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Finally, to see that ¥ is locally finite, let w e (1, X). For some integers z and k,
E(w) > 1[k. Define
R={le(, X)| F)>1/k}.

The set R is open in (I, X) and contains w. We claim that for m >max(k, n) and
s € A* with 45 = m, RNV, = @&. This will sufficc since we know already that the
collection E% pmayq,ny 15 locally finite. For e R,

Foue () 2 B > Yk
Thus

mF,_(A> mQ/k)>1.

Since fi(A) <1, it follows that g,(4) = 0. Thus Z is not in V,. M

References

[11 A. Dold, Partitions of unity in the theory of fibrations, Ann. of Math. 78 (1963), 223-255.

[21 I. Dugundji, Topology, Allyn and Bacon, Inc., Boston 1966.

[31 W. Hurewicz, On the concept of fiber space, Proc. Nat. Acad. Sci. U.S.A.41 (1955), 956-961.

{4] P.T. Mc Auley, private communication.

THE GRADUATE SCHOOL
CITY UNIVERSITY OF NEW YORK
33 West 42 Street, New York, NY 10036

COLUMBIA UNIVERSITY
New York, NY 10027

Received 18 September 1986

icm

Connections between different amoeba algebras
by

J. K. Truss (Leeds)

Abstract. The “amoeba algebra” is the complete Boolean algebra which has the effect of making
the union of all null Borel sets coded in the ground model have measure 0 in the corresponding
Boolean extension. Six different versions of the amoeba algebra are studied, together with the local-
ization algebra, and connections, in some cases isomorphism and in some cases forcing equivalence,
are established between them,

§ 1. Introduction. A number of different versions of Martin and Solovay’s
original “amoeba” algebras have been considered. In their original application [5]
the relevant set of conditions was taken to be the set of open subsets of the. real line
of measure less than a fixed e, partially ordered by inclusion, approximating to an
open set of measure & In [8] we took instead a “variable” s. That is, a condition was
a pair (p, €) where p is an open subset of R of measure less than e, giving the infor-
mation about the generic open set X that p< X and p(X) < &. The main reason for
this was to enable us to show that the amoeba set of conditions P satisfies
RO(P) =2 RO(P x P) where RO(P) is the complete Boolean algebra associated with P
(the “regular open” algebra). Whether this is true for Martin and Solovay’s “fixed
measure” case we still do not know. And then there are the amoeba algebras on
compact intervals I' (or equivalently on 2°) derived from the set of (relatively) open
subsets of I' of measure less than e, which were used by Shelah in [7], and also by
Miller and others in their investigations into the connections between measure and
category on the real line.

What all these algebras B have in common is the following. In cach case the
Boolean value in V* of the statement

“u{xe R: x is not random over ¥} = 0"

is 1, whoere u denotes Lebesgue measure, What ideally we would like to know is that
this statement holds in an extension of ¥ if and only if the extension contains
a V-generic filter on B, T the absence of this, however, the next best thing seems to
be to show that as many as possible of the known versions of the amoeba algebra
are isomorphic, or at any rate, are equivalent in the sense of forcing. This was in
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part achieved by Kutylowski in [4], where he showed that of six versioms, three
“ymbounded” ones are equivalent and three “pounded” ones are equivalent, even
when the parameters are varied. We shall give our versions of these results and extend
them as follows. In response to a question of Cichon we establish the existence of
isomorphisms between bounded amoeba algebras having different parameters,
previously only known to be equivalent. In addition we include a proof, due to
Fremlin, that the bounded and unbounded amoeba algebras are equivalent.

There are, of course, many other versions of the amoeba algebras one could
concoct, but it seems pointless to treat them all individually; it would be better to
prove a general result as indicated above. Other related algebras were discussed
in [8], connected with category on the real line, and dominating functions. It is now
known that these are strictly “smaller” than the amoeba algebra. Though related to
Shelah’s result [7] that “Solovay’s inaccessible” is necessary for the construction
of a model of ZF in which every set of reals is Lebesgue measurable, but not for the
construction of a model in which every set has the property of Baire, this can be
proved much more easily. Cichori has pointed out that since the “amocba algebra
for category” is o-centred, it actually adds no random reals at all, so certainly cannot
contain the amoeba algebra as a complete subalgebra. The correct intermediate
subalgebra to consider, which enabled Bartoszyfiski [1] to prove that the additivity
of category is at least as great as the additivity of measure, is the “localization
algebra”. Though there are several versions of this algebra too, (which are not known
to be equivalent) we shall just concentrate on one which we conjecture is equivalent to
the amoeba algebras. We give evidence for this conjecture by producing an embedding
in one direction and showing a strong connection (though not an embedding) in the
other.

T would like to thank Jacek Cichof and David Fremlin for valuable discussions,
Mirostaw Kutylowski for sending me a copy of [4], David Fremlin for sending me
his proof of Theorem 4.3, and the University of Wroctaw for hospitality while some
of this work was carried out.

