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Automorphisms of the Loeb algebra
by

David Ross (fowa City)

Abstract. Let (2, L(£2), L(u)) be a uniform hyperfinite probability space in a sufficiently satu-
rated nonstandard model of analysis. We prove: 1. Every automorphism of the measure algebra
over £ is induced by an invertible point transformation. 2. Some automorphisms are not given by
internal transformations. 3. The restriction of every automorphism to a small subalgebra is given
by an internal transformation.

We discuss applications to ergodic theory and hyperfinite measure theory.

1. Introduction. Suppose T is an invertible transformation, measurable in both
senses, of a probability space (X, B, m). T induces a Boolean (¢-) automorphism
® = &y of the measure algebra [B] associated with (X, B, m). Considerations from
Ergodic Theory motivate the converse question: When is a given automorphism &
induced by a transformation T'?

The answer in “always” for most common spaces (von Neumann [14],
Choksi [4]). For those spaces (X, B, m) and automorphisms @ of [B] not induced
by a transformation, some authors have asked weaker questions, for example (Pan-
zone and Segovia [15]), whether @ is induced by a transformation T of a thick
subset of X.

We consider here the question when (X, B, m) is the uniform hyperfinite pro-
bability space (2, L(£2), L(p)) deeply investigated by Loeb [13], Anderson [1] and
others. This space has a variety of “universality” properties (Anderson [1],
Hoover [9], Keisler [12]) which allow questions about more general or common
spaces to be reduced to questions about Q. (For a further discussion, see Section 5.)

Our main result, Theorem 4.1, is that in the presence of sufficient saturation,
every measure algebra automorphism is indeed given by a permutation of €.

Since in application the most useful transformations of Q are the internal ones,
we consider whether the transformation in Theorem 4.1 can always be taken to be
internal. Theorem 4.3 gives a negative answer. However, the restriction of @ to any
sufficiently small subset of [L(®)] is induced by an internal permutation; this is
Theorem 4.4. (Another proof of Theorem 4.4, using Hall’'s “Marriage Lemma”,
appears in Ross [16].)

We give some applications of these results in Section 5. Proposition 5.1 shows
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that hyperfinite spaces can be “pushed down” to an arbitrary Radon space in
a manner respecting a given embedding of the Radon space’s measure algebra into
[L(Q)]. Proposition 5.2, which is motivated by a selection theorem due to
Edgar ([6]; see also Fremlin [7]), reverses this situation, and gives sufficient conditions
under which any complete atomless probability space can be “pushed up” into Q.
The final application uses Keisler’s “probability logic™ ([12], [9]) to lift a theorem
about measure spaces in general (in this case, a measure-algebra ergodic theorem)
to Q, where—as a consequence of our main results—it admits an easy proof.

2. Notation. For (X, %, m) a probability space, and Be 3B, denote by [B] the
equivalence class of B under the relation 4 ~ B if m(4AB) = 0. If A =BY, let
[] = {[B]: BeNA}. The sct [B] is a g-complete Boolean measure algebra under
the operations and measure inherited from B.

If (Y,A,v) is another probability space, and @: [B] — [A] is a Boolean
homomorphism which preserves measure, then @ is a set-homomorphism. (We will
not always assume that the domain of a Boolean or set homomorphism is the whole
algebra.) A set homomorphism of [B] onto itself is a set-automorphism.

A function T: X — Y is B-9 measurable, or simply measurable, if T~ 1(4)e B
for all 4 €. If m(T~'(A)) = v(A4) for all 4, T is measure-preserving. If T is a bijec-
tion from X onto itself such that both 7" and T~! are measurable and measure-
preserving, then 7' is a point-automorphism.

We assume familiarity with nonstandard analysis in general, and Loeb’s hyper-
finite measure construction in particular ([5], [13]). For the duration of the paper we
will assume that the following is true of the nonstandard model of analysis in which
we work:

I. Every infinite internal set has the same (external) cardinality. (Denote it by .
1I. The model is saturated.

Though Property (I) holds in any reasonably well-behaved model, the second pro-
perty (which implies the first) is quite strong. Additional set-theoretic assumptions,
e.g., the General Continuum Hypothesis, are required to build such a model. (Models
satisfying Property (II) arc called “w/traenlargements” in [17].) We discuss in Sec-
tion 6 the extent to which this extra hypothesis may be weakened.

