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Strongly discrete subsets in o*
by

R. Frankiewicz (Gliwice) and P. Zbierski (Warsza\;va)

Abstract. We prove that the statement: “D = D for each strongly discrete subset DS w*
with |D| = w,” is consistent with ZFC+MA. We also give an example of a B-ideal over o which
cannot be extended to a P-point.

0. Tt is well known that if D is a countable discrete subset of the remainder
o* = Blol\w, (Blw] = the Stone-Cech compactification of the discrete space w),
then the closure D in w* is (homeomorphic to) the space ff[w], or equivalently, D is
C*-embedded in w*.

In this paper we turn our attention to discrete sets D < o* of cardinality w,.
Under the consistent assumption 2%° = 2°%, the space fw,] (the Stone—Cech
compactification of a discrete space of cardinality w,) can be embedded into w*.
Hence we may ask whether D = D for discrete D with |D| = o.

Balcar, Simon and Vojtd§ [1981] constructed a discrete set D = w*, |D| = w,,
having the following property: there is a point x € * such that each neighbourhood
of x contains all but countably many points of .D. Obviously, D s 8D for such a D.
Hence we shall consider strongly discrete D in the following sense: there is a family
of pairwise disjoint closed-open neighbourhoods, each containing a single point of D.
Note that each countable discrete set D is strongly discrete. :

The main result of this paper is the following .

THEOREM. Assuming the consistency of the Zermelo—Fraenkel set theory ZFC,
there is a model of ZFC plus Martin’s Axiom in which the closure D of each strongly
discrete set D < w*, |D| = w,, is homeomorphic to D (i.e. D is C*-embedded in a)*)
In addition, 2°° = w, and Blw,] is not a continuous image of w*.

It can be proved, that the theorem fails in 2 model obtained by adding o,
Cohen reals.

1. We represent f3[w] as the space of all ultrafilters over o with the Stone to-
pology. The remainder w* = f[w]\w consists then of all nonprincipal ultrafilters.
The basic open-closed neighbourhoods are of the form 4* = Anw*, for an 4 S,
and A* consists of all nonprincipal ultrafiliers containing the set 4. Let
D = {F,: « <} be a strongly discrete set of cardinality o,. According to the
Taimanov Theorem (Engelking [1968]) in order that D = fD it is sufficient that,
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for an arbitrary E < w;, the parts

T {F, aeE} and {F,;: a¢E}

can be separated by open-closed subsets of w*.

Since, by our assumption, D is strongly discrete there are almost dlSJOlnt sets
- A, w such that 4,€F, for all @ <w,. Consider the following forcing notion
Pz{4,}: the conditions are pairs p = {s,,,», where s,, ¢, are finite functions;

Dm(s,) S E, Dm(t,)sw,\E, Rg(s,),Regt)so
and -
(O] U HMas@]n U [4p(B)] =9
) a&Dm(sp) febm(ty)

The ordering on Pr{4,} is defined as inverse inclusion. Note that since the 4,’s are
almost disjoint, for arbitrary finite domains

a={tg, ., 0} SE and b= {B;,..,BulS0\E,

any s, t ona, b, respectively, form a condition p = {s, ) if only the values of s,  are
large enough. .
Let G=Py{4,} be a generic filter and let

sg=U{s: It (s, DG},

tp=U{t: 3s [{s, ) eq)}.
Obviously, sg: E—w and g w,\E—~ w. Now, if 4= [d \se()] and
B =pl_¢)E[Ap\t6(ﬂ)], then for all xe E we have 4, 5,4 (X E*?Edenotes “almost

inclusion”, i.e. X\Y is finite) and 4; S, B for 8 ¢ Eand An B = @. Thus the open-

closed neighbourhoods A* B* will separate the sets {J 4% and U A} in any model
(23

containing 4, B. After a long enough iteration of separating forungs Pr{d,} we
obtain an extension ¥[G] of a ground model ¥ in which property (T) holds for all
strongly discrete sets D e V[G] and hence our theorem will be valid in V[G].

