Z. Grande

172

Ouvrages cités:

- [1] J. Ewert and M. Przemski, Cliquish, lower- and upper-quasicontinuous functions, Słupskie Prace Matematyczno-Przyrodnicze 4, Słupsk 1983, 3-12.
- [2] Z. Grande, Sur les fonctions approximativement quasi-continues, Revue Roum. Math. Pures et Appl. à paraître.
- [3] Sur la continuité approximative faible, Problemy Matematyczne 4 (1984), 11–18.
- [4] K. Kuratowski. Topologie I. Warszawa 1958.
- [5] J. Oxtoby, Measure and category, New York-Heidelberg-Berlin 1971.
- [6] D. Preiss, Limits of approximately continuous functions, Czech. Math. J. 96 (1971), 371-372.

INSTYTUT MATEMATYKI WYŻSZA SZKOŁA PEDAGOGICZNA Bydgoszcz

Received 31 December 1985; in revised form 20 October 1986

Strongly discrete subsets in ω^*

by

R. Frankiewicz (Gliwice) and P. Zbierski (Warszawa)

Abstract. We prove that the statement: " $\overline{D} = \beta D$ for each strongly discrete subset $D \subseteq \omega^*$ with $|D| = \omega_1$ " is consistent with ZFC+MA. We also give an example of a B-ideal over ω which cannot be extended to a P-point.

0. It is well known that if D is a countable discrete subset of the remainder $\omega^* = \beta[\omega] \setminus \omega$, $(\beta[\omega] = \text{the Stone-Čech compactification of the discrete space } \omega)$, then the closure \overline{D} in ω^* is (homeomorphic to) the space $\beta[\omega]$, or equivalently, D is C^* -embedded in ω^* .

In this paper we turn our attention to discrete sets $D \subseteq \omega^*$ of cardinality ω_1 . Under the consistent assumption $2^{\omega_0} = 2^{\omega_1}$, the space $\beta[\omega_1]$ (the Stone-Čech compactification of a discrete space of cardinality ω_1) can be embedded into ω^* . Hence we may ask whether $\overline{D} = \beta D$ for discrete D with $|D| = \omega_1$.

Balcar, Simon and Vojtáš [1981] constructed a discrete set $D \subseteq \omega^*$, $|D| = \omega_1$, having the following property: there is a point $x \in \omega^*$ such that each neighbourhood of x contains all but countably many points of D. Obviously, $\overline{D} \neq \beta D$ for such a D. Hence we shall consider strongly discrete D in the following sense: there is a family of pairwise disjoint closed-open neighbourhoods, each containing a single point of D. Note that each countable discrete set D is strongly discrete.

The main result of this paper is the following

THEOREM. Assuming the consistency of the Zermelo-Fraenkel set theory ZFC, there is a model of ZFC plus Martin's Axiom in which the closure \overline{D} of each strongly discrete set $D \subseteq \omega^*$, $|D| = \omega_1$, is homeomorphic to βD (i. e. D is C^* -embedded in ω^*). In addition, $2^{\infty_0} = \omega_2$ and $\beta[\omega_1]$ is not a continuous image of ω^* .

It can be proved, that the theorem fails in a model obtained by adding ω_2 Cohen reals.

1. We represent $\beta[\omega]$ as the space of all ultrafilters over ω with the Stone topology. The remainder $\omega^* = \beta[\omega] \setminus \omega$ consists then of all nonprincipal ultrafilters. The basic open-closed neighbourhoods are of the form $A^* = \overline{A} \cap \omega^*$, for an $A \subseteq \omega$, and A^* consists of all nonprincipal ultrafilters containing the set A. Let $D = \{F_{\alpha}: \alpha < \omega_1\}$ be a strongly discrete set of cardinality ω_1 . According to the Taimanov Theorem (Engelking [1968]) in order that $\overline{D} = \beta D$ it is sufficient that,

for an arbitrary $E \subseteq \omega_1$, the parts

(T)
$$\{F_{\alpha}: \alpha \in E\}$$
 and $\{F_{\alpha}: \alpha \notin E\}$

can be separated by open-closed subsets of ω^* .

