THEOREM 3 (CH). If the weight of \(X \) is not greater than \(\omega_1 \), \(X \in \mathcal{L} \) and every compact subset of \(X \) is a \(G_\sigma \)-set then \(X \) is \(\sigma \)-compact.

Proof. By Theorem 1, \(X \) satisfies (\(* \)). Put \(f(K) = K \) for every \(K \in \mathcal{H}(X) \). Then it follows from (\(* \)) that \(X \) is \(\sigma \)-compact.

THEOREM 4 (CH). If the weight of \(X \) is not greater than \(\omega_1 \), \(X \in \mathcal{L} \) and \(X \) does not contain uncountable compact subsets then \(X \) with the topology induced by \(G_\sigma \)-subsets, with respect to the original topology, is a Lindelöf space (see [N], for a related result).

Proof. It is enough to observe that if \(F = \{ x_n : n < \omega \} \) is a compact subset of \(X \) and \(x_\alpha \in G_\sigma \) is a \(G_\sigma \)-subset of \(X \) for \(n < \omega \) then there is a \(G_\sigma \)-subset \(H \) of \(X \) such that \(F \subseteq H = \bigcup \{ G_\alpha : n \in \omega \} \).

Remark 1. Theorem 3 may be improved a little bit, namely the following statement is true if the weight of \(X \) is not greater than \(\omega_1 \), \(X \in \mathcal{L} \) and every compact subset of \(X \) is of the \(G_\sigma \)-type then \(X \) is \(\sigma \)-compact if and only if every metric element of \(\mathcal{L} \) is \(\sigma \)-compact. Hint: Put \(C_n = \{ c \in I : \rho(c, x_n) < \epsilon \} \); with every \(x \in \mathcal{L} \), \(n \in \omega \), define big-sets as non-\(\sigma \)-compact sets and \(I = \{ x_n : n < \omega \} \) \(\subseteq \mathcal{L} \) such that for every \(x \therefore \) there is an \(\alpha \in A \) satisfying \(x_{\alpha n} = x_{\alpha n} \).

Remark 2. It follows from Theorem 4 that \(X \) from [A] does not belong to \(\mathcal{L} \) as an uncountable space without uncountable compact subsets in which every point is of the \(G_\sigma \)-type.

Let me finish this note with the following

QUESTION. Assume that (CH) holds and \(X \) is such that every closed subset of \(X \) of weight not greater than \(\omega_1 \) satisfies (\(* \)). Does \(X \) necessarily satisfy (\(* \))?

Remark 3. Positive answer to this question would yield a positive answer to Michael’s conjecture.

References

INSTITUTE OF MATHEMATICS
Academy of Sciences of Poland
00-956 Warsaw

Received 25 April 1986

Correction to: Adding a random or a Cohen real: topological consequences and the effect on Martin’s axiom

by

Judith Roitman (Lawrence, Kan.)

This paper appeared in Fundamenta Mathematicae 103 (1979), 47-60 pp. and Shelah has recently written to me that there is a serious problem with Theorem 5.3, p. 57. This states that if \(MA_{\aleph_1} \) holds in a model \(M \) then it still holds in \(M[x] \) where \(x \) is a Cohen or random real over \(M \); and if \(MA_{\aleph_1} \) holds in a model \(M \) then it still holds in \(M[x] \) where \(x \) is a Cohen real over \(M \). The statement about \(MA_{\aleph_1} \) is false: Todorčević noticed that when \(x \) is Cohen the statement conflicts with a result of Shelah's that appears in his paper on taking the inaccessible away from Solovay's proof that all sets are Lebesgue measurable (Israel Journal of Mathematics 48 (1984) 1-47 pp.). Shelah then noticed that his result can be modified to show that the statement about \(MA_{\aleph_1} \) is false when \(x \) is random. The problems with the proof of this false theorem are, in the Cohen case, that the auxiliary partial order \(Q \) relies on maximal finite antichains being able to decide nearly everything, when, in fact, they seldom do; in the random case \(Q \) was not carefully defined and, in fact, fails to be transitive.

On the other hand, the second part of Theorem 5.3 — if \(MA_{\aleph_1} \) holds in \(M \) then it holds in \(M[x] \) where \(x \) is Cohen over \(M \) — is true. Perhaps the easiest proof was noticed several years ago by Baumgartner and Tall, and is sketched here.