It is obvious that our iteration should not collapse e, and even more: at each
stage we have to force with a forcing satisfying the c.c.-condition. Generally, a for-
cing Px{4,} need not satisfy the c.c.-condition: let {4,: « < w,} be an almost disjoint
family with the property: for each o <w; and ke w the set

{B<a: maxdynd, <k}
is finite,
If both E and w,\E are uncountable, then clearly Pp{d }coﬂapses ;. Never-
theless, for any such Pg{d,} we shall find, in the course of iteration, an improve-
ment, i.e. a forcing Pg{B,} with B, =4, which satisfies the c.c.-condition.

icm

Strongly discrete subsets ) 175

2. We shall investigate uncountable antichains in Pg{4,}. For a condmon
p =Sty

K= U [d>s@]
xeDm(sp)
and
Ly= U [A/a\fp(ﬁ)]

eDm(ty)

Thus K,NL, = @. For conditions p, g define
p*q = (K,UK)n(L,UL) = (K,nL)U(L,NK)).

If s,us, and #,01,
if pxg # @.

Suppose that Py{4,} contains an uncountable antichain. Using the 4-system
lemma and after some thinning out we can assume that there is an antichain

= {p,: @ <w,;} satisfying the following properties:

Pa*pp # O for all a < f<w,;

max Dm(s,,) < minDm(s,,)

maxDm(z,,) <minDm(z,,);

the domains of all the s, ’s are of the same length: |Dm(s,,)| = [Dm(s,,)|,
for all < B and the same for the z,’s

if Dm(s,,) = {1, ..., ¥a}, then s, (y) = 5,0 fori=1,
similarly for the #,’s

The following lemma states the fundamental property of uncountable anti-
chains.

are functions, then p, ¢ are incompatible if and only

for o < f3;

...nand all < f and

LEMMA. Let C = {p,: o < w,} be an uncountable antichain in Px{A,} as described
above. Then there exist a tree T on [0]~“\{@}, an ordinal y <w, and a function
g: T {p,: «<y} such that for each « >y there is a branch e = {e,: new) of T
such that (1) e, = p,*q(eln) for each n € w and (2) the family {e,: n € w} is pairwise
disjoint. .

Proof. For e, € [w]“"\{@} define

X(eo) = {«>0: po*p, = o}
and let S = {ey: |X(eo)] = w,}. Some of the sets X(ey) can be countable or finite,
so take y, = sup{sup X(eo): e, € S} and write ¥(eo) = X(eo)\po. We have »

o N\yo = U {¥(e): xS},

Let g(eo) = Puegy» Where a(eg) = inf ¥(e,). Now, repeat the process for each
g(eg), ep €S let
X(ep, ey) ={oe Y(eo): pa*qleo) = e}
and
S(eg) = {eo® [X(eo, el = @1}
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If y, = sup{sup X(es, &)t & €S and e; € S(eo)} and Y(eo, ep) = X(eo, e1)\y1s
then we have :
Y(eN\y: = U {¥(eos 1): €1 € S(ep)} for epeS.

Let a(ey, €;) = inf ¥{eo, e;) and write q(20, €1) = Dufeq,ery- Continuing in this way
we obtain a sequence Yo <y <Pz <. of countable ordinals, a sequence Y = w,,
Y(e), Y(eo, 1), - of uncountable subsets of w,, and subsets S, S(ep), S(eg, €1, -
of [w]“*\{@} such that

w\p = U {¥(eo): e €S}
and for each new
y(em b en)\Yn-kl = U {Y(eO$ ares en+1): Cnt1 ES(eOs (] en)} .

Define T = {(€g, > npt €0 €Sy s €€ S(€0s rrs e,—1)} and y = sup{y,: neow}
If o> §, then from the construction there are sets ¢p & S,e € S(eo), e, € 5(eg, 1), or
such that for all ne @, z & Y(eg, -.., €,). Thus e = {¢,: ne w) is a branch of T and

Pa*‘](eo; s en) = €yt -

Also e, = po*Py, 50 if we assume in addition ¢(d) = G, then e, = p,*g(eln) also
holds for n = 0. .
Tt remains to show that the finite nonempty sets e, are pairwise disjoint. Observe

first that we have
e, = q(eln)*p, = q(eln)*q(elm)
Assume inductively that e, ..., e, are pairwise disjoint. We have
ey = (Kgtepmy " Lp) Y (Lgteny N Kpy) -
Now, since 19»Lq(zm K, <K, and KymnL, SL, and K, nL,=9

we have (Kyepmy N Lp) O (U Lygey N Ky = 3. And since
i<n

for m>n.

