .1
and [7, Theorem].

5. Proof of Theorem 2. (i) - (iii). Assume that every indecomposable finite
dimensional 4-module M is of the form F, N for some N e ind R. We will show that S,
is a finite poset for any vertex a of Q. Suppose that .S, is infinite for some ae Q.
Then we claim that R contains a G-periodic line. Indeed,  is a locally
finite iree and I contains the ideal J" of XQ, generated by all paths of
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length », for some n € N, so there exist finite lines in R with arbitrary large number
of changes of orientation. Thus, since Q is finite, there exists a finite line C'in R
whose tips b and ¢ are both ending points and belong to the same G-orbit in R.
Hence the full subcategory L of R formed by the union of subcategories g*C, ze Z,
where gb = ¢, is a G-periodic line. Then, since Gp, = {g € G; By, = B} is non-
trivial, we get a contradiction with [6, Proposition 2.4].

(iii) — (ii). First observe that if an indecomposable R-module M has a peak x
and M(p) # 0 then there exists a (unique) finite line in R with tips x and y. Now
assume that all posets S,, a € Q,, are finite. We will show that the category R is
locally support-finite. For any object x € R, denote by U, the set of all y e R such
that there exists a finite line in R with tips x and y. The sets U,, x € R, are finite
because the posets S,, a€ Qy, are finite. Take any objects xe R and Xeind R,
with X(x) # 0. Since by our general assumption X has a peak, from the above
observation supp X is contained in the full subcategory W, of R formed by the union
of sets U, y € U,. Consequently R is locally support-finite because, for each x € R,
R, is contained in the finite category W,.

(ii) — (v). Follows from [6, Proposition 2.5].

(v) — (iv). Follows directly from the fact that G is free.

(iv) — (i). This is a consequence of [6, Corollary 2.3].

6. Examples. We end the paper with examples illustrating Theorem 1. Let 4
be the bound quiver algebra KQ/I where Q is the quiver

&

and I is the ideal in KQ generated by the elements BE, ov, nap, nyo, uap, pys, vu
and &y. Similarly as in [6, 5.3], one proves that the support of any indecomposable
R-module, where R = KQ/I is the universal cover of 4, is either a finite line or

a subquiver of the quiver
\ /
/ \

//\\
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Thus every indecomposable finite dimensional R-module has a peak, by well-known
classification of indecomposable representations of the above quiver of extended
Dynkin type D,. Moreover, the partially ordered sets associated with the vertices
of Q have the following form:

|
|

.. QP E————— D
. Pt P

2
E |
. l v .
5 5,85,
. .
H l

| |
6 e . 1. °
S5 & XL

Hence by Theorem 1(ii) 4 is tame,
Finally, we shall present an example showing that the assumption in Theorem 1

is for its form essential, Let 4’ = KQ'[I’ be the zero-relation algebra given by the
quiver )
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and the ideal I’ in KQ’ generated by the element &, and R’ the universal cover
of A4’. One can show that the classification problem of indecomposable finite di-
mensional R’-modules contains difficult classification problem for the Ringel’s

~ h—2 ) . . .
pattern (D,,, 2) [18]. Hence there are indecomposable finite dimensional
n—

R’-modules without peak and thus they are not determined by indecomposable
representations of the associated posets. Moreover, there are modules ¥ eInd R’
with nontrivial stabilizers and nonlinear supports which create 1-parameter series
of indecomposable finite dimensional A’-modules which are not in the image of the
push-down functor F;: mod R’ — mod A’ (modules of the second kind in the sense
of [6]).
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Quadratic form schemes and quaternionic schemes
by

M. Kula, L. Szczepanik and K. Szymiczek * (Katowice)

Abstract. Quaternionic schemes, quaternionic structures and abstract Witt rings are known
to be equivalent abstract versions of the algebraic theory of quadratic forms. This paper establishes
a relationship between quadratic form schemes and the three other axiomatic approaches to quadratic
forms. It is shown that .cancelative quadratic form schemes goincide with quaternionic .schemes.

Introduction. The algebraic theory of cjuadratic forms focuses on quadratic
forms over fields. However, it has become clear that some parts of the theory are
best treated by using an appropriate abstract language. Several authors have had
ideas of this kind and as a result we are confronted with at least fom distinct abstract
approaches to quadratic form theory. These are*

(i) Quadratic form schemes (3], {4], [5], [6], [10], [11], [12D.

(ii) Quaternionic structures ([1], [8], [9]).

(iii) Abstract Witt rings ([1], [8], [9] and earlier papers c1ted there).

(iv) Quaternionic schemes ([1]). :

The relationships among (ii), (iii), and (iv) are fully known. Marshall’s book [8]
shows that (ii) and (iii) are equivalent and Carson and Marshall [1] prove that (ii)
and (iv) are equivalent. It is the aim of this paper to clarify the role of (i) among the
abstract theories of quadratic forms.

In Section 1 we exhibit several equivalent sets of axioms for (i) and in Sectlon 2
we do the same for (iv). In both cases we have found that the generally accepted sets
of axioms for (i) and (iv) are dependent and we reduce the number of axioms in each
case to a pau of independent axioms and even to a single axiom in each case.

~ Section 3 explains the relatlonshlp between two concepts of isometry of forms
used in abstract theories (chain isometry and inductively defined isométry follow-
ing [8] and [9]). The main result, Theorem 3.5, establishes the actual equivalence of
quadratic form schemes with cancellation property and quaterniomic schemes,
A corollary to this result asserts that the classical Witt cancellation theorem for forms
of any dimension is a consequence of the cancellation property for 2-dimensional
forms.

* While submitting the manuscript this author held a visiting position at Louisiana State
University, Baton Rouge, LA 70803.
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