Since, by our assumption, D is strongly discrete there are almost disjoint sets $A_{\alpha} \subseteq \omega$ such that $A_{\alpha} \in F_{\alpha}$ for all $\alpha < \omega_1$. Consider the following forcing notion $P_E(A_{\alpha})$: the conditions are pairs $p = \langle s_p, t_p \rangle$, where s_p , t_p are finite functions;

$$Dm(s_n) \subseteq E$$
, $Dm(t_n) \subseteq \omega_1 \setminus E$, $Rg(s_n)$, $Rg(t_n) \subseteq \omega$

and

$$\bigcup_{\alpha \in \mathrm{Dm}(s_p)} [A_{\alpha} \setminus s_p(\alpha)] \cap \bigcup_{\beta \in \mathrm{Dm}(t_p)} [A_{\beta} \setminus t_p(\beta)] = \emptyset.$$

The ordering on $P_E\{A_\alpha\}$ is defined as inverse inclusion. Note that since the A_α 's are almost disjoint, for arbitrary finite domains

$$a = {\alpha_1, ..., \alpha_n} \subseteq E$$
 and $b = {\beta_1, ..., \beta_m} \subseteq \omega_1 \setminus E$,

any s, t on a, b, respectively, form a condition $p = \langle s, t \rangle$ if only the values of s, t are large enough.

Let $G \subseteq P_E\{A_n\}$ be a generic filter and let

$$s_G = \bigcup \{s: \exists t \ [\langle s, t \rangle \in G] \},$$

 $t_T = \bigcup \{t: \exists s \ [\langle s, t \rangle \in G] \}$

Obviously, $s_G \colon E \to \omega$ and $t_G \colon \omega_1 \setminus E \to \omega$. Now, if $A = \bigcup_{\alpha \in E} [A_\alpha \setminus s_G(\alpha)]$ and $B = \bigcup_{\beta \notin E} [A_\beta \setminus t_G(\beta)]$, then for all $\alpha \in E$ we have $A_\alpha \subseteq_* A$ $(X \subseteq_* Y \text{ denotes "almost inclusion", i.e. } X \setminus Y \text{ is finite})$ and $A_\beta \subseteq_* B$ for $\beta \notin E$ and $A \cap B = \emptyset$. Thus the open-closed neighbourhoods A^* , B^* will separate the sets $\bigcup_{\alpha \in E} A_\alpha^*$ and $\bigcup_{\beta \notin E} A_\beta^*$ in any model containing A, B. After a long enough iteration of separating forcings $P_E\{A_\alpha\}$ we obtain an extension V[G] of a ground model V in which property (T) holds for all strongly discrete sets $D \in V[G]$ and hence our theorem will be valid in V[G].

It is obvious that our iteration should not collapse ω_1 , and even more: at each stage we have to force with a forcing satisfying the c.c.-condition. Generally, a forcing $P_E\{A_\alpha\}$ need not satisfy the c.c.-condition: let $\{A_\alpha: \alpha < \omega_1\}$ be an almost disjoint family with the property: for each $\alpha < \omega_1$ and $k \in \omega$ the set

$$\{\beta < \alpha : \max A_{\beta} \cap A_{\alpha} < k\}$$

is finite.

If both E and $\omega_1 \setminus E$ are uncountable, then clearly $P_E\{A_\alpha\}$ collapses ω_1 . Nevertheless, for any such $P_E\{A_\alpha\}$ we shall find, in the course of iteration, an improvement, i.e. a forcing $P_E\{B_\alpha\}$ with $B_\alpha \subseteq A_\alpha$ which satisfies the c.c.-condition.

2. We shall investigate uncountable antichains in $P_E\{A_{\alpha}\}$. For a condition $p = \langle s_p, t_p \rangle$

$$K_p = \bigcup_{\alpha \in Dm(s_n)} [A_{\alpha} \setminus s_p(\alpha)]$$

and

$$L_p = \bigcup_{\beta \in Dm(t_p)} [A_{\beta} \setminus t_p(\beta)].$$

Thus $K_p \cap L_p = \emptyset$. For conditions p, q define

$$p*q = (K_p \cup K_q) \cap (L_p \cup L_q) = (K_p \cap L_q) \cup (L_p \cap K_q).$$

If $s_p \cup s_q$ and $t_p \cup t_q$ are functions, then p, q are incompatible if and only if $p*q \neq \emptyset$.