§ 2. Definitions of the algebras. By an “algebra” I understand a complete Boolean
algebra. In the context of forcing, however, it is generally much more convenient
to work with a notion of forcing, i.e. a partially ordered set P regarded as a dense
subset of the corresponding complete Boolean algebra B = RO(P). To show, for
example, that RO(P) and RO(Q) are isomorphic, it is sufficient to show that P
and Q have isomorphic dense subsets. In terms of forcing, saying that RO(P) and
RO(Q) are isomorphic amounts to saying that there is a V-definable function F
such that whenever & is a V-generic subset of P then F(F) is a V-generic subset
of Q, and that Fis 1-1 and onto the class.of all ¥-generic subsets of Q. Intuitively,
the passage from Fto F(&) neither loses any information, nor adds redundant infor-
mation. In some cases we have to settle for “equivalence” of two notions of forcing,
a weaker notion -than isomorphism of their regular open algebras or even
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“embeddability” (i.e. in one dircction only). We say that Q is embeddable in P if
whenever & is a V-generic subset of P, V[#] contains a V-generic subset of Q.
We say that P and Q are equivalent if each is embeddable in the other. It is perfectly
possible to describe these notions in ¥, without reference to the Boolean extensions,
but we shall not do so, since it is the relations between the extensions which is of
primary interest to us. Notice also in this connection that we have been talking about
generic extensions of “the universe” V, so that strictly speaking the discussion takes
place in appropriate Boolean-valued universes ¥*. Alternatively, one may work
with extensions of a suitable countable transitive model M. There are standard
methods for passing between these two approaches, as described for example in [2].

There are seven types of algebra we consider here, six types of amoeba algebra,
and the localization algebra. All are defined via the naturally associated notions of
forcing. The amoceba algebras fall into two families, the “unbounded” ones, indicated
by P, and the “bounded” ones, indicated by Q. In the Boolean algebras, the “stronger”
condition will be nearer to O, i.e. p < ¢ will mean that p is an extension of g. In the
partial orderings the natural ordering very often goes the other way, (usually <).
We shall try to avoid confusion by use of the word “extension™ where possible. The
partial orderings arc as follows.

Pl is the set of open subsets of R of measure less than a, partially ordered by
inclusion.

QL is the set of (relatively) open subsets of [0, 1] of measure less than o, partially
ordered by inclusion.

Here, and. throughout o is a fixed real number. For P., o is any positive real
number, and for QL, a € (0, 1). The conditions approximate a “new” open subset X
of R of measure o, and if % is a V-generic subset of P} or Q! then X = () &#. (More
accurately, we should say that X is the union in V[#] of the open sets coded in the
same way that members of & are,i.e. X = {xe R: ({a,b) (a<x<b & (a, b) € F}).
Under these circumstances we say that X is a V-generic subset of R of [0, 1] for PL
or QL. We also say that X is amoeba-generic of fixed measure. The four other types
of amoeba algebra are as follows.

P = {(p,): p an open subset of R&ce R& u(p) <el,

Q" = {(p, &): p a relatively open subset of [0, 1]& e<1 & p(p) < ¢},
P = {(p, &) e P": e<a}, (x€(0, o0) fixed),

W= {(p, &) e Q" e<a}, (xe(0, 1] fixed).

In these four cases, (g, §) is an extension of (p, &) if p<q & 6 <e. These con-
ditions approximate X = ) {p: @e)(p,c)e F} where &F is a V-generic subset
of the partial ordering, and (p,é¢) gives the information that p= X & u(X) <e.
We may call the X arising in this way an amoeba-generic set of variable measure
(in that its measure is not fixed beforehand).

Finally, the localization algebra is defined by the following set of conditions LOC.
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LOC is the set of all p e [] [w]¥*" such that for some AN, (Vn = N)Ip(n)l < 2N,

new
Here g is an extension of p if (Vn) p,=¢,. The conditions approximate a function

@ €[] [»]*". Thus for each # ¢, is a subset of o of size 2, and the information about ¢
give";u{)y pEe LOC is (V1) p,S@,. Any ¢ arising in this way is said to be V-generic
localizing.

We have taken 2" as being most convenient for our purposes, though by techni-
ques described in [3], any other strictly increasing function of n could be used in
its place.

The results we shall prove about these notions of forcing are as follows:

PLPE P oL, OF, O are equivalent.

All members of {RO(P;): ue (0, c0)} are isomorphic.

All members of {RO(PM}U{RO(PM): ae (0, )} are isomorphic.

All members of {RO(QL): ¢ (0, 1)} are isomorphic.

All members of {RO(QM): «e(0,1]} are isomorphic (and, of course,
Q"= an).

Any P or QO is embeddable in LOC.

The methods of proof will be as follows. In cases where the existence of an
isomorphism is to be established, we shall construct an order-isomorphism between
dense subsets of the Boolean algebras. In cases where an embedding is asserted to
exist of Ty into T, we shall show how to define a function F from V-generic sub-
sets & of T, to V-generic subsets F(#) of Ty. In this section we illustrate these
methods in the simplest cases, and leave the more involved arguments to §§ 3 and 4.

Treorem 2.1. For any o, f€(0, 00), P, = P} (as partially ordered sets) and
PP P 5o that RO(PY) =2 RO(P)) and RO(PYY) =2 ROPI.

Proof. #: P, — P} is given by #(p) = Ep = {Ex: xep}. 9 PN P}
o o
is given by ¥(p, &) = (ﬁp, és)
a o

Tueorem 2.2 (Kutytowski). RO(P™) & RO(PI,

Proof. We give a rather more involved proof than Kutytowski, since the ideas
will be needed in § 3. The basic idea, however, is the same. We shall find. isomorphic
dense subsets of RO(P") and RO(PY"). Firstly let {a,: ne w} and {b,: ne »} be
infinite maximal antichains of P™ and P respectively. These arc countable since
each notion of forcing fulfils the c.c.c. The dense subsets of RO(P™) and RO(PY
will then be {6 € RO(P™): @n) b<a,} and {b e ROP™): (An) b<b,} respectively.
To show that these are isomorphic, we show that for each n the set of extensions
of a, is itself isomorphic to RO (P{") (and similarly for b,), and then all the individual
isomorphisms can be fitted together. The point is that although P" itself allows
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arbitrarily large values of &, beyond any fixed element the situation is indistinguishable
from that in P

Let a, = (p. &). Firstly observe that, as in 2.1, the map ¥ given by 9(x) = ax,
where o = 1/(s—p(p)), takes the sct of extensions of (p, &) in P™ isomorphically
onto the set X of extensiens of (g, ) in PY, where ¢ = op and & = «e, and
d—u(q) = a(s—u(p)) = 1. Weshow that RO(X) = RO(PI™). Thisis clear intuitively
but there are some details to be checked.