Recall that \(MA_{\aleph_1} \) is equivalent to the statement \(P(C) \): for every centered family \(\mathcal{D} \) on \(\omega \) of size less than \(C \) there is some infinite \(A \in \mathcal{D} \) with \(A \in B \) mod finite for all \(B \in \mathcal{D} \).

So assume \(\mathcal{D} = \{ B_I : I \in I \} \) is a Cohen forcing name for a centered family on \(\omega \) of size less than \(C \) where \(\mathcal{A} \) is some infinite set and \(A \in \mathcal{A} \) mod finite for all \(B \in \mathcal{A} \). We may assume that \(\mathcal{D} \) is forced to be closed under finite intersections. Let \(Q \) be the set of all triples \(\langle s, t, B \rangle \) where \(s \) is a finite Cohen condition, \(t \) is a finite subset of \(\omega \), and \(s \in B \). The order on \(Q \) is \(\langle s, t, B \rangle \leq \langle s', t', B' \rangle \) if and only if \(s \subseteq s' \) and \(t \subseteq t' \) and \(s \in B' \).

So assume \(\mathcal{D} = \{ B_I : I \in I \} \) is a Cohen forcing name for a centered family on \(\omega \) of size less than \(C \) where \(\mathcal{A} \) is some infinite set and \(A \in \mathcal{A} \) mod finite for all \(B \in \mathcal{A} \). We may assume that \(\mathcal{D} \) is forced to be closed under finite intersections. Let \(Q \) be the set of all triples \(\langle s, t, B \rangle \) where \(s \) is a finite Cohen condition, \(t \) is a finite subset of \(\omega \), and \(s \in B \). The order on \(Q \) is \(\langle s, t, B \rangle \leq \langle s', t', B' \rangle \) if \(s \subseteq s' \) and \(t \subseteq t' \) and \(s \in B' \). So assume \(\mathcal{D} = \{ B_I : I \in I \} \) is a Cohen forcing name for a centered family on \(\omega \) of size less than \(C \) where \(\mathcal{A} \) is some infinite set and \(A \in \mathcal{A} \) mod finite for all \(B \in \mathcal{A} \). We may assume that \(\mathcal{D} \) is forced to be closed under finite intersections. Let \(Q \) be the set of all triples \(\langle s, t, B \rangle \) where \(s \) is a finite Cohen condition, \(t \) is a finite subset of \(\omega \), and \(s \in B \). The order on \(Q \) is \(\langle s, t, B \rangle \leq \langle s', t', B' \rangle \) if \(s \subseteq s' \) and \(t \subseteq t' \) and \(s \in B' \). So assume \(\mathcal{D} = \{ B_I : I \in I \} \) is a Cohen forcing name for a centered family on \(\omega \) of size less than \(C \) where \(\mathcal{A} \) is some infinite set and \(A \in \mathcal{A} \) mod finite for all \(B \in \mathcal{A} \). We may assume that \(\mathcal{D} \) is forced to be closed under finite intersections. Let \(Q \) be the set of all triples \(\langle s, t, B \rangle \) where \(s \) is a finite Cohen condition, \(t \) is a finite subset of \(\omega \), and \(s \in B \). The order on \(Q \) is \(\langle s, t, B \rangle \leq \langle s', t', B' \rangle \) if \(s \subseteq s' \) and \(t \subseteq t' \) and \(s \in B' \). So assume \(\mathcal{D} = \{ B_I : I \in I \} \) is a Cohen forcing name for a centered family on \(\omega \) of size less than \(C \) where \(\mathcal{A} \) is some infinite set and \(A \in \mathcal{A} \) mod finite for all \(B \in \mathcal{A} \). We may assume that \(\mathcal{D} \) is forced to be closed under finite intersections. Let \(Q \) be the set of all triples \(\langle s, t, B \rangle \) where \(s \) is a finite Cohen condition, \(t \) is a finite subset of \(\omega \), and \(s \in B \). The order on \(Q \) is \(\langle s, t, B \rangle \leq \langle s', t', B' \rangle \) if \(s \subseteq s' \) and \(t \subseteq t' \) and \(s \in B' \).