Suppose that $P_E(A_x)$ contains an uncountable antichain. Using the Δ -system lemma and after some thinning out we can assume that there is an antichain $C = \{p_\alpha : \alpha < \omega_1\}$ satisfying the following properties:

$$p_{\alpha} * p_{\beta} \neq \emptyset$$
 for all $\alpha < \beta < \omega_1$;
 $\max \operatorname{Dm}(s_{p_{\alpha}}) < \min \operatorname{Dm}(s_{p_{\beta}})$ for $\alpha < \beta$;
 $\max \operatorname{Dm}(t_{p_{\alpha}}) < \min \operatorname{Dm}(t_{p_{\beta}})$;

the domains of all the $s_{p_{\alpha}}$'s are of the same length: $|\mathrm{Dm}(s_{p_{\alpha}})| = |\mathrm{Dm}(s_{p_{\beta}})|$, for all $\alpha < \beta$ and the same for the $t_{p_{\alpha}}$'s;

if $Dm(s_{p_{\alpha}}) = \{\gamma_1^{\alpha}, ..., \gamma_n^{\alpha}\}$, then $s_{p_{\alpha}}(\gamma_i^{\alpha}) = s_{p_{\beta}}(\gamma_i^{\beta})$ for i = 1, ..., n and all $\alpha < \beta$ and similarly for the $t_{p_{\alpha}}$'s.

The following lemma states the fundamental property of uncountable antichains.

LEMMA. Let $C = \{p_{\alpha}: \alpha < \omega_1\}$ be an uncountable antichain in $P_E\{A_{\alpha}\}$ as described above. Then there exist a tree T on $[\omega]^{<\omega}\setminus\{\emptyset\}$, an ordinal $\gamma<\omega_1$ and a function $q\colon T\to \{p_{\alpha}: \alpha<\gamma\}$ such that for each $\alpha\geqslant\gamma$ there is a branch $e=\langle e_n: n\in\omega\rangle$ of T such that $(1)\ e_n=p_{\alpha}*q(e|n)$ for each $n\in\omega$ and (2) the family $\{e_n: n\in\omega\}$ is pairwise disjoint.

Proof. For $e_0 \in [\omega]^{<\omega} \setminus \{\emptyset\}$ define

$$X(e_0) = \{\alpha > 0 : p_0 * p_\alpha = e_0\}$$

and let $S = \{e_0: |X(e_0)| = \omega_1\}$. Some of the sets $X(e_0)$ can be countable or finite, so take $\gamma_0 = \sup\{\sup X(e_0): e_0 \in S\}$ and write $Y(e_0) = X(e_0) \setminus \gamma_0$. We have

$$\omega_1 \setminus \gamma_0 = \bigcup \{ Y(e_0) \colon e_0 \in S \}.$$

Let $q(e_0) = p_{\alpha(e_0)}$, where $\alpha(e_0) = \inf Y(e_0)$. Now, repeat the process for each $q(e_0)$, $e_0 \in S$: let

$$X(e_0, e_1) = \{ \alpha \in Y(e_0) \colon p_{\alpha} * q(e_0) = e_1 \}$$

and

$$S(e_0) = \{e_0 \colon |X(e_0, e_1)| = \omega_1\}.$$

If $\gamma_1 = \sup \{ \sup X(e_0, e_1) : e_0 \in S \text{ and } e_1 \in S(e_0) \}$ and $Y(e_0, e_1) = X(e_0, e_1) \setminus \gamma_1$, then we have

$$Y(e_0) \setminus y_1 = \bigcup \{ Y(e_0, e_1) : e_1 \in S(e_0) \}$$
 for $e_0 \in S$.

Let $\alpha(e_0, e_1) = \inf Y(e_0, e_1)$ and write $q(e_0, e_1) = p_{\alpha(e_0, e_1)}$. Continuing in this way we obtain a sequence $\gamma_0 < \gamma_1 < \gamma_2 < \dots$ of countable ordinals, a sequence $Y = \omega_1$, $Y(e_0)$, $Y(e_0, e_1)$, ... of uncountable subsets of ω_1 , and subsets S, $S(e_0)$, $S(e_0, e_1)$, ... of $[\omega]^{<\omega} \setminus \{\emptyset\}$ such that

$$\omega_1 \setminus \gamma_0 = \bigcup \{ Y(e_0) : e_0 \in S \}$$

and for each $n \in \omega$

$$Y(e_0,...,e_n) \vee_{n+1} = \bigcup \{Y(e_0,...,e_{n+1}): e_{n+1} \in S(e_0,...,e_n)\}.$$

Define $T = \{\langle e_0, ..., e_n \rangle : e_0 \in S, ..., e_n \in S(e_0, ..., e_{n-1})\}$ and $\gamma = \sup\{\gamma_n : n \in \omega\}$. If $\alpha \geqslant \gamma$, then from the construction there are sets $e_0 \in S$, $e_1 \in S(e_0)$, $e_2 \in S(e_0, e_1)$, ... such that for all $n \in \omega$, $\alpha \in Y(e_0, ..., e_n)$. Thus $e = \langle e_n : n \in \omega \rangle$ is a branch of T and

$$p_n * q(e_0, ..., e_n) = e_{n+1}$$
.