Let ¢ be the set of points » of R at which ¢ has Lebesgue density 1, i.e. such
that ling 213’ (;1((.\'—- o Ko y')mq)) = 1. By the Lebesgue density theorem [6, p. 171,

.
gy differs from g by a set of measure 0. In addition, since ¢ is open, g=¢,. Let £ be
the map which destroys all intervals of gy, identifying their endpoints, and maps 0
to 0. This may be formally defined by

) = x—u((0, ¥)ngy) x?O,
Y x+p(ex, 00ng) x<0.

fis then order-preserving, measure-preserving on R—gy, maps R—g, onto R, and

is almost 1-1, in the sense that if £ (x) = f () for x # y then x and y lie in the closure
of some interval of g;. Let D be the set of extensions (g’, &) of (g, 8) such that g’
contains the closure of each interval of g,. Since g, 2¢ and u(g, —g) = 0, D is dense
in X (dense open actually). Let E be the set of (', 8') € P such that ¢’ contains all
the images under f of endpoints of intervals of ¢,. Similarly E is dense in Py We
may then map D to E by g where

9(‘1', 51) = (f(ql), 6I"'ﬂ(q)) 2

and this establishes the isomorphism of RO(X) and RO(P.

We now prove two “one-way” results. To formulate the first it is easiest to work
with a modified version of P% which we denote by PY. This is
{(p, &) e P*: p=(0, c0)}, with the same partial ordering as before. The proof of the
following result is similar to that of Theorem 6.1 in [8].

THEOREM 2.3. (i) If A is a V-generic subset of R for P, then An(0, o) is
a V-generic subset of (0, o) for PY.

(i) RO(P") = RO(PY).

(iii) If # is a V-generic subset of P} then V[ contains a V-generic subset
of P".

(iv) If & is a V-generic subset of QL then V[F] contains a V-generic subset
of Q"

Proof. (i) Let D be a dense open subset of P lying in ¥, and let

E={peP}: (n(0, ©)), 1-p(pr(—c0, 0)) e D} .
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We show that E is a dense open subset of Pj. Let pePj be arbitrary. Then
((p(0, ), 1=p(pn (=00, 0))e Pt

since

w(pa(©, ) = p(@—u(pn(—o0,0) <l-p(pn(-0,0).
Let (g, ¢) be an extension of ((pn(O, 0), 1—pu(pn( —oo,O))) lying in D. Thus
pn(0, ®cqg&e<]~p(pn(—o, O))). Now

p(pug) = p(pn(—co, 0)+u(g) < 1—e+ulq),

so there is an open p' =2 puq of measure 1 — &+ pu(g) such that p' N (0, o) = ¢. Then
u(p) <1 since u(g)<s, and so p’ € Py. Also

(7' 0 (0, ), 1—p(p' A (=0, 0)) = (g, 1= (1(p)—1(p' 0 0, 0))))
= (¢, 1-u(p)+1@) = (¢.8)e D,

showing that p’ is an extension of p lying in E. Hence E is dense open.

As A4 is V-generic on R for P, pe E for some p= 4. Hence

(P (0, ), 1—p(pn(—,0))e D.
Now
w400, ) = 1—p(dn(~w,0) <1—p(pn(~w,0).

Therefote {(g, &) € P : =4 (0, 00) & (AN (0, o0)) <&} intersects D, as required
for the V-genericity of 4n (0, co) for PY.

(ii) The relevant isomorphism is induced between dense subsets of PY and P"

by using the map which rearranges the semi-open intervals (0, 11, (1, 2], (2, 3], ...
and which may be explicitly defined by

90 = xX—n if xe(2n,2n+1],
x—3n—-2 if xe(2n+1,2n+2].

Because of trouble with. the integer points of division, the isomorphism should just
be defined on the dense set {(p,&) e PY: (Va3 Dnep)l.

(iii) follows immediately from (i) and (ii).

(iv) Let 4 be an amoeba V-generic subset of [0, 11for QL. Then B = [0, 1]~ 24
w;u?)e 24 = {2x: xe A} is seen to be amoeba V-generic for Q" by ihe techniques
or (1).

By similar methods we may establish the following.

THEOREM 2.4. (i) If A is an amoeba V-generic subset of R for P then A0, 1]
is amoeba V- generic for Q", and V[A] also contains V-generic subsets of P and O,
all a.

(ii) If & is a V-generic subset of P", then V[F] contains V-generic subsets of o
and QF, all o,
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Proof. The only additional point to note is that the trick of intersecting may not
work if the measure of A is too great. In this case, one applies a contraction (by
Be(0,1) lying in V) initially so that its measure is less than the relevant o.

We have now shown how to pass from amoeba-generic sets of fixed measure
to ones of variable measure (in most cases). Another method will show how to pass
from amoeba-generic sets of variable measure to ones of fixed measure. .

THEOREM 2.5. Let A be an amocba V-generic subset of R for P of measure < 1
and let x = sup{y: p(4v (0, M) <1}, Then A0 (0, x) is amoeba V-generic for Pl

Proof. For any (p, &) e P" let f(p, &) = sup{y: p(pu(0,) <1—e+pu(p)}
The idea of this definition is that f(p, &) should be the largest y such that (p, &)
tells us that y <x. Let De ¥ be a dense open subset of P, and let

E={(p,deP™ pu(0,f(p,e)e D}.