Kq(eln) ana s queln)
(Kq(c|n) ana)
i<m
n(U qu‘i) nL,) = @. It follows that (KyepNLy) (Vo ve,-q) = 9. Sym-
i<n

and U Kq(e[i)an,‘ ELq(e[,,) and Kq(e]n) nLq(e],,) =@, we have

metrically, Lycm N Ky, is disjoint from eg, ...s €51 and the proof is complete.

Remark. Let § exceed the domains of all the conditions p,, « <y. Then the
branch e = {e,: n& @) corresponding to any p, with « >y can be defined from the
following parameters: T, g and the sets {4;: 8 <7}; p, and the sets

{4;: peDm(s,)uDm(t,)} .

3, As was remarked earlier, the separating forcings Pg{d,}, which we intend
to iterate, need not satisfy the c.c,~condition. Here we prove that any such Pr{d,}
has an improvement; in fact, an improvement will be produced in the course of
iteration in at most w, steps. Hence we consider below a finite support iteration
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P = 3 P,, which should be understood as a fragment of length o, of our “real”

o<y
iteration described in Section 4.

LemMa. Let P = ), P, be a finite support iteration of nontrivial forcings satisfying

x<oy

the c.c.-condition and let G S P be a generic filter over V. If an almost disjoint family
{4 <oy} and a set ES w, are in V, then for each family {F,: ¢ <o} of nltra-
filters in V[G] such that A, & F,, there are sets B, = A, in V[G], B, € F,, such that
P.{B,} is an improvement of Pg{A,} (i.e. Pg{B,} satisfies the c.c.-condition in V[G]).

Proof. It is well known that a finite support iteration of nontrivial forcings
adds a Cohen set ¢ = @ in each sequence of o steps. Thus let 1, be an increasing enu-
meration of all countable limit ordinals and let ¢, e V[G,,,,] be a Cohen set over
V[G,,). Define

B, = {Aan ¢y

ANC,

if ¢,eF,,
if c,éF,.

Thus B, < 4, and B, € F, for each o < ®;. It remains to show that P{B,} e V[G]
satisfies the c.c.-condition V[G]. Assume, on the contrary that there is an uncount-
able antichain {p,: o <w,} in Pp{B,} (with the properties described in Section 2).
Usually, a condition from Px{B,} need not be in Px{4,} but since the domains of the
conditions in the antichain are pairwise disjoint, for each « < e, there is a ke w
such that if

A, = (Bynk)u(4 k) for yeDm(s,)uDm(t,)
and

Z, =B, fory¢ | Dm(s,)wDm(t,)

then each p, is a condition in Pz{A4,}. Moreover, {p,: & < ®,} is then an antichain
in Pp{d4,} because p,xp; calculated in Pz{B,} is a subset of p,*p, calculated in
P;{4,}, and hence p,+p; # @ in P{A,}. We now apply the Lemma of Section 2
to the antichain {p,: « <w,} in Pz{4,} and take a f<w; such that T, v, g,
{Ag: € <7} (of. Remark at the end of Section 2) are all in V[Gy]. Fix an «> § and
let y, < ... <y, enumerate Dm(s,)uDm(t,). Since p, and 4,,, ..., 4,, are in V,
we infer that the branch e = {e,: n€ w) corresponding to p, belongs to V[Gy].
Since f<a<y; <Ay, the set ¢, is a Cohen set over V[Gy], and hence the set

Sye = {e,: &,<8,}

is infinite, where S, denotes ¢, if ¢, & F, and w\e¢, otherwise. After r steps we obtain
an infinite family S,, ... S,, ¢ € {e,: n€ w}. Choose an e, from §,, ... S, e. By the
definition of the B,’s we see that

B,,E—'A,.\e,, for 7 = Y35 0y Vs

and hence p,*q(en) in Py{B,} is disjoint from e,. On the other hand, p,*g(eln)
in Py{B,} is a subset of p,*g(e|n) in Px{4,}, i.e. a subset of ¢,. Hence p,*¢(eln) = O,
2 ~ Fundamenta Mathematicae 129, 3
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which means that p, and g(e|n) are compatible, a contradiction. The proof of the
lemma is complete. ’

4, Now, we can finish the proof of our main theorem. We begin with V' = L
and shall use the following principle <>: there is a sequence (S,: ¢ <w, and
of(#) = w,) such that for each X S w,, the set {a: X = S} is stationary. Let H
be the family of all sets.(in ¥) of hereditary power < w, and f: @, —» H a bijection.
Set H, = f[a] for each &, and T, = f[S,] whencver cf(®) = wy. Then, for each
Y< H, the set {«: YnH, = T,} is stationary.