Also $e_0 = p_0 * p_\alpha$, so if we assume in addition $q(\emptyset) = \emptyset$, then $e_n = p_\alpha * q(e|n)$ also holds for n = 0.

It remains to show that the finite nonempty sets e_n are pairwise disjoint. Observe first that we have

$$e_n = q(e|n) * p_n = q(e|n) * q(e|m)$$
 for $m > n$.

Assume inductively that $e_0, ..., e_{n-1}$ are pairwise disjoint. We have

$$e_n = (K_{q(e|n)} \cap L_{p_{\alpha}}) \cup (L_{q(e|n)} \cap K_{p_{\alpha}}).$$

Now, since $\bigcup_{i < n} L_{q(e|i)} \cap K_{p_{\alpha}} \subseteq K_{p_{\alpha}}$ and $K_{q(e|n)} \cap L_{p_{\alpha}} \subseteq L_{p_{\alpha}}$ and $K_{p_{\alpha}} \cap L_{p_{\alpha}} = \emptyset$ we have $(K_{q(e|n)} \cap L_{p_{\alpha}}) \cap (\bigcup_{i < n} L_{q(e|i)} \cap K_{p_{\alpha}}) = \emptyset$. And since $K_{q(e|n)} \cap L_{p_{\alpha}} \subseteq K_{q(e|n)}$ and $\bigcup_{i < n} K_{q(e|i)} \cap L_{p_{\alpha}} \subseteq L_{q(e|n)}$ and $K_{q(e|n)} \cap L_{q(e|n)} = \emptyset$, we have $(K_{q(e|n)} \cap L_{p_{\alpha}}) \cap (\bigcup_{i < n} K_{q(e|i)} \cap L_{p_{\alpha}}) = \emptyset$. It follows that $(K_{q(e|n)} \cap L_{p_{\alpha}}) \cap (e_0 \cup \ldots \cup e_{n-1}) = \emptyset$. Symmetrically, $L_{q(e|n)} \cap K_{p_{\alpha}}$ is disjoint from e_0, \ldots, e_{n-1} and the proof is complete.

Remark. Let $\bar{\gamma}$ exceed the domains of all the conditions p_{α} , $\alpha < \gamma$. Then the branch $e = \langle e_n : n \in \omega \rangle$ corresponding to any p_{α} with $\alpha \geqslant \gamma$ can be defined from the following parameters: T, q and the sets $\{A_{\beta} : \beta < \bar{\gamma}\}$; p_{α} and the sets

$$\{A_{\beta}: \beta \in \mathrm{Dm}(s_{p_{\alpha}}) \cup \mathrm{Dm}(t_{p_{\alpha}})\}.$$

3. As was remarked earlier, the separating forcings $P_E\{A_\alpha\}$, which we intend to iterate, need not satisfy the c.c.-condition. Here we prove that any such $P_E\{A_\alpha\}$ has an improvement; in fact, an improvement will be produced in the course of iteration in at most ω_1 steps. Hence we consider below a finite support iteration

 $P = \sum_{\alpha < \omega_1} P_{\alpha}$, which should be understood as a fragment of length ω_1 of our "real" iteration described in Section 4.

LEMMA. Let $\mathbf{P} = \sum_{\alpha < \omega_1} \mathbf{P}_{\alpha}$ be a finite support iteration of nontrivial forcings satisfying the c. c.-condition and let $G \subseteq \mathbf{P}$ be a generic filter over V. If an almost disjoint family $\{A_{\alpha}: \alpha < \omega_1\}$ and a set $E \subseteq \omega_1$ are in V, then for each family $\{F_{\alpha}: \alpha < \omega_1\}$ of ultrafilters in V[G] such that $A_{\alpha} \in F_{\alpha}$, there are sets $B_{\alpha} \subseteq A_{\alpha}$ in V[G], $B_{\alpha} \in F_{\alpha}$, such that $P_E[B_{\alpha}]$ is an improvement of $P_E[A_{\alpha}]$ (i.e. $P_E[B_{\alpha}]$ satisfies the c. c.-condition in V[G]).