We show that E is a densc open subset of P}

Let (p,e) be an arbitrary member of P}. Then by the definition of
x = f(p,9), n(pu,x)) = l—e+u(p) <1, so that pu(0, x') € P}. Let pu (0, x")
=g, €D, and let g = (¢, —[0, x'Du(pn[0, x']). Now u(gq;) <1 since g, ePt, so

() = (g =10, xD+u(pn (0, x7))
< u(gs—(pu (0, x))+u((p o0, x))~ [0, ) +p(pn 0, x))
< 1=(1—e+p(p)+u(p—10, xD+u(pn (0, x)
= e—pu(p)+pp) =e.
Therefore (g, &) e PI.

Let pu(g)<d< min(a, wlgy+(1 —,u(ql))). Then (g, 8) is an extension of (p, 8).
Also, by choice of 8, n(gu(0, x7)) = p(gy) <1—8+p(g). Therefore f(g, 6) > x'
so that gu(0, f(g, 6))=24u(0, x') = g, € D, showing that (g, d) € E.

Since E is dense open in P, E'= {(p, &) e P":u(p) = 1 or (p, &) € E} isa dense
open subset.of P", and so (p, &) € E' for some p, & such that p< 4 and p(4) <e. Since
u(d) <1 by hypothesis, (p, &)eE and pu(0,f(p, 8))e D. Clearly f(p, &) <x,
so the genericity of 4u (0, x) is established.

TugoroM 2.6. (i) If & is V-generic on P™, or PL" for some o, then V%] contains
a V-generic subset of P/l,, any B e&(0; ).

(i) If F is V-generic on O™ for some o< 1, then V[F] contains a V-generic
subset of Qb, any Bela, 1).

§ 3. Some isomorphisms. As remarked in Theorem 2.1, Pl and P,§ are trivially
isomorphic and so are PI* and P}, for any «, B (0, ). We had to work slightly
harder to establish the isomorphism of P and PL, and that proof illustrates some
of the ideas needed in the construction of isomorphisms between Q:, and Q},, and
between Q", QI and QF for a, Be (0, 1). Cichori remarked that B = RO(QY)

o*
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and C = RO(Q},) are “locally isomorphic™, in the sense that if b & B, ¢ & C are non-
zero then there are nonzero b’ < b and ¢’ < ¢ such that B and C are isomorphic
below b’ and ¢’. The problem therefore was to turn these local isomorphisms into
a single isomorphism.

LemMa 3.1. Suppose that S is a countable dense subset of (agy, o), where
1-+/ l—a<a,<a<l. Then there is a maximal antichuin A of QY such that
A= {4 s€ S} where each A is countably infinite, and for cach s, if p € A, then
w(p) =s.

Proof. Firstly let {p,: new} be infinitely many independent open subsets
of [0, 1] of measure oy. The point of the choice of a, is that the p, are then pairwise
incompatible in QL. For if m#n, w(puup) = 1—(1~ap)® >a. Hence
A" = {p,: new} is an antichain in Q). Now S is countable, s0 we may lot
A" = U{4s: se S} where the 4; are infinite and pairwise disjoint. If p € 47, let p’ be
an extension of p of measure 5, and let 4" = {p': pe 4}. Then 4" is also
an antichain. Finally, let 4 be an antichain of QY containing 4"/, maximal subject
to the measure of each of its members lying in S. Since such elements form a dense
subset of QF, A is 2 maximal antichain of Q.

LemmA 3.2. Let a, (0, 1). Then there are of, B’ such that

I-Jmsa’«x,

1- \/T:[)K p<pf and 9‘:«% = [f—:ﬁ:
- |

Proof. Assume without loss of generality that asc f. Let
1-B
Jiss

Smce 0<a<1 1—o0 < vI—a. Thus 1-V1—a<a Also, since 0<a <1,
\/1 = \/Ij_,and s0 1—;5”--\-/1—-—— < VI- ﬁgwmgl—~\/l~ﬂ< B'. Now
1< ———l_——— , and thus

l—u
Vi-e

o =1-+I-a and p =

B = 1-~Jm<1—(1—ﬁ>=
Finally,
1-—zx= —a 1-8 1-8
Y T O N iy
from which it follows that
a—a’ _ p—p
1—o' 1-p
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Tazorem 3.3. f @, fe (0, 1) then RO(Q)) = RO(Q)).

Proof. The key to the proof is Cichof’s remark that if
a=pup) _ f-me) _
T—p(p)  1-nlg)
where p € QL and g € Q},, then the extensions of p in RO(QL) are isomorphic to the
extensions of ¢ in RO(Q},). This is clear intuitively, and is proved as in Theorem 2.2
by showing that cach set of extensions is isomorphic to RO(Q}). The measure of the
set “left over” by p is [ u(p) and w—pu(p) is the remaining measure which may

be covered.
Now let us choose «', ' by Lemma 3.2 such that

1- \/_1“:&<oc’<a, 1——\/1:73</3’<[)‘, and T ﬁ——-ﬁ
_ul 1 — ﬁ/
Let § be any countable dense subset of (o, ®), and let ¥ be the map given by
B(x) = cx+d, which takes ¢’ to " and a to f (qo that ¢ = .'[i.:/_}_ nd d= op Hoi ﬁ).
o— a—o
. -~ B’

Let T = &(S). Then T'is a countable dense subset of (§', ). Also smce 1 /3 2/ ,
oo —aff o' = f~f, so that 1 ~d = ¢. Thus, for each s€ S,

p-0(s)  Do)—d{s) _ ela—s) o-—s

1-9(s)  1—9() T1—es—d 1—s

By Lemma 3.1 there are maximal antichains 4 = |J 4, and B = U B, of Q!
ses
and Q,, respectively such that [4,] = |B,] = Ny, and members of 4, B, have measure
B—0(s) oa—s

s, trespectively. Let o map 4, 1-1 onto By, for each 5. Since =5 © s

to an isomorphism between dense subsets of RO(QY) and RO(Q,,) by Cichoii’s
remark.