Let Q2 be a hyperfinite set. We adopt throughout the convention that [|A| is
the internal cardinality of an internal set A, while card(4) is the external, set-theoretic
cardinality of 4. For 4 an internal subset of Q, that is, 4e*2(Q), let u(4)
= |l 41/]|€2] . Then (2, L(Q), L(1)) is a (standard, external) probability space, where
L(Q) is the smallest o-algebra containing *2(Q), and L(yx) is a countably additive
extension of sto .

Note that while the completion (2, L(), L(w)) of this space has the same mea-
sure algebra, [L(Q)] = [L(Q)], it has more point-automorphisms. Every transfor-
mation constructed in this paper preserves “Borel rank”, and so is a point-auto-

morphism for both spaces. (See Corollary 4.2 for a consequence of this.)
The following well-known fact is a consequence of w,-saturation.

Automorphisms of the Loeb algebra 31

PROPOSITION 2.1. For every Be L(Q), there is an internal A with [B] = [4].

Finally, it will be convenient to agree on some notation concerning ordinal
numbers. If a is an ordinal, finite, or infinite, make the following identifications and
definitions:

(@) a={B: f<a},

(if) 2* = {r: @ — 2} = the set of sequences of 0’s and 1’s with order type a,

(i) 2% = (J 2".

p<=z

If 74,7, €2% write 7 <7, if Domain(z,) is a proper subset of Domain(r,) and
73 = T2 Ppomaineny - If 7 € 27 define 70 (respectively, 7°1) on 2°*! by appending a 0
(respectively, a 1) to the sequence 7.

3. Preliminary results. Every t€2", neN, gives rise to an internal function
b = b.: *#(Q) —» *2(Q) defined by

ér(A: s oy Ay) = ( N 4o N Af+1) .
= 1(0) = 1(1)

Note that for fixed A, , ..., 4, € *2(Q), the set {bA4y, ..., 4,): 1€2"} is an internal
partition of Q.

Call two sequences {4;};<, and {B;},<, from *2(Q) similar if for all ne N,
iy <iy < ... <i, <0, and T€2", [B(Ay, ..., 4D = [BLBy, - B

Lemma 3.1. Suppose {A;}i<, and {B;}., are similar enumerations of *2(Q).
Then there is a point-automorphism T of Q such that T(A4)) = B; for all i <=x.

Proof. Define T by T(x) = y, where {x} = 4; and {y} = B;. By similarity,
T is well-defined and injective; since both sequences are enumerations, Domain (T)
= Range(T) = Q. For i<x%, and x e Q, similarity guarantees that xe 4; if and
only if T(x)e B;, so T(4;) = B;. &

LEMMA 3.2. If « <%, and {A;}i<, and {B;},<, are similar, then there are internal
*permutations F and G of Q, and A € *P(Q), such that F(4;)) = G(4;) = B;, but
L(1)(F(A)AG(4)) = 0.

Proof. By x-saturation it suffices to show that the following conditions on F, G,
and A are finitely satisfiable:

(i) F and G are *permutations of 0,

(i) F(4) = G(4)) = B;, all i<q,

(ii)) u(F(A)AG(A))<¢, all e O (0, 1].
Let neN, £>0, and i, <i,<..<i,<o« The sets {b(d,,..,4,): 1€2"} and
{be(B;,, ..., B;,): T€2"} each partition 2, as noted above. By internally refining
these partitions if necessary, we obtain internal partitions {4'};<, and {B'}i<m,

with |4 = _IlBiil either *even or equal to 1 for i < m. Divide each A’ (respectively,
B'), with ||4']| *even, into two internal subsets A% and AL (resp., B} and BL) so
that 4% | = | 45| = |B}| = |BL| = 4| 4'|. Define F and G so that F maps

A' (resp., AL) bijectively onto B’ (resp., BL), and G maps A (resp., AL)
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bijectively onto B. (resp., B‘_)._ F and G should take 4' to B' for those
i with |4’ =1. Let 4= () 4%. Bvidently, F, G, and A4 satisfy (i)-(iii) for
) ism

{igy ey in}. W

LeMMA 3.3. Suppose o. <%, {A;}i<e and {B;};i<. are similar, 4, € *P(Q), and &
is a set-homomorphism of [{A;}i<.) into [L(Q)] with ®([4;]) = [B;] for all i<a.
Then there is a B, € *#(RQ) such that [B,] = ®([4,]), and {4;}i<. and {B}i<, are
similar.

Proof. Let Be *#(Q) with [B} = @([4,]). It suffices to find an internal per-
mutation F of Q such that F(4;) = B, for i <a, and u(F(4,)AB)~ 0. We show that
the following conditions are finitely satisfiable:

(i) F is a *permutation of @,

(i) F(4;) = By, all i<a,

(iii) p(F(4)AB)<ze, all g€ QN (0, 1].

Let iy <..<i, <o ¢€Qn(0,1]. The sets {A'}icm = (b4, ..., 4;): T€2"}
and {B'}i<m = {b(By,, ..., B;): 1€2"} each internally partition Q. For i<m,
let g = p(d' n 4)—pu(B'n B), and note & ~0. If ¢ is positive (respectively,
negative), choose B < B' a superset (resp., subset) of B'n B, with |Bl]
= |4’ n 4,]|; this can be done so that {B};cn U {B\B.}, <. partitions Q. Define
an internal permutation F of Q so that F(4' n 4,) = BS and F(4'\4,) = B\B;
for i<m. This F satisfies (i) and (ii), and the calculation
W(F(A)AB) = pu( U (BiAB)= Y =0

=m i<m

verifies (iii). M

4, Inducing automorphisms. We now can prove the main results.

THEOREM 4.1. Let @ be a set automorphism of [L(Q)]. Then there is a point
automorphism T such that @ = Dy,

Proof. We assume that *2(Q) is endowed with some fixed well-ordering. Define
a function g: % — {0, 1} inductively so that o(x) = 0, when « is a limit ordinal;
o(x+1) = (a(@)+1)mod2 otherwise.

Inductively construct sequences {4};<, and {B;};<, as follows.

If o(«) = 0, let 4, be the first element of *2(Q)\{4,};<,, and let B, as given
in Lemma 3.3.

If o(2) = 1, let B, be the first clement of *2(Q)\{B;};<.., and let A4, as given
in Lemma 3.3, in this case reversing the roles of {4,},<, and {B,}i<,, and replac-
ing @ by ¢~L

By the construction, {4;};<, and {B};<, are similar; by similarity and the
construction, each sequence is an enumeration of *2(Q). The conclusion follows
from Lemma 3.1. B

COROLLARY 4.2. Let T be any L(Q)—L(Q) or E(_Q_)—-m measurable point-
automorphism of Q. There is some point-automorphism T' of Q which takes internal
sets to internal sets and which induces the same set-automorphism as does T.
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THEOREM 4.3. Not all set automorphisms of [L(Q)] are induced by internal
point-automorphisms.

Proof. Since card([L(Q)]) = 2%, there are at most 2 set-automorphisms; we
show that there are in fact exactly 2* such automorphisms. The theorem follows from
the fact that Q@ has only x internal permutations.

As in Theorem 4.1, give *2(Q) a well-ordering. Define a function
0:%—{0,1,2} by o(®=0, o« a limit; g(z+1) = (e(@)+1)mod2. Let

T= {re2~*: Vae Domain(7), o(x) # 2 = t(x) = 0}.

(Tis a binary tree of height » which has been “pruned” so that it only branches at
every third node.) Inductively define {4,},cr and {B,},cr as follows.

Given t€T, let o= Domain (7). If p(z) =0, let 4, be the first element of
*P(QN\{4,: 0<1}. Choose B,e*P(Q) so that {4,},.. and {B,},, are similar.

If o(x) =1, let B, be the first element of *Z(Q\{B,},~., and choose
A e*P(Q) so that {4,},.. and {B,},. are similar. We also define A.~;, B,
at this stage, i€ {0, 1}. By Lemma 3.2, let A4, F, G internal such that F(4,)
= G(4,) = B, for all 0=<1, and L(u)(F(4) AG(A)) = 0. Put Ao = Ay = A4,
By = F(A), and By = G(A).

Let T’ = {tre2*: Yae Domain(z), 7}, € T}. Note card(T') = 2%. Suppose
te T'. By the construction, {4,},. and {B,},.are similar enumerations of *Z(&2),
so define a point automorphism T, and thus a set automorphism @, = @, . It
remains to show that the automorphisms {&.}.. are distinct.

Let t, # 1, € T, let o least with 7,(%) # 75(x). Note g(@) = 2. Let 7 = 7, f,
= 1, },; by the last part of the construction B,y = Bj;. Thus, @, and @, differ
on [A,~]. ®

THEOREM 4.4. Suppose W< L(Q), card(W) <%, and P is a set-homomorphism
from [U] into [L(Q)]. Then there is an internal permutation T of Q such that
[T(A)] = ([A]) for all AeU.

Proof. Without loss of generality, % = *2(Q). Let {4;};<, be an enumeration
of 9. Use Lemma 3.3 to inductively define {B;};<, < *2(Q) so that {4;}i<, and
{B;}i<, are similar and [B;] = ®([4,]) for i <«. By Lemma 3.1, there is an internal
permutation T of Q with T'(4;) = B; for all i<o. @

5. Related results, applications. Uniform hyperfinite spaces have the following
“universality” properties:

1. (Anderson [1]) Every Radon probability space (X, 8, m), with card(B) < x,
is the image of (2, m, L(u)) under a measure preserving transformation.

2. (Bernstein and Wattenberg [2], Henson [8]). If (X, B, m) is an atomless
probability space, then there is a uniform hyperfinite space (Q,L(Q},L(y)) with
XcQc*X and u(*B n Q) ~m(B) for all BeB.

3. (Keisler [12]) Every standard probability space is L ,p-equivalent to a uni-
form hyperfinite space. '

We consider results related to each of these properties.

3 — Fundamenta Mathematicae 128. 1
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Suppose first that (X, B, m) is a Radon probability space, and that y: @ - X
is measure-preserving. Let @ be a set-homomorphism from [8] into [L(Q)]. We
show that the y can be chosen to respect @. :

Note that 1~ embeds B .into L(Q), hence [B]into [L(Q)]. Let @’ be the
induced set-homomorphism from [~*(B)] to [L(Q)]. By Theorem 4.4, there is
an internal bijection T' of Q such that [T7(4)] = @'([4]) for all [A] e [y~ 1(B)].
The function f = 7o T suffices for the following proposition. :

PROPOSITION 5.1. Let (X, 8B, m) be a Radon probability space, card(B)< s,
and let @: [B] — [L(Q)] be a set-homomorphism. Then there is a measurable
J: @ > X such that for all AeB, [f~*(4)] = &([4]).

Now suppose that (X, B, m) is an arbitrary complete atomless probability s pace.
By universality property (2), there is an isomorphism between [B] and
[{*B: BeB}] which is given by the natural embedding of X into Q< *X. The
following generalization is a minor modification of a result of Edgar [6], in which the
target space is Radon instead of hyperfinite.

PROPOSITION 5.2. Let (X,B,m) be a complete probability sp ace, I' = *P(Q
with card(I') < x, and let N be the smallest c-algebra containing T'. If & is a Boolean
o -homomorphism from U into [B] (or if & is a set-homomorphism from 2] into [B1)
then there is a B-U measurable f: X — Q such that [ f~*(4)] = &([A]) for all
Ae .

Proof. We may assume that I' is an algebra. Let 0 be a lifting of B, that is,
a o-homomorphism from [B] to B with [0([B])] = [B] for all BeB (see [10]).
For xe X let I', = {Ae I': xe0(®(4))}. Evidently I, has the finite intersection
property, so (\I', # O; let f(x)e I,.

It suffices to show that for Ae I, £ ~1(4) = 6(®(4)). The reverse inclusion is
immediate, so suppose f(x) € 4. Since I'is an algebra, (N I', < A4, but then by »-satu-
ration C'e I'; for some C< 4, so xe0(P(C)) = 0(P(4)) as required. B

Our last ap.piication presupposes familiarity with the “Probability Logic” of
Hoover and Keisler; see ([12]) for a discussion. We illustrate the following meta-
mathematical principle:

Let { be a property of measure algebras, and suppose { holds for every space in
which set-automorphisms are induced by point-automorphisms. Then { holds for all
spaces.

This follows from Theorem 4.1, universality property (3), and the general rule
that properties of measure algebras can be expressed in L 4p.

For example, suppose that (X, B, m) is a probability space, & a set-automor-

phism of B, and 4 € B. Let {4,},., be a sequence from B such that [4.] = & ([4]).
The statement

n—1

® Hi
n=+ao N
k=0

X4(X) = m(4) almost surely

iom
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expresses an “algebra” form of Birkhoff’s Ergodic Theorem ([3]) which in fact
follows from the usual theorem in those spaces where @ is given by a point-auto-
morphism.

Let &£ be a probability logic including a countable set {if,(x): i€ Z} of unary
predicate symbols, and consider (X, B, m) as a model for &, where the interpreta-
tion of 1f; in X is the set A;. Then § is expressible in & as

& ANVAV (A A W)

keN NeN n>N tednk (iy=1 W(i)=0

where Ay = | |[r7 {IDI—n-m(A)| <njk .

Now, let (Q(L(Q),L(w) = 1,.(X.B,m) in this language. (We may assume
card(B) < =.) The elementary equivalence gives an embedding of [U] into [L(Q)],
where 2 is the o-algebra generated by {4;};.z, @and so Theorem 4.4 guarantees
that the image of @ }g,;in [L(p)] is given by an internal permutation of Q.
Thus, by the regular ergodic theorem applied to @ (better: by a minor modific-

ation of Kamae [11]), the sentence § holds in (2, L(2), L(w), hence in (X, B, m).

6. Discussion. As noted in Section 2, the hypothesis on »-saturation is extremely
strong. Tt seems, however, to be necessary for Theorem 4.1 {and thus Corollary 4.2),
though we can’t prove that this is indeed the case.

On the other hand, for Lemma 3.2 and Lemma 3.3, and thus Theorem 4.4 and
the results in Section 5, the number of internal sets plays no significant role, and it
suffices to assume that (2, L(Q), L(w)) is »-saturated, where » may have no rela-
tion to card(Q).

Theorem 4.3 will hold in any special model of nonstandard analysis, and thus

is independent of special set-theoretic axioms: for a regular cardinal s, if 2z = ) 2%,
A<x

then a model satisfying (I) and (II) can be constructed. Otherwise, build a special
model of cardinality », find A<z with 2*>%, and apply the construction
of Theorem 4.3 to a A-saturated model in the specializing chain.

We conclude with some remarks on the theorem of Edgar mentioned above.
That theorem is that if @ is a o-homomorphism from a compact topological space’s
Borel algebra to [B], where (X, B, m) is any complete probability space, then there
is ameasurable f: X — ¥, where Yis the compact space, such that [ f~1(4)] = #(4),
for all 4 = Y open. Fremlin [7] points out that this is true as well for & a set-homo-
morphism from [2] to [B], where (¥, 2, v) is a Radon probability space.

This result follows easily from universality property (1) and Proposition 5.2;
unfortunately, nothing much is gained here, since the proof of this latter proposition
is almost identical to Edgar’s. However, an affirmative answer to the following
question will yield a simple, “lifting-free” proof of both Proposition 5.2 and Edgar’s
Theorem.

QUESTION. Suppose in Lemma 3.3 that % and I' are as in Proposition 5.2, that
B.e T for all i <a, and that Range(®) < [A]. Can B, be chosen in I'?
3.
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On characterizations of classes of metrizable spaces that have
transfinite dimension

by

Yasunao Hattori (Osaka)

Abstract. We are ¢oncerned with a characterization of two classes of infinite-dimensional
spaces. First, we characterize the class of metrizable spaces which have large transfinite dimension,
in terms of partitions, a special base and a dimension-raising mapping. Second, we give a charac-
terization of the class of metrizable spaces which have strong large transfinite dimension, in terms of
a dimension-raising mapping and a special refinement.

1. Introduction. In this paper we are concerned with a characterization of two
classes of metrizable spaces of transfinite dimension. We say that a metrizable
space is countable-dimensional if it can be expressed as the union of countably
many zero-dimensional subsets (in the sense of dim or equivalently of Ind). We
have been inspired by the following interesting theorem, obtained by J. Nagata [11]
and K. Nagami and J. H. Roberts [10], which characterizes the class of countable-
dimensional metrizable spaces.

THEOREM A. For a metrizable space X, the following conditions are equivalent:

(a) X is countable-dimensional.

(b) For every sequence {(A;, B)): i€ N} of pairs of disjoint closed sets of X,
there is a sequence {L;: i€ N} of closed sets such that each L; is a partition between A4;
and B; in X and the family {L;: ie N} is point finite.

() X has a o-discrete base # such that the family {Bd B: B € %} is point finite.

(d) There are a metrizable space Z and a closed continuous mapping f of Z onto X
such that dimZ <0 and f~1(x) consists of at most finitely many points, Jor each_
point x e X.

In [5], R. Engelking and R. Pol characterized the class of metrizable spaces
of large transfinite dimension by use of a strongly point finite family (see § 2 for the
definition) of partitions. But the concept of strong point finiteness cannot cfha:ac—
terize this class in terms of a o-discrete base. In Section 2 we characterize this class
in terms of partitions and of a ¢-discrete base simultaneously by use of a new coz%—
cept of “point finiteness”. A characterization of the same class in terms of a di-
mension-raising closed continuous mapping from a zero-dimensional metrizable
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