Proof. It is well known that a finite support iteration of nontrivial forcings adds a Cohen set $c \subseteq \omega$ in each sequence of ω steps. Thus let λ_{α} be an increasing enumeration of all countable limit ordinals and let $c_{\alpha} \in V[G_{\lambda_{\alpha+1}}]$ be a Cohen set over $V[G_{\lambda_{\alpha}}]$. Define

$$B_{\alpha} = \begin{cases} A_{\alpha} \cap c_{\alpha} & \text{if } c_{\alpha} \in F_{\alpha}, \\ A_{\alpha} \setminus c_{\alpha} & \text{if } c_{\alpha} \notin F_{\alpha}. \end{cases}$$

Thus $B_{\alpha} \subseteq A_{\alpha}$ and $B_{\alpha} \in F_{\alpha}$ for each $\alpha < \omega_1$. It remains to show that $P_E\{B_{\alpha}\} \in V[G]$ satisfies the c.c.-condition V[G]. Assume, on the contrary that there is an uncountable antichain $\{p_{\alpha} : \alpha < \omega_1\}$ in $P_E\{B_{\alpha}\}$ (with the properties described in Section 2). Usually, a condition from $P_E\{B_{\alpha}\}$ need not be in $P_E\{A_{\alpha}\}$ but since the domains of the conditions in the antichain are pairwise disjoint, for each $\alpha < \omega_1$ there is a $k_{\alpha} \in \omega$ such that if

$$\widetilde{A}_{\gamma} = (B_{\gamma} \cap k_{\alpha}) \cup (A_{\gamma} \setminus k_{\alpha}) \quad \text{for } \gamma \in \text{Dm}(s_{p_{\alpha}}) \cup \text{Dm}(t_{p_{\alpha}})$$

anđ

$$\widetilde{A}_{\gamma} = B_{\gamma} \quad \text{ for } \gamma \notin \bigcup_{\alpha < \omega_1} \mathrm{Dm}(s_{p_{\alpha}}) \cup \mathrm{Dm}(t_{p_{\alpha}})$$

then each p_{α} is a condition in $P_E\{\widetilde{A}_{\gamma}\}$. Moreover, $\{p_{\alpha}\colon \alpha<\omega_1\}$ is then an antichain in $P_E\{\widetilde{A}_{\gamma}\}$ because $p_{\alpha}*p_{\beta}$ calculated in $P_E\{B_{\gamma}\}$ is a subset of $p_{\alpha}*p_{\beta}$ calculated in $P_E\{\widetilde{A}_{\gamma}\}$, and hence $p_{\alpha}*p_{\beta}\neq\varnothing$ in $P_E\{\widetilde{A}_{\gamma}\}$. We now apply the Lemma of Section 2 to the antichain $\{p_{\alpha}\colon \alpha<\omega_1\}$ in $P_E\{A_{\alpha}\}$ and take a $\beta<\omega_1$ such that $T,\ \gamma,\ q,\ \{A_{\xi}\colon \xi<\overline{\gamma}\}$ (cf. Remark at the end of Section 2) are all in $V[G_{\beta}]$. Fix an $\alpha>\beta$ and let $\gamma_1<\ldots<\gamma_r$ enumerate $Dm(s_{p_{\alpha}})\cup Dm(t_{p_{\alpha}})$. Since p_{α} and $A_{\gamma_1},\ldots,A_{\gamma_r}$ are in V, we infer that the branch $e=\langle e_n\colon n\in\omega\rangle$ corresponding to p_{α} belongs to $V[G_{\beta}]$. Since $\beta<\alpha\leqslant\gamma_1\leqslant\lambda_{\gamma_1}$, the set c_{γ_1} is a Cohen set over $V[G_{\beta}]$, and hence the set

$$S_{\gamma_1}e = \{e_n \colon e_n \subseteq S_{\gamma_1}\}$$

is infinite, where S_{γ} denotes c_{γ} if $c_{\gamma} \in F_{\gamma}$ and $\omega \setminus c_{\gamma}$ otherwise. After r steps we obtain an infinite family $S_{\gamma_r} \dots S_{\gamma_1} e \subseteq \{e_n : n \in \omega\}$. Choose an e_n from $S_{\gamma_r} \dots S_{\gamma_1} e$. By the definition of the B_{γ} 's we see that

$$B_{\gamma} \subseteq A_{\gamma} \setminus e_n$$
 for $\gamma = \gamma_1, ..., \gamma_r$,

and hence $p_{\alpha}*q(e|n)$ in $P_{E}\{B_{\gamma}\}$ is disjoint from e_{n} . On the other hand, $p_{\alpha}*q(e|n)$ in $P_{E}\{B_{\gamma}\}$ is a subset of $p_{\alpha}*q(e|n)$ in $P_{E}\{\tilde{A}_{\gamma}\}$, i.e. a subset of e_{n} . Hence $p_{\alpha}*q(e|n) = \emptyset$, 2—Fundamenta Mathematicae 129. 3

179

which means that p_{α} and q(e|n) are compatible, a contradiction. The proof of the lemma is complete.