TuroreM 3.4. RO(Q™ and RO(OM) for we (0, 1) are all isomorphic.

Proofl., Asinthe proof of Lenuna 3.1 it is clear that O™ has an infinite maximal
antichain. Morcover, D = {(p, &) & Q": ¢ <1} is dense open in Q" so if 4 is an
infinite maximal antichain of ., 4 will also be a maximal antichain of Q". By the
methods of 3.3 it is sufficient to show that any bijection between these antichains
can be extended to an isomorphism between the algebras. Now the algebra below
(p, ®) is isomorphic to Q) where f = ng))
any «, fe (0, 1), RO(QY) = RO(Q)).

LumMMA 3.5. Let «, fe(0,1). Then there are countably infinite families
U = {U;: new} and v = {V,: new} of open intervals such that

, ¢ extends
K

so it is sufficient to show that for
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@) U U, is dense in (0, %) and UV, is dense in (0, ),

new Hew

@me#En->U,nU,=V,nV, =0,

(i) i (v, 8) e ULV then 1-J1-6<y <3,

@v) if (v,0)e¥ then there is (y',d8'Ye?" such that ALt i and

A S

similarly if (y', 8") eV is given.

Pro?l; Suppose a<f. Let oy = and a,,. = 1”\/\1.:&:. Then 1-a,
= (1-0)"*", so (u,) is monotonic decreasing tending to 0. We ot

U = {(‘xuvf-lv 05,,): ne (D} .

Then (i), (ii), (iii) hold for 4.

. We define f; by transfinite induction on & as follows. Firstly fi, = f, If Py is def-

ined for all £ < 4 where 2 is a limit ordinal, we let §, = inf,. Otherwise suppose Be
E<a "

has been defined, and f; > 0. Then for some n, Be = o,. Let n be the least such, and

1B,

et i . ‘
ot Bery =1 N Since 0<1~a, <1, Bey. <1 ~(1~Bs) = fi, 50 the sequence

is monotoni i . I—a
(B2 ic decreasing. Also, as &, ..y <0, < B, I= <=ty = \/1 — 0%, SO

1-8,

0< 1—-\71— o = Bz+1. Thus (B is a monotonic decreasing sequerice of non-
n

negati\f/e numbers, and so B, =0 for some countable ordinal & We let
V" = {(Bes1, ./.35;): £e0,}, so that ¥ is a countable family. Clearly (i) and (ii) hold
for ¥7, and (iii) holds, since from a,< Beand 0 <1—a, <1 it follows that

__1=5 1-py
Vi-p; Vi-a,

Finally we have to establish (iv). If (y, 5) € ¥ then (7, 6) = (Bys1, By) for some ¢,

1-V1-B, =1

<1-

= Pu1 < Be -

1-§
and fgy; = 1— \/1_5“ for some 7. Thus
oty )
1— ~ :
ﬂg = \/1-O€ = 1—=% = ”}“ﬁm , ﬂ'ﬁ—"ﬁﬁ'“ Oy Oy .
1=PBeyy " - > and =
ln‘“u Ol 1 1""/‘4.{.1 1"‘“06,,.|.1

follows. _Con‘ver.sely we have to show that for any n there is some & such that n is
he least satisfying o, < ;. Since inf Bs = 0, there is a loast &' such that Pur <ty
£e0pn . '

As e < B, £ must be a successor 3
, or, so we let & = £41 and <o, < :
the least such that o, < Pz Then P <& S fi Lt m b2

e K ]
1—o h

m

== By,

GCm+1 = 1_'\/1"'05,,, = 1—-»-—1--0("‘ ;
: = O

son<m- i = .
m+1 giving m = n. In other words, n is the least satisfying o, < ff;, as desired.
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We may now conclude the proof of Theorem 3.4. Let % = {U,: new} and
¥ = {V,: ne w} be countable families as provided by Lemma 3.5. For each z, if
U, = (o, o), let 4, be an infinite family of open subsets of [0, 1] whose members
are independent of measure o, Then as 1 — V-0, <o <a,, 4= {(p,a): pe 4,}is
an antichain of QM. Moreover if m # n, members of 4, and 4, are incompatible,
since (o, %,) and (a, o;,) are disjoint. Hence 4" = U {4,: ne o} is an antichain
of O Tn a similar way an antichain B' = () {B;: ne o} is chosen.

Let I = {f"n"}f}-: ne co}. By the choice of % and ¥, if ¥" = {(B;, Bn): n € 0},

1—d,

7
we also have I' = {ﬁl-"-—g" ne o)}. For each y e I', let n = n(y) € w be such that
—B,
o, — o)
Y= 1" " and let S, be a countable dense subset -of (e, ). For arbitrary m

n

Oy — 0(, .
there will be a unique n such that n = n(y) where y = ~1~'——--,1'3. Let 9, be the linear
; —

mapping taking oy to o, and «, to a, and let S, = §,,5,. (In particular this implies
that S, = ;). Similarly for arbitrary m there is a unique n such that n= n(8) where
/”m"ﬁ:n

1-8,’
to Bp, and «, to B,.