Bach forcing P, defined below is of cardinality <y, and hence P,-names
under consideration can be regarded as elements of the set H.

Let P, = the Cohen forcing and P, = 3 P, (the direct limit), for each limit

#<u

o<, If of (@) = w, we look at T, and if P, I “T, satisfies the c.c.-condition” then
letP,, ; = P,+T,;andif T, is a disjoint union T, = au e U d of P,-names of an almost
disjoint family, of a subset of @, and of a strongly discrete set of ultrafilters, respec-
tively, and P, I “there is an improvement of P,{a} w.r.t. 4” then let P, = P,*Q,
where @ is a P,-name of such an improvement. Finally, let P, , = P, in each re-
maining case.

Let P= Y P,and let GSP be a generic filter.

o<Wy
Obviously, in V[G] Martin’s Axiom plus 2% = @, hold true. Now, let
D = {F,: u<w;}e V[G]bea strongly discrete sequence of ultrafilters. Fix an almost
disjoint family {4,: a <o} with 4,e F, and a subset E < w,. Then, for some
B<w, both {d,: a<w;} and E are in V[Gs]. The restricted sequence
Dly = {F,nV[G,]: o« <w,} need not belong to V[G,] but it does for many y’s:
the set {y <w,: Dlye V|[G,]} is w,-normal (i.e. it is unbounded in w, and closed
under w,-limits). ‘
To see this let us encode D as

D= {{u,xy: a<wy and x€F,}.
Then the restrictions are of the form
Dly = {{a, x) e D: xe V[G,]}.

‘We choose a canonical P-name D for D which consists of pairs ((oc,x)" V P)s
where x is a canonical name for xS w, pe P and

D(,x) = {peP: a,x),pde D}
is an antichain. Define the subnames D|y:
Dly = {{{&, 2)",pye D: x€ V™ and D(x, x) SP,}
Then Djy is a Pv-name. The set
Cy={y<wy: ¥x,o [x& V™ > D(x, x) <P,]}
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is w,~normal and for ye C; we have
(DNIG,] = Dly,

and thus Dly € V[G,] for each y € C;. Note that then Dy is a strongly discrete se-
quence of ultrafilters in V[G,].

Now we take Pg-names & and e for {4,: @ <w,} and E, respectively. Since
and e are in H and D < H, it is easy to check that the set

C, = {y<w;: (aveuD)nH, = aveu (D)}

is w;-normal, Let C = C; N C,. Applying the principle < and the lemma of the
preceding section, we can find a large enough y e C, with cf(y) = @y, for which
T, = aueu(Dly) and P, I+ “there is an improvement of P.{a} w.r.t. Dly”. Hence
P, =PxQ for a P-name Q of such an improvement. Thus in ¥[G,+,] there
are sets 4, B< w such that in V[G] we have

{F,: ae E}c 4%, {F,;: a¢E}c B*

which finishes the proof of the theorem.

If we wish to conclude, in addition, that S, is not a continuous image of w*
we have to combine our forcing with that in Frankiewicz [1985]. Let B denote the
Boolean algebra contained in P(w,) generated by countable subsets of w;, We add
one more case in the iteration: if cf(¢) = o, and P, I “T, is an embedding of B into
P(w)/fin” then let P,,, = P,+Q, where Q is a Pname of a c.c.c. forcing making
the gap T, (L), for an L in B, indestructible. ‘ :

and A*nB*=0,

5. We conclude the paper with some simple remarks on B-ideals. We include
these remarks here since the method used below is very similar to that in Section 2.
A nonprincipal ideal J over w is called a B-ideal if the following holds: whenever
the sets 4, are in J and
mind, - ©
n

then, for some infinite zS w, ) {4,: neZ}el.