4. Now, we can finish the proof of our main theorem. We begin with V = L and shall use the following principle \diamondsuit : there is a sequence $\langle S_{\alpha} : \alpha < \omega_2$ and $\operatorname{cf}(\alpha) = \omega_1 \rangle$ such that for each $X \subseteq \omega_2$, the set $\{\alpha : X \cap \alpha = S_{\alpha}\}$ is stationary. Let H be the family of all sets (in V) of hereditary power $\langle \omega_2$ and $f : \omega_2 \to H$ a bijection. Set $H_{\alpha} = f[\alpha]$ for each α , and $T_{\alpha} = f[S_{\alpha}]$ whenever $\operatorname{cf}(\alpha) = \omega_1$. Then, for each $Y \subseteq H$, the set $\{\alpha : Y \cap H_{\alpha} = T_{\alpha}\}$ is stationary.

Each forcing P_{α} defined below is of cardinality $\leq \omega_1$, and hence P_{α} -names under consideration can be regarded as elements of the set H.

Let P_0 = the Cohen forcing and $P_\alpha = \sum_{\beta < \alpha} P_\beta$ (the direct limit), for each limit $\alpha < \omega_2$. If $\mathrm{cf}(\alpha) = \omega_1$ we look at T_α and if $P_\alpha \Vdash ``T_\alpha$ satisfies the c.c.-condition" then let $P_{\alpha+1} = P_\alpha * T_\alpha$; and if T_α is a disjoint union $T_\alpha = a \cup e \cup d$ of P_α -names of an almost disjoint family, of a subset of ω_1 and of a strongly discrete set of ultrafilters, respectively, and $P_\alpha \Vdash ``$ there is an improvement of $P_\alpha * \{a\}$ w.r.t. d" then let $P_{\alpha+1} = P_\alpha * Q$, where Q is a P_α -name of such an improvement. Finally, let $P_{\alpha+1} = P_\alpha$ in each remaining case.

Let $P = \sum_{\alpha} P_{\alpha}$ and let $G \subseteq P$ be a generic filter.

Obviously, in V[G] Martin's Axiom plus $2^{\omega_0} = \omega_2$ hold true. Now, let $D = \{F_\alpha : \alpha < \omega_1\} \in V[G]$ be a strongly discrete sequence of ultrafilters. Fix an almost disjoint family $\{A_\alpha : \alpha < \omega_1\}$ with $A_\alpha \in F_\alpha$ and a subset $E \subseteq \omega_1$. Then, for some $\beta < \omega_2$, both $\{A_\alpha : \alpha < \omega_1\}$ and E are in $V[G_\beta]$. The restricted sequence $D|\gamma = \{F_\alpha \cap V[G_\gamma]: \alpha < \omega_1\}$ need not belong to $V[G_\gamma]$ but it does for many γ 's: the set $\{\gamma < \omega_2 : D|\gamma \in V[G_\gamma]\}$ is ω_1 -normal (i.e. it is unbounded in ω_2 and closed under ω_1 -limits).

To see this let us encode D as

$$D = \{ \langle \alpha, x \rangle : \alpha < \omega_1 \text{ and } x \in F_{\alpha} \}.$$

Then the restrictions are of the form

$$D|\gamma = \{\langle \alpha, x \rangle \in D \colon x \in V[G_{\gamma}]\}.$$

We choose a canonical P-name \underline{D} for D which consists of pairs $\langle\langle \alpha, x \rangle^P, p \rangle$, where \underline{x} is a canonical name for $\underline{x} \subseteq \omega$, $p \in P$ and

$$\underline{D}(\alpha, x) = \{ p \in \mathbf{P} \colon \langle \langle \alpha, x \rangle^{\mathbf{P}}, p \rangle \in \underline{D} \}$$

is an antichain. Define the subnames $D|_{\gamma}$:

$$\underline{D}|\gamma = \{\langle\langle \alpha, \underline{x}\rangle^{\mathbf{P}}, p\rangle \in \underline{D} \colon \underline{x} \in V^{\mathbf{P}_{\gamma}} \text{ and } \underline{D}(\alpha, x) \subseteq \mathbf{P}_{\gamma}\}.$$

Then $\underline{D}|\gamma$ is a P_{γ} -name. The set

$$C_1 = \{ \gamma < \omega_2 \colon \forall x, \alpha \ [x \in V^{\mathbf{P}_{\gamma}} \to \underline{D}(\alpha, x) \subseteq \mathbf{P}_{\gamma}] \}$$

is ω_1 -normal and for $\gamma \in C_1$ we have

$$(\underline{D}|\gamma)[G_{\gamma}] = D|\gamma ,$$

and thus $D|\gamma \in V[G_{\gamma}]$ for each $\gamma \in C_1$. Note that then $D|\gamma$ is a strongly discrete sequence of ultrafilters in $V[G_{\gamma}]$.