As |4]] = no we may write 4, in the form {J {4,: r,s€ S,, r <s} where the 4;,
are infinite and disjoint. For each (p, &) € 4/ let (p', &') be an extension of (p, &)
such that pu(p’) = r& e = s. Let A" be an antichain of O™ containing every such
(p', &) maximal subject to all its members being of the form (g,08) where
@3n) (u(q), 6 € S,). Now since U U, is dense in (0, a) the set of all such (g, &) is dense

neow
in QM so A" is a maximal antichain of Q. Also for each n, and r, s € §, with r <s,
Al ={(g.0)ed": pg) =r&d= s} is countably infinite. Let us fix enumerations

of Al for each such r, s. .

In a similar way we choose a maximal antichain

o= and we let T, = @,,S; where @,, is the linear mapping taking Oy

B = {B:r<s,rseT,,new}

of Q) such that whenever (¢, 6) & By, u(q) = r&8 = s and |BY = 8o, and fix
an enumeration of each such By

! DC,,—‘OC’ ﬁn_ 1’1
For yel let M, = {n: -iM-TXT" = y} and N, = {n: — {’T = yl . Then
Wy “Pn

1<|M,), |N,| < 8. Let F, be a 1-1 map from M,xw onto N,xw. The -1 map
9 from A" onto B is now given as follows. For (p, &) e 4" let (p, ¢) be the nth
member of A7, whete r, s&S,, and let F(m,n) = (m',n), where me M,. Then
d(p, &) = the nth member of Blly, whete 7’ = @, (r) and 5" = O(5)-

By definition of @y, 7', 5" € Ty and r' < s'. The main point is to check that
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s'—=r' s—r . L -
-7~ 15 which means that the algebras in RO(Q,) below (p,¢) and

in RO(QJ" below #(p, ¢) are isomorphic. This is proved as in Theorem 3.3.

o § 4. The localization algebra and the bounded to unhounded case. Using = to
mdl.cate the existence of an isomorphism between the regular open algebras of two
gonons of forcing, and P - @ to indicate that Q is embeddable in P, the following
is what we have so far established.

Pﬂ’- Pl = pllmplt

a}, =m0l = 0" =g

We conclude by fitting LOC into the picture as far as possible, and by showing how
to pass from Q! to P
Pl

@l ~~»L0c

The tentative arrow =«----- > indicates that we can establish some connection in
that direction, though not embeddability. Thus if B = RO(QY), ¥® contains a “poor
man’s V-generic set” on LOC. Let us say that a function ¢ e T [w]=*" is 7~ /ocaiizing
%f for any Few®nV, {n: f(n) ¢e,} is finite. The key pro per;;r:a)f a V-generic localiz-
mg.funcuonis thatitis V-localizing, but it is easy to construct V-localizing functions
which are'not V-generic localizing. Tndeed it is not clear that V] has to contain
a V-generic localizing function whenever ¢ is V-localizing. Hence the dotted arrow.

THEOREM 4.1. Let X be amocha V-generic on Qi. Then if {J,;: n,ic w,n22}
are independent open subsets of [0, 1] such that u(J,) = :—Z;]:w] s the fumction @ given

by ¢n = {iew: J,,S X} is V-localizing and lies in TT [w]=%.

newm

Proof. Firstly we show that |g,| < 2" for cach . Forn <2, ¢, = @ so this is

clear. For n>2 let X be a finite subset of ¢,. Then since [ ]~ - ]' o S IKL
" T i = gn=1

-1 _ 1\
TK[ = <1* 5,7:*1-) = 1“!¢([LL-’;:;)> LX) ==

and hence |KX|<2", showing that [pal < 27
Now letfe @ ¥, = 1 {n: 1 iy find i el
o thi 4 Ir; ci;nsci letp nl{lp €0y I{n. sy % P} Is finite], 1 is sufficient
open. Let pe Qy. Then u(p) <4 so for some n,

izn

1
ZZTi < $—~u(p). and qe? where ¢ = pu Virw: iz}

icm

Connections between different amoeba algebras 149

This argument is a modification of that in [8, p. 610]. Fremlin suggested the use
of independent sets to deduce the cxistence of a P-localizing function from
a V-generic set on Qf} rather than Pj.

In the other direction, genericity can be cstablished.

THEOREM 4.2. Suppose that ¢ is V-generic localizing. Let ", be the set of finite

. 1 ,
unions of open intervals with rational endpoints of measure < iR and let {I,;: i€ w}

enumerate ¥",. Then X = ) {I,;: i€ @,, new} is amoeba V-gencric on Pu
Proof. Firstly we observe that p(X) < oo since

, , [ul
u(X)sg ) te g newl< » Zm=2.

Now for any pe LOC, let X, = U {I,;: iep,,new}, and let

"_[ n
8, = u(X,)+ Z (—'ZITIZ‘I .

neo

The same argument shows that u(X,) and ¢, are finite, and clearly u(X,) <¢,. The

idea is that the information given us by p about X is precisely that X, X & u(X) <e,.
Let D e V be a dense open subset of P¥, and let £ = {pe LOC: (X, ¢,) € D}.