Burzyk [198 -] uses such ideals to construct certain normed linear spaces. Observe
that (the dual of) a P-point is a B-ideal. Indeed, if 4,€J, then there isan deJd
such that A, .4 for each new. Writing e, = 4,\4 we have, for any Zcw,

U{d,: neZ}sdoU{e,: neZ}.
If mind, — oo, then we can find a Z = o such that {e,: neZ } is a disjoint family.
For nany partition Z = Z,UZ,, the sets
U{e,: neZy} and Ufesn €Z}
are disjoint and hence one of them is in J; denote it by Y. Then we have
Ufd,: ne¥}cdulU{e,: neYtel
and hence {4,: ne Y} is in J.

2
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Thus the existence of B-ideals follows, for example, from the Continuum
Hypothesis. Now, it is easy to see that each B-ideal is a P-ideal (but not necessarily
maximal). Indeed, suppose that 4, € J, where J is a B-ideal. We may assume that the

sequence is increasing. If B, = 4,\n, then the B,’s are in J and min B, — 0, and
n

hence, for some Z, B= {J {B,: neZ} is in J. But 4,S4B,< B for each new,
and hence J is a P-ideal. -
Finally, we prove the following

PROPOSITION. Assuming CH, there is a B-ideal, and hence a P-ideal, which
cannot be extended to a P-point. In particular, there are nonmaximal B-ideals.

Proof. The Balcar-Frankiewicz-Mills Theorem shows that the space G(2°)
(the Gleason space of the Cantor set) can be embedded into * as a closed P-set X,
Hence the family

F={dcw: X 4%}

* i a P-filter. If F were extendible to a P-point p then, since {p} = () {d*: 4 ep}
and 4N X # @ for each A € p, we would have p € X, which is impossible, because X
is separable and without isolated points. The dualJ = {w\4: 4 e F}isthen a P-ideal
not extendible to a P-point and, in fact, it is a B-ideal: suppose that 4, J and
min4, - co. Let 4 eJ almost contain each A4, and let e, = 4,\A4. There is an

n
infinite Z < o such that {g,: neZ} is a disjoint family. It is possible to form 2°
almost disjoint subunions {J {e,: neZ,}, for almost disjoint Z, =Z. One of them
is in J, for otherwise we would have 2° nonempty open-closed disjoint subsets of X,
which. is impossible as G'(2”) has countable cellularity.
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Nielsen reduction in free groups with operators
by

Gert Denk and Wolfgang Metzler (Frankfurt)

Abstract. The Nielsen method is generalized to an equivariant situation, in which the variables
of a free group are freely permuted by an operator group G. Critical elements W = A-x(4)2,
x e G ocour, which are analysed in detail. An equivariant Grushko-Neumann Theorem is deduced
and applications to low-dimensional CW-complexes are given.

§ 1. Introduction. Let G' be an arbitrary group, F(ay, ..., a,) a free group of
finite rank, and let F be the normal closure of F in G*F. F is freely generated by
the xa;x~ %, x € G, with G operating on F by conjugation. Alternatively we may
think of F as a free group with basis x(a;)) (& xa;x™"), x € G, which is freely per-
muted by G. The length of an element W of F is understood to be the length with
respect to the (in general infinite) basis x(a;) and is denoted by |W].

If Wiy,.., W, are finitely many elements of F, then we denote by
Gp(Wy, ..., W,,) the subgroup of F gencrated by the W,; by Gp(Wy, ..., W,) we
denote the smallest G-invariant subgroup of F containing the W, i.e. the subgroup,
which is generated by all x(W)), x€ G. (Wi, ..., Wy) is called a G-generating system
of ap(Wi, vy W,). A G-generating system is called (G-) free or a (G-) basis of
Gp(Wy, ..., W,), if the x(W)), xe G, i=1,..,m are free in the ordinary sense.
If a G-invariant subgroup of F has a G-basis, then this subgroup is said to be
G-free.

Gp(Wy, ..., W,) remains unchanged if the m-tuple (Wy, ..., W,) is subject
to Nielsen transformations (NT), i.c. a finite sequence of the following elementary
transformations:

@) W, » Wi for some i (inversion),
) @) W,— W\W, i j (multiplication),
(iii) deletion of some W;, where W;=1.

For (_ii)(Wi, ..., W) we may enlarge this list by
@ (v) Wy— x(W;) for some i, xe G ((G-) conjugation) .
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