Now we take P_{β} -names a and e for $\{A_{\alpha}: \alpha < \omega_1\}$ and E, respectively. Since a and e are in H and $D \subseteq H$, it is easy to check that the set

$$C_2 = \{ \gamma < \omega_2 \colon (a \cup e \cup \underline{D}) \cap H_{\gamma} = a \cup e \cup (\underline{D}|\gamma) \}$$

is ω_1 -normal. Let $C=C_1\cap C_2$. Applying the principle \diamondsuit and the lemma of the preceding section, we can find a large enough $\gamma\in C$, with $\mathrm{cf}(\gamma)=\omega_1$, for which $T_\gamma=a\cup e\cup (\underline{D}|\gamma)$ and $P_\gamma\Vdash$ "there is an improvement of $P_e\{a\}$ w.r.t. $\underline{D}|\gamma$ ". Hence $P_{\gamma+1}=P_\gamma*Q$ for a P_γ -name Q of such an improvement. Thus in $V[G_{\gamma+1}]$ there are sets $A,B\subseteq \omega$ such that in V[G] we have

$$\{F_*: \alpha \in E\} \subseteq A^*, \quad \{F_*: \alpha \notin E\} \subseteq B^* \quad \text{and} \quad A^* \cap B^* = \emptyset$$

which finishes the proof of the theorem.

If we wish to conclude, in addition, that $\beta\omega_1$ is not a continuous image of ω^* we have to combine our forcing with that in Frankiewicz [1985]. Let B denote the Boolean algebra contained in $P(\omega_1)$ generated by countable subsets of ω_1 . We add one more case in the iteration: if $cf(\alpha) = \omega_1$ and $P_\alpha \Vdash "T_\alpha$ is an embedding of B into $P(\omega)$ /fin" then let $P_{\alpha+1} = P_\alpha * Q$, where Q is a P_α -name of a c.c.c. forcing making the gap $T_\alpha(L)$, for an L in B, indestructible.

5. We conclude the paper with some simple remarks on B-ideals. We include these remarks here since the method used below is very similar to that in Section 2.

A nonprincipal ideal J over ω is called a B-ideal if the following holds: whenever the sets A, are in J and

$$\min A_n \to \infty$$

then, for some infinite $z \subseteq \omega$, $\{A_n : n \in Z\} \in J$.

Burzyk [198] uses such ideals to construct certain normed linear spaces. Observe that (the dual of) a P-point is a B-ideal. Indeed, if $A_n \in J$, then there is an $A \in J$ such that $A_n \subseteq_* A$ for each $n \in \omega$. Writing $e_n = A_n \setminus A$ we have, for any $Z \subseteq \omega$,

$$\bigcup \{A_n: n \in Z\} \subseteq A \cup \bigcup \{e_n: n \in Z\}.$$

If $\min A_n \to \infty$, then we can find a $Z \subseteq \omega$ such that $\{e_n \colon n \in Z\}$ is a disjoint family.

For any partition $Z = Z_0 \cup Z_1$, the sets

$$\bigcup \{e_n \colon n \in Z_0\} \quad \text{and} \quad \bigcup \{e_n \colon n \in Z_1\}$$

are disjoint and hence one of them is in J; denote it by Y. Then we have

$$\bigcup \{A_n : n \in Y\} \subseteq A \cup \bigcup \{e_n : n \in Y\} \in J$$

and hence $\{A_n: n \in Y\}$ is in J.

Thus the existence of *B*-ideals follows, for example, from the Continuum Hypothesis. Now, it is easy to see that each *B*-ideal is a *P*-ideal (but not necessarily maximal). Indeed, suppose that $A_n \in J$, where *J* is a *B*-ideal. We may assume that the sequence is increasing. If $B_n = A_n \setminus n$, then the B_n 's are in *J* and $\min B_n \to \infty$, and hence, for some *Z*, $B = \{\} \{B_n : n \in Z\}$ is in *J*. But $A_n \subseteq B_n \subseteq B$ for each $n \in \infty$.

Finally, we prove the following

and hence J is a P-ideal.

PROPOSITION. Assuming CH, there is a B-ideal, and hence a P-ideal, which cannot be extended to a P-point. In particular, there are nonmaximal B-ideals.

Proof. The Balcar-Frankiewicz-Mills Theorem shows that the space $G(2^{\omega})$ (the Gleason space of the Cantor set) can be embedded into ω^* as a closed P-set X. Hence the family

$$F = \{A \subseteq \omega \colon X \subseteq A^*\}$$

is a P-filter. If F were extendible to a P-point p then, since $\{p\} = \bigcap \{A^* \colon A \in p\}$ and $A \cap X \neq \emptyset$ for each $A \in p$, we would have $p \in X$, which is impossible, because X is separable and without isolated points. The dual $J = \{\omega \setminus A \colon A \in F\}$ is then a P-ideal not extendible to a P-point and, in fact, it is a B-ideal: suppose that $A_n \in J$ and $\min A_n \to \infty$. Let $A \in J$ almost contain each A_n and let $e_n = A_n \setminus A$. There is an infinite $Z \subseteq \omega$ such that $\{e_n \colon n \in Z\}$ is a disjoint family. It is possible to form 2^ω almost disjoint subunions $\bigcup \{e_n \colon n \in Z_a\}$, for almost disjoint $Z_\alpha \subseteq Z$. One of them is in J, for otherwise we would have 2^ω nonempty open-closed disjoint subsets of X, which is impossible as $G(2^\omega)$ has countable cellularity.

References

- 1980] B. Falcar, R. Frankiewicz and C.B. Mills, More On Nowhere Dense Closed P-sets Bull. Acad. Pol. Sci. 28, 295-299.
- [1981] B. Balcar, P. Simon and P. Vojtáš, Refinement Properties and Extensions of Filters in Boolean Algebras, Trans. Amer. Math. Soc. 267, 265-283.
- [198 ·] J. Burzyk, An Example of a Noncomplete N-Space, to appear.
- [1968] R. Engelking, Outline of General Topology, PWN-North Holland, Warszawa-Amsterdam 1968.
- [1985] R. Frankiewicz, Some remarks on embedding of boolean algebras and topological spaces, III. Fund. Math. 126, 63-68.

Received 27 January 1986; in revised form 20 August 1986

Nielsen reduction in free groups with operators

b

Gert Denk and Wolfgang Metzler (Frankfurt)

Abstract. The Nielsen method is generalized to an equivariant situation, in which the variables of a free group are freely permuted by an operator group G. Critical elements $W = A \cdot x(A)^{-1}$, $x \in G$ occur, which are analysed in detail. An equivariant Grushko-Neumann Theorem is deduced and applications to low-dimensional CW-complexes are given.

§ I. Introduction. Let G be an arbitrary group, $F(a_1, ..., a_n)$ a free group of finite rank, and let \overline{F} be the normal closure of F in G*F. \overline{F} is freely generated by the xa_ix^{-1} , $x \in G$, with G operating on \overline{F} by conjugation. Alternatively we may think of \overline{F} as a free group with basis $x(a_i)$ ($\stackrel{\frown}{=} xa_ix^{-1}$), $x \in G$, which is freely permuted by G. The length of an element W of \overline{F} is understood to be the length with respect to the (in general infinite) basis $x(a_i)$ and is denoted by |W|.

If $W_1, ..., W_m$ are finitely many elements of \overline{F} , then we denote by $Gp(W_1, ..., W_m)$ the subgroup of \overline{F} generated by the W_i ; by $\overline{Gp(W_1, ..., W_m)}$ we denote the smallest G-invariant subgroup of \overline{F} containing the W_i , i.e. the subgroup, which is generated by all $x(W_i), x \in G$. $(W_1, ..., W_m)$ is called a G-generating system of $\overline{Gp(W_1, ..., W_m)}$. A G-generating system is called (G-) free or a (G-) basis of $\overline{Gp(W_1, ..., W_m)}$, if the $x(W_i), x \in G$, i = 1, ..., m are free in the ordinary sense. If a G-invariant subgroup of \overline{F} has a G-basis, then this subgroup is said to be G-free.

 $Gp(W_1, ..., W_m)$ remains unchanged if the *m*-tuple $(W_1, ..., W_m)$ is subject to *Nielsen transformations* (NT), i.e. a finite sequence of the following elementary transformations:

- (i) $W_i \to W_i^{-1}$ for some i (inversion),
- (1) (ii) $W_i \rightarrow W_i W_j$, $i \neq j$ (multiplication),
 - (iii) deletion of some W_i , where $W_i = 1$.

For $\overline{Gp(W_1,...,W_m)}$ we may enlarge this list by

(2) (iv) $W_i \to x(W_i)$ for some $i, x \in G$ ((G-) conjugation).