We show that E is dense open in LOC. Let p e LOC. Now (X, &,) € PY, 50 it has

an extension (¥, 8 in D. This means that X,& ¥ & u(¥) <& <s,. Since p(¥)<zg,

2
there is some N such that p(¥) <u(X)+ <4~,Il—71|) Hence we may express ¥
i<N

e e . N . 2i"1]7r|

in the form X,u U {J;: i< N} where each J; is open and of measure < S

The expression now has to be modified. Bach J; may be written in the form

U {10 je U v K, where |Uj| = 2'—|p,| and K, has arbitrarily small measure. We

4 , v 4 [
choose K so that u(K)) < YT for cach /. Then y(MUNKi) < T = st:iz, so that

we may write J K; = U {fugy: N<i} We let
<N

_[pou; i<N,
L=\ puin) N<iL

Then X, = Y. Since ¢ is an extension of p, &< ¢,. Finally we extend ¢ to ¢" if
necessary (i.e, if ¢ <s,) by adding in finitely many new points so as to bring &,
below & while keeping (X, — X,) small, (This is the rcason we included sets of

L, . 1 .
measure < 7 in 7, and not just those of measure equal to 7 ) Thus ¢’ is an exten-

sion of p lying in E.
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Since E is dense open, and ¢ is V-generic localizing, p € E for some p such that
(Yn) p,<@,. Thus (X,,e,)e D and as X,SX and p(X) < s, this establishes the
amoeba V-genericity of X for P".

THEOREM 4.3 (Fremlin). Suppose that X is amoeba V-generic for Q;, and let
¥ys Iy be as in Theorem 4.2, where in addition we assume that each member of ¥,
occurs infinitely often in the enumeration {I,;}; e« If {Tyi}n 160 Ar€ independent relatively

1
open subsets of [0, 1] such that p(J,) = I then

Y=U{Linicow, u(X~71,) =0}
is amoeba V-generic for P™.
Proof. For pe Q) let ¥, = U {Z,;: u(J,;—p) = 0} and
e, = sup{u(¥): pcqe 0§}.

The idea is that, as in the proof of Theorem 4.2, (¥,, ¢,) lies in P" and is precisely
the information about ¥ given us by p. The proof is carried out by a series of lemmas.

Levva 4.4. If pe @y then p( ) {Z;: m>m, p(J,—p) = 0}) <4/2" for each m.
Proof. Let U, = {i: u(/,;—p) = 0}. Then

1 1 |Un|
< 1=p(p) < 1=a(U {2 i€ T,)) = (1,. i‘ﬁ)

2
so that ‘ » _
LA 2"“[<1+ 2’—U-I1>~1] < 2"“[(1— i%;l)_lm—l]< 2Hp1] = 2t
Therefore
#U L nzm, p—p) = OF) = p(U {42 i€ Uy, nzm)) < i%; = 24!
=

We now let K, (p) = {(n,1): n<m,iew, ulJf,—p) = 0} where pe Q; and
me .

LemMa 4.5. If pe Q) and m,ne o there is ke o such that
Ko Jo) = K(p)0{(n, 1)} for every j2 k.

. Proof. Suppose on the contrary that {j: K,(puJ,)) # K,( p{@,N)}} is
infinite. For each j in this set let

icm
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(.nj’ ij) € I(m(p U'Inj) "(Km(p) Y {(n ,])}) .

Case 1. For some (', i), 4 = {j: (', i) = (n;, i;)} is infinite. Thus if je 4,
p((d) = (PO T,p) = 0 & p(Ty—p) # 0 & (', 1) # (n, /). We have

M(("l:’l""’nj) —p) =0
for each je 4 so that

I“L( U (Jn'l_"',llj) ”’p) == :u((',n’i— ﬂ Jnj)_p) =0.
Jjed Jjed

But as 4 is infinite and the J,; are independent, u(jﬂAJ,,j) = 0, giving p(Jyy—p) = 0,
€
a contradiction.

Case 2. For each (#', 1), {j: (0, i) = (ny, i)} is finite. Then there is an infinite
set A such that if j,j’ € A with j % j', (., i) 5 (n;, i) and (n,77) # (n;, 1), (mye, B30)-
Thus {J,,;,: je A} U{J,;: je 4} is independent. For je 4, 15, ~Tu)—p) = 0
as in Case 1, so as {J,,;,—J,;: jeA4} is an infinite independent family,
(U (5= ) = 1 giving u(p) = 1, a contradiction.

Jjed

LemMa 4.6. Suppose that p, V, n, 8, W are such that pe Q;, Ve, neow,

1
5> 0, W is a finite family of measurable subsets of [0, 1], and ,u(p)+5m<%. Then
1 .
there is p' e Q; extending p such thit 7'c Yy, u(p) < p(p)+ N (Y — (Y0

1
UVN<6, and for every We W, u(W—p') > (1-— E;)M(W*p).

2 .
Proof. Let m be such that b < 8. By Lemma 4.5 there is k such that

K, (pul,) = K, (p)u{(n,/)} for every j > k. By independence of the J,; there is &
1

such that for every Wew and jzk, p(W-p)nl )< ?;¢(W—p). Let

j=max(k, k") be such that ¥ = L; and let p’ = pUJ,;.

Then p(p") < pu(p)+ ¥ <% and for every We ',

w(W-p)z (1 - él,,)'#(W—P) .
Also, since K,(p') = Kn(p) V{(n, 1)},

Yy Y,ulu U {I;: r>mico, p(u—p) =0}

P

from which by Lemma 4.4 we find that #(Yy—(Y,u )< 42mri<e.
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LemMma 4.7. Suppose that p, V and & aie such that p e Q’}, 4 is an open subset

of R, and 6 >0, and suppose that u(p)+ — <-}; and p(V—Y,) < ~-. Then there is

2“
p'€ 0} extending p such that V<Y, and WY =V)< o+ p( YI,—— V).

Proof. Since u(V-Y,) < - there is a sequence (V) such that ¥ ey

ntk

and V—Y,< |J ¥;. By Lemma 4 6 we may choose inductively a sequence (p,) of
I:Em
members of Qi_ such that
P=DSEMENSE ... WVET

Prot1 *

1 1
WPy 1) < p(p) + AFEFT S < p(p)+ - o T SRR

)
#(ka-l-l_(ypku Vk)) < i’?ﬁ ,
1
A= Pr1) 2 (1 2,,»,;;)/‘( wi=Pe) . all migk.

, 1
We let p’ =kU Pr- Then u(p") < u(p) + 7 <%,s0p e Q& Since V& ¥,..p» V& Yy
Now we show that ¥, = kU Y. For let m and 7 be such that u(J,, — p') =0, and
ew

let k = max(m, 7). Then if Ik,
1
B =D141) 2 ~ B mi—p1)

so that 0 = - =1 - | 1
u(Ji—p") ,l.?::u('f"” P1)>IQ<1“W) #W—py). Now =

L 1
A ¥ (1— ’z'm)>0- Hence u(/,,—p) = 0, and ¥, = Y ¥y, follows.

We  deduce that
= u(¥Y,~V)+35.

MTy=V) = lim u(¥ = V) S u(¥, = 1)+ sz =

Lemma 4.8. If pe QL and u(Y,) < ¢ there is an extension pofpin Q; such that

&, < 6.

2
Proof. Let m be such that u(Y, )+ = < & We shall choose p'2p in Q}} in such
a way that if p” is any extension of p’ in Q’g, then K, (p") = K,,(p). For such a p" it

4
follows from Lemma 4.4 that B(Y ) < u(y, A > 50 that ¢, <e as required.

icm°®
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The idea in the choice of p’ is to look at those J,; which would be in danger of
becoming subsets of an extension of p, and hence increasing K,,, and to ensure that
each is incompatible in Q; with p’. This is done by adding to p in order to form p’
enough sets of the form J,; for large r. These J,; will be sufficiently independent with
respect to p from the J,; it is desired to avoid, and since we shall have r > m, their
adjunction will not increase the measure of p beyond e.

Let L = {(n,i): n<m, iew, p(J,;—p)>0}. Then for n<m,

. 1
ihm #(—p) = 5.::;(1 —u(p))

by the independence of the J,;, from which it follows that

6 = inf {uC—p): (n,1) €L} >0.

)
Let y > 0 be chosen so that y < min (6 3 - ,u(p))) and let r > m be such
! 1 IAY
that - 2”_2 y. Then (3—p)+i<1— L so for some I, }—y < I_E'Tf <%,
We let

E = [ G<i<IG+D)}

oy
T+—1') e[} 3+y1.

foreach je w. Thus the E; are independent and of measure 1 — (1 ~3

—p(p)) there is ke o such that if izk and

- . 1
Since lim u(J,;—p) = P @

1 .
n<m, p(J;—p)= Z—m(l—ﬂ(p))—y. Now if (n,0)eL then lim u(E;nJ,;—p)
Jr o

<(G+y)u(,;—p) by independence of the E; so that there is jew such that
1(EjnJ,;—p) < G+2y) u(J,;—p) whenever (n,i)eL and i<k. Let py =pUE;.
We now show that if (n,i)e L then pu(J,;—p}) > 7.

Case 1. If i<k then
1(ni=p0) = pp—p)— n(E;0\Jy—p)
2 u(i—p)—~E+2y) u(Ju—Pp)
> 8(3—2y)>3y—2y8 (by choice of ¥)
=7, (asd<gl).
Case 2. If i>k then

2i—pD) = u(li—p) —n(E;ntyy)

1 1
= 5,7;:1-(1—#(?))‘“7—(%+7)5;:;

¢ — Fundamenta Mathematicae 130.2
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11(%—u(p)—v)~‘v

2”1(2"”3 y—y)—y (by choice of y)

’y, (as mzn).

Now u(p}) = ,u(E) >& so there is p € Q% with pep’Spy having measure greater
than %—v. This is the desired p’, and we have to show that if p'sp”’ QI then

K, (r'") = K,(p). In other words we have to show that if (m,Dyel, p(y—p>0.
But this follows since

Rni=p") 2 1 —p1) — u(p" p)>0.

We are now able to complete the proof of Theorem 4.3. Let D& V be a dense
open subset of P, and let E = {pe Q,1~ (Y, 2,) € D}. We have to show that Eis
dense open m Q* letpe Q,} be arbltrary Then from Lemma 4.7 we deduce that
(Y, ap)eP 3. e there is an extension p’ ofp such that p(Y,)> u(Y,), giving

1 1
u(Y,) <g,). Let n be such that u(p)—l— - <%, and let §; = mm(c,,. Y+ ;ﬁ>
Then (Y, 8,) is an extension of (¥, s Ep) iN P". As D is dense open in P™ there is an

. ]
extension (¥, 5) of (¥,, 6;) lying in D. By Lemma 4 7. smcL (Y~ Y,) < = there

n

is an extension ¢ of p in Qlr such that Y= ¥, and u(Y ) <e—p(¥)+ /t(Y,, Y)
= g—u(Y). Thus u(Y,) <e. Finally by Lerama 4.8 there is an extension q of ¢
in Q,L such that e, <e. Putting these together, ¢’ is an cxtcnslon of p in Q& such
that (Y, &) is an extension of (¥, ) in P, so that (¥, ¢,) € D showing that
q'eE. o

 Since E'is a dense open subset of ‘Q}_J‘ lying in V, pe E for some p< X.' Thus
(Y,, 8,)e D and since it is clear that Y,,S Y&u( Y)<s,, this establishes the
V-generlcny of ¥ for P%